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Abstract: In recent years, the THz frequency band (0.3 THz–10 THz) has attracted an increasing
research interest for the realization of emerging high-speed wireless communication links. Nev-
ertheless, the propagation of THz signals through the atmospheric channel is primarily subjected
to signal attenuation due to free space path loss (FSPL), water vapor, adverse weather conditions
along with atmospheric turbulence-induced and misalignment-induced scintillations. Therefore, in
this work, a multi-hop line-of-sight THz system that utilizes serially connected decode-and-forward
relays is proposed to extend the total THz coverage distance under the presence of fog, rain or clear
weather conditions, as well as water vapor, atmospheric turbulence, non-zero boresight pointing
errors and FSPL. Under these circumstances, an average bit error rate (ABER) analysis is performed.
In this context, novel closed-form ABER expressions are derived. Their analytical results demonstrate
the influence of each of the above limiting factors as well as their joint impact on the ABER perfor-
mance. Finally, the feasibility of extending the total THz link distance through multi-hop relaying
configurations is also evaluated.

Keywords: terahertz; atmospheric turbulence; attenuation; rain; fog; free space path loss; non-zero
boresight pointing errors; average BER; relays

1. Introduction

In recent years, the dramatic increase in the data traffic carried by telecommunication
networks due to the continuous emergence of new high bandwidth services, smart devices
and variable sophisticated applications has generated a significant spectrum congestion
with the existing radio frequency (RF) systems. Initially, optical fiber systems provided
the means to increase the amount of data to be transported. Despite their success, their
installation is not always an easy, flexible or even viable task, for they cannot provide
wireless connectivity and solve the last mile bottleneck problem. Complementing the
existing wireless RF solutions, optical wireless communications (OWCs), commonly known
as free space optical communications (FSOs) which mainly operate in the infrared (IR),
visible light and ultra-violet bands, as well asmillimeter wave (MMW) communications
that operate within 30–300 GHz have been initially developed [1–4]. Even more recently,
the impressive advances in both wireless communication devices and high-directional
antenna design technologies have paved the way to the exploitation of terahertz bands
that areat the cross-section of the higher end of microwaves and the lower end of optical
frequency bands, and thus, it can offer their distinct advantages [5]. Indeed, in comparison
with MMW communication links, terahertz (THz) links achieve increasing capacities owing
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to their larger atmospheric transmission window [6–8]. This is very critical since the sixth
generation (6G) per user bit rate is expected to be 1 Tb/s in different fields of application,
which the existing MMW links for 5G cannot accommodate, contrary to the emerging THz
links which have the potential to reach such demands [5,9]. Moreover, potential applications
of THz links also include virtual reality, augmented reality, holographic projection in 6G
wireless communication, terabit wireless personal area networks, terabit wireless local area
networks, cellular networks, transmission of high-definition television (HDTV) signals with
low latency, wireless back-haul for data and voice communications, wireless extensions of
broadband access to fiber optical networks to address the last-mile problem, machine-to-
machine communications among sensor networks and critical biomedical applications such
as health monitoring systems [5,7,9,10]. Additionally, THz outperforms MMW in terms of
unregulated frequency spectrum, higher security level, lower transmitted power as well as
higher directional information-bearing beams [10]. At the other side of the spectrum, when
compared to IR FSO links, THz links are much less vulnerable to signal scintillations and
signal attenuation under the presence of dust, clouds or atmospheric turbulence [11–14].
Likewise, THz links do not suffer from the stronger ambient infrared noise, whereas THz
power transmissions are not constrained by eye-safety infrared emission power limits.

Nevertheless, rain attenuates THz radiation to a greater degree, which is a critical
natural obstacle for THz deployment [15–17]. In this respect, the major limiting factor for
the performance of THz links has been reported to be the THz signal attenuation due to
humid air that results from molecular absorption mainly due to the presence of water vapor,
and to a much lesser degree due to the presence of oxygen [18]. Apart from attenuation
due to weather conditions and molecular absorption, the inevitable transmitted energy
distribution over a large area, as the emitted THz signal is propagating towards the receiver
side, brings about the attenuation due to FSPL. Thus, this unavoidable loss always exists
and further degrades the THz links’ performance [19].

Additionally, even in a clear sky temperature, pressure inhomogeneities bring about
random variations of the refractive index along the atmospheric channel, which give rise
to the atmospheric turbulence effect. The latter is a complex effect that generates the
so-called scintillation effect which results, in turn, in rapid fluctuations of the intensity
of the signal at the receiver side, analogous to fading in RF systems [2,20–23]. Although
THz transmissions are generally less vulnerable to atmospheric turbulence than FSO
transmissions, turbulence-induced THz performance degradations are not negligible and
should be taken into consideration, especially in a long-path propagation that emerging
THz links are expected to accommodate [19].

Another concern in THz links is the pointing errors effect that mainly arises from
building sway. Thermal expansion, dynamic wind loads as well as weak earthquakes
bring about the sway of high-rise building structures where THz terminals are usually
placed. The latter results in random vibrations of the transmitted information-bearing beam
and consequently in stochastic misalignments between transmitter and receiver antenna
terminals. These unavoidable misalignments, which are commonly known as pointing
errors, generate random intensity variations of the propagated signal arriving at the receiver
aperture which strongly degrades the THz performance and availability [24–27]. More
precisely, pointing errors consist of both boresight and jitter components [22]. The former
is the fixed displacement between the beam and the detector center, while the latter is the
random offset of the beam center at the detector plane [28].

In short, while line of sight (LOS) THz links exhibit concrete advantages that make
them a prime candidate to reach the growing demands of the emerging wireless com-
munications, their deployment is impaired by attenuations due to weather effects and
especially rain, attenuations due to molecular absorption and especially water vapor, at-
tenuations due to FSPL, atmospheric turbulence and pointing errors. It therefore becomes
evident that a generalized LOS channel model that evaluates the joint impact of all the
above detrimental effects could be a very useful tool for the design and the establishment
of such LOS THz links. Still, this research gap remains in the open technical literature.
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Specifically, a good approximation for the attenuation of the lower frequency band of THz
waves (0.1–1 THz) due to molecular absorption is the ITU-R model [19]. In this respect,
the authors of [29,30], by using time domain spectroscopy, investigated attenuation due
to water vapor from 0.2–2 THz, while in [18] they confirmed four transparent windows at
0.41 THz, 0.46 THz, 0.68 THz and 0.85 THz. Recently, attenuation due to water vapor in the
presence of dry air has been assessed for practical outdoor THz links in [31]. Additionally,
based on the model proposed in [32], the authors of [33] proposed an alternative channel
model including path loss, transceiver parameters and molecular absorption. The above
results demonstrate that in terms of molecular attenuation, attenuation due to water vapor
is more significant than attenuation due to oxygen within the frequency regions in which
emerging THz links operate. Attenuation due to fog, cloud or rain has been evaluated
through the Laser Environmental Effects Definition and Reference (LEEDR) computation
tool in [34] as well as through a theoretical framework and/or experimentally in a labora-
tory or a real outdoor environment in [5,11–13,15–17,35–37]. Apart from the feasibility of
establishing realistic THz links, their findings reveal that experimental results are in good
agreement with the predicted attenuation due to weather effects, with rain being the most
destructive effect for the emerging THz transmissions. Moreover, it is highlighted that
attenuation due to weather effects must be taken into consideration, especially for longer
THz link lengths, while THz outperforms FSOs under fog conditions and thus THz can be a
promising alternative for many wireless applications in fog. Additionally, the atmospheric
turbulence effect over THz link channels has been experimentally studied in a laboratory
environment in [14,38], as well as theoretically in [39], where in the authors estimated
turbulence-induced THz scintillation through the estimation of the scintillation index met-
ric. Their results mainly indicate that although atmospheric turbulence is less significant
for THz compared to FSO channels, it should not be neglected, especially for the longer
propagation distances that modern THz links can support. Thus, stochastic distribution
models are needed to emulate these turbulence-induced THz signal scintillations. In this
respect, the authors of [19,40] recently introduced in the THz area the well-known (from the
FSOs open literature) Gamma–Gamma, Lognormal and Exponentiated Weibull turbulence
distribution models, while also even more recently the authors of [41] proposed the Gamma
distribution turbulence model as a simplified alternative to the Lognormal distribution for
weak-to-moderate THz turbulence conditions. Furthermore, the influence of THz beams
misalignment between transmitter and receiver terminals was initially considered as a
part of the shadowing effect in [42], while it was later evaluated in [43,44] through deter-
ministic models. Consequently, these works could not incorporate the stochastic nature
of pointing errors. Their stochastic impact for THz links has been first evaluated by the
authors of [27,45,46], relying mainly on the well-known zero boresight pointing error model
which was first proposed in [24] for FSO links. In this context, the authors of [19,40] and
then the authors of [41] studied the joint impact of turbulence and zero boresight stochastic
pointing errors on THz link performance for different turbulence distributions. Never-
theless, in terms of the impact of the more realistic non-zero boresight (NZB) stochastic
pointing errors, there is still a research gap in the THz literature. Additionally, the use of
relays has been recently introduced in the THz band in [47,48] and then in [49–54], which
demonstrate the feasibility of establishing relay-assisted THz links to address several effects
that mitigate THz performance and availability.

Motivated by the above and inspired also by several multi-hop FSO relaying configura-
tions that have been reported to successfully enhance the total propagation
distance [22,23,55–58], in this work a multi-hop THz system is investigated over different
channel and link characteristics that incorporate for the first time the combined impact of
all the major effects described above. The evaluation of the impact of each factor as well
as their joint influence on the THz system’s performance is performed by means of the
crucial ABER performance metric. Therefore, the first key contribution of this paper is
the establishment of a THz system and channel model including atmospheric turbulence,
stochastic ZB or NZB pointing errors, attenuation due to FSPL, attenuation due to molec-
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ular absorption that arises especially from water vapor and attenuation due to weather
conditions and especially due to the presence of rain or fog. It is also remarkable that the
proposed system and channel model include different critical design parameters, such as
the selected operational THz frequency value, the transmitter and receiver antennas’ gain
and the number of intermediate relay nodes along with the total distance of the multi-hop
THz link. Based on the proposed model and after performing an ABER analysis, novel
closed-form ABER expressions are derived. To the best of the authors’ knowledge, the
extracted ABER expressions are the first closed-form ABER expressions that incorporate
all the above major effects and design parameters in the open technical THz literature.
In this context, proper analytical results are presented for different multi-hop THz link
configurations that reveal the impact of each of these performance factors along with their
joint impact. Consequently, the proposed analysis can be a very useful tool for the design
of the emerging long-path THz links.

2. System and Channel Model
2.1. Basic Principles of the Investigated THz System

The typical multi-hop LOS THz system under consideration comprises the transmitter
node, the receiver node and the N-1 serially connected decode-and-forward (DF) relay
nodes along the propagation channel, with N ≥ 1. Therefore, N distinct intermediate THz
links, commonly known as hops, are created along the total propagation path. Each relay
node decodes the signal after direct detection, remodulates it and retransmits it to the
next relay node, provided that it exceeds a given appropriate decoding intensity threshold.
This process continues until the source’s data arrives at the receiver destination node [56].
Without loss of generality, these intermediate links can be assumed to be of equal length.
Additionally, the investigated system is considered to employ the On-Off Keying (OOK)
modulation format which is commonly utilized in both commercial and industrial fields,
mainly due its simplicity among the rest of the alternative modulation schemes. Under
these assumptions, the THz signal that arrives at the n-th node, where 1 ≤ n ≤ N, is
expressed as:

yn = hnxn−1 + nn (1)

where hn is the total corresponding channel state due to atmospheric turbulence, total at-
tenuation and generalized pointing errors, xn−1 = {0 or 2Pt} is the corresponding emitted
information signal according to the OOK modulation format with Pt being the average
transmitted signal power and nn represents the corresponding additive Gaussian white
noise with variance σ2

n [19].

2.2. Total Attenuation

The total channel coefficient for each THz hop can be written as

hn = hl,nhp,nha,n, (2)

where hl,n, hp,n and ha,n denote the THz signal intensity due to the deterministic total
attenuation, generalized pointing errors and atmospheric turbulence, respectively [21,24,41].

The above deterministic total attenuation factor can be expressed in turn as

hl,n = h f l,nhvl,nhwl,n, (3)

where h f l,n, hνl,n and hwl,n denote the attenuation due to FSPL, the molecular attenuation
due to the water vapor and the attenuation caused by the weather effects, respectively. It
should be clarified here that the latter attenuation factor obtains different values in case of
fog and rain as it will be explained below. Additionally, it should be noted that hwl,n = 1 in
case of clear weather conditions. Indeed, in clear weather conditions, Equation (3) reduces
to hl,n = h f l,nhνl,n as it was reported in [19,27,41], where the presence of adverse weather
effects was not taken into consideration.
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In more detail, the deterministic attenuation factor due to FSPL is obtained according
to Friis equation as seen in [45]

h f l,n = c
√

GtGr(4π fnzn)
−1, (4)

where c is the speed of the light in the free space, fn represents the frequency of the
information-bearing THz carrier wave which propagates along the n-th link, zn denotes the
n-th link length and Gt, Gr are standing for the transmission and reception antenna gains
of the corresponding nodes, respectively.

Additionally, the molecular attenuation term due to the propagating signal’s absorp-
tion along the n-th hop can be obtained according to the well-known Beer–Lambert Law
as [11]:

hvl,n = exp(−av,nzn), (5)

with aν,n being the attenuation coefficient in m−1 while the propagation distance along the
n-th THz hop, zn, is expressed in meters. Bearing in mind that water vapor dominates in
terms of THz attenuation over gaseous oxygen and any other species of gases as well as
those at lower atmospheric altitudes where THz links are located, water vapor remains
a major limiting factor in determining the maximum link distance, the maximum THz
frequency of the link and the link performance [8,10,59], we have, without loss of generality,
set aν,n as the attenuation coefficient due to water vapor which at T0 = 20 °C surface
temperature and for f ≤ 350 GHz is obtained as [60]:

av,l

(
dB
km

)
=[

0.067 + 2.4
( fn−22.3)2+6.6

+ 7.33
( fn−183.5)2+5

+ 4.4
( fn−323.8)2+10

]
f 2
n ρn × 10−4

(6)

where the operation frequency fn is now expressed in GHz, while ρn represents the water
vapor concentration in g/m3 along the corresponding channel. It should be mentioned
here that as the surface temperature decreases, the attenuation coefficient is expected to
increase by about 1% per degree Celsius, and vice versa [60].

Similarly, the attenuation factor due to weather conditions prevailing along the n-th
hop can be obtained as

hwl,n = exp(−aw,nzn), (7)

with aw,n being the attenuation coefficient for the specific weather effect which is usually
experimentally measured in km−1, while the propagation distance along the n-th THz hop,
zn, is expressed in km. Additionally, it should be clarified that the attenuation due to any
weather condition such as rain or fog can be added to both attenuation due to FSPL and
the molecular attenuation due to water vapor [19]. Consequently, in this work the total
attenuation due to water vapor, rain or fog and FSPL will be jointly considered by properly
utilizing the above attenuation expressions.

2.3. Atmospheric Turbulence Model

Even in clear weather conditions, the atmospheric turbulence effect is observed. In fact,
solar radiation absorbed by the Earth’s surface makes the air around the Earth’s surface
warmer than that at higher altitudes. This layer of warmer air becomes less dense and rises
to mix turbulently with the surrounding cooler air, causing the air temperature to fluctuate
randomly. These random temperature variations lead to corresponding refractive index
fluctuations and thus, inhomogeneities caused by turbulence can be considered as discrete
cells, or eddies of different temperatures, acting like refractive prisms of different sizes and
refractive indices. The interaction between THz propagating wavelengths and turbulent
medium generates random phase and amplitude variations of the received signal, which
results in the performance degradation of the link. Consequently, atmospheric turbulence
is a very complex stochastic effect which hinders the propagation of the information-
bearing beam and causes the so-called scintillation effect which results, in turn, in random
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temporal and spatial fluctuations of the received signal intensity, analogous to fading in RF
systems [2,20,40,61,62]. Considering therefore that this effect brings about continuous and
very rapid fluctuations on the intensity of the signal that arrives at the receiver’s side, it
should be mainly investigated through statistical methods and processes. The selection of
the appropriate model is mainly determined by the strength of the turbulence effect along
the propagation path. In this work, turbulence-induced scintillations are described by the
Gamma–Gamma distribution model [21,24,26,54,57,58,63,64], which has been widely used
in the FSOs area and more recently in the THz regime [19,40] as a very accurate model
for weak-to-strong turbulent conditions. According to the well-known Gamma–Gamma
turbulence model, which was first proposed in [65], the PDF of the positive random variable
ha,n is obtained as

fha,n(ha,n) = 2(αn βn)
αn+βn

2

Γ(αn)Γ(βn)
h

αn+βn
2 −1

a,n

× Kαn−βn

(
2
√

αnβnha,n
)
,

(8)

with Γ(.) representing the gamma function [66], Equation (8.310.1), Kν(.) denoting the
ν-th order modified Bessel function of the second kind [66], Equation (8.432.2), while the
parameters αn and βn can be directly related to the n-th turbulent channel along with the
link’s parameters, as described in [63]:

αn =

exp

 0.49δ2
n(

1 + 0.18d2
n + 0.56δ

12
5

n

) 7
6

− 1


−1

βn =

[
exp

(
0.51δ2

n(1 + 0.69δ12/5
n )

−5/6

(1 + 0.9d2
n + 0.62d2

nδ12/5
n )

5
6

)
− 1

]−1

,

(9)

where dn = 0.5Dn

√
2πλ−1

n z−1
n , with Dn standing for the receiver’s aperture diameter

and λn = c/ fn being the operational wavelength, while the parameter δ2 denotes the
Rytov variance for which the spherical wave propagation in a horizontal path is obtained
as [67,68]:

δ2
n = 0.5C2

nk
7
6
n z

11
6

n , (10)

with kn = 2π/λn being the wavenumber and C2
n representing the refractive index structure

parameter which is proportional to the atmospheric turbulence strength [67,68]. Conse-
quently, the Rytov variance is a metric of turbulence-induced scintillations, while also it be-
comes evident from Equation (10) that atmospheric turbulence is a wavelength-dependent
and especially a distance-dependent effect. The latter gives an early indication that while it
has been proved in [14,15] that THz radiation is less vulnerable to atmospheric turbulence-
induced scintillations than IR radiation, the atmospheric turbulence effect should not be
neglected for the design of modern and future THz links which are expected to cover longer
propagation distances.

2.4. Generalized Pointing Errors Model

In order to accurately describe the stochastic nature of the pointing errors effect includ-
ing the boresight component, the general and realistic Beckmann distribution statistical
distribution model was used. The PDF of the n-th radial displacement at the receiver Rn,
according to the Beckmann model which takes into consideration the influence of beam
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width, detector size, the different jitter for elevation and horizontal displacement as well as
the effect of pointing errors with boresight, is obtained as described in [22,28,69]

fRn(Rn) =
Rn

2πσx,nσy,n

×
∫ 2π

0 exp
(
− (Rncosζn−µx,n)

2

2σ2
x,n

− (Rnsinζn−µy,n)
2

2σ2
y,n

)
dζn,

(11)

where ζn is the divergence angle describing the increase in the beam radius at the receiver
with a distance zn from the transmitter, whereas the beam width could be approximated

as wz,n ≈ ζnzn for relatively long propagation distances. Additionally, Rn =
√

R2
x,n + R2

y,n

where R2
x,n and R2

y,n denote the offsets along the horizontal and elevation axes at the
detector plane, respectively. In this context, the random variables Rx,n and Ry,n are
considered as nonzero mean Gaussian random variables, i.e., Rx,n ∼ N

(
µx,n, σ2

x,n
)

and

Ry,n ∼ N
(

µy,n, σ2
y,n

)
with µx,n and µy,n representing the mean values, whereas σx,n and

σy,n are the standard deviations for horizontal and elevation displacements, respectively.
According to the analysis which has been performed in [69], the Beckmann distribution
above can be accurately simplified through a modified Rayleigh distribution as

fRn(Rn) =
Rn

σ2
mod,n

exp

(
− R2

n

2σ2
mod,n

)
, Rn ≥ 0, (12)

with σmod,n being the joint standard deviation of σx,n and σy,n for the n-th hop, expressed as
follows [69],

σ2
mod,n =

(
3µ2

x,nσ4
x,n + 3µ2

y,nσ4
y,n + σ6

x,n + σ6
y,n

2

) 1
3

(13)

Therefore, according to [69], the PDF of the random variable hp,n can be written as

fhp,n

(
hp,n

)
=

ψ2
n

(A0,ngn)
ψ2

n
hψ2

n−1
p,n , 0 ≤ hp,n ≤ gn A0,n, (14)

where ψn = wz,eq,n/2σmod,n refers to the total amount of the pointing mismatch at the
n-th receiver aperture. Indeed, larger values of ψn denote weaker generalized pointing
errors, and conversely, smaller values of ψn correspond to a stronger total amount of
pointing mismatch [22]. Similarly, ψx,n = wz,eq,n/2σx,n and ψy,n = wz,eq,n/2σy,n indicate
the specific generalized misalignment strengths along the horizontal and elevation axis,
respectively. It is worth noting here that wz,eq,n =

[√
πerf(vn)w2

z,n/2vnexp
(
−v2

n
)]1/2, with

A0,n = erf2(vn) representing the fraction of the collected power at rn = 0 , with erf(.)
standing for the error function [70], Equation (7.1.1), and rn being the radius of the n-th
receiver aperture, while vn =

√
πrn/

√
2wn,z, and wn,z standing for the corresponding beam

waist on the receiver plane at propagating distance zn [19,24]. Additionally, the parameter

gn = exp
(

1
ψ2

n
− 1

2ψ2
x,n
− 1

2ψ2
y,n
− µ2

x,n
2σ2

x,nψ2
x,n
− µ2

y,n

2σ2
y,nψ2

y,n

)
determines the presence of ZB or NZB

pointing errors. Indeed, when the boresight displacement at the n-th hop sn =
√

µ2
x,n + µ2

y,n

is equal to zero, i.e., µx,n = µy,n = 0 , and σx,n = σy,n then gn = 1. In other words, when
gn = 1, we have only ZB pointing errors and more specifically the Beckmann model is
reduced to a Rayleigh distribution with sn = 0, and thus, expression (12) is simplified
into [24], Equation (10) while also (14) reduces to [24], Equation (11).
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2.5. Joint Impact of Attenuation, Turbulence and NZB Pointing Errors

The joint PDF of the total channel state for each hop can be deduced from the integral below

fhn(hn) =
∫

fhn |ha,n(hn|ha,n ) fha,n(ha,n)dha,n, (15)

where fhn |ha,n(hn|ha,n ) stands for the conditional probability of hn given ha,n [67]. The latter
can be expressed as [57]

fhn |ha,n(hn|ha,n ) =
dFhp,n(hn|ha,nhl,n )

dhn
= ψ2

n

(A0,ngn)
ψ2

n ha,nhl,n

(
hn

ha,nhl,n

)ψ2
n−1

, 0 ≤ hn

≤ A0,ngnhl,n,

(16)

where F(.) stands for the cumulative distribution function (CDF).
By substituting (8) and (16) by (15) and by utilizing the analysis performed in [63],

we obtain
fhn(hn)=

αn βnψ2
n

A0,ngnhl,n Γ(αn)Γ(βn)

×G3,0
1,3

(
αn βnhn

A0,ngnhl,n

∣∣∣∣ ψ2
n

ψ2
n − 1, αn − 1, βn − 1

)
,

(17)

where Gm,n
p,q (.) denotes the Meijer G-function, [71].

3. Average BER Estimation
3.1. On-Off Keying Modulation

According to the On-Off keying (OOK) modulation format, the instantaneous BER for
each hop can be obtained as described in [25]:

Pe,n = pn(1)pn(e|1 ) + pn(0)pn(e|0 ), (18)

where pn (0) and pn (1) denote the probabilities of transmitting the bits “0” and “1”,
respectively, while pn (e |0) and pn (e|1) are their corresponding conditional bit-error
probabilities [2]. By assuming that pn(0) = pn(1) = 1/2 and pn(e|0 ) = pn(e|1 ) we
obtain [57]:

Pe,n = pn(e|1 ) = pn(e|0 ) =
1
2

erfc
(

Pthn√
2σn

)
, (19)

where erfc(.) stands for the complementary error function [70], Equation (8.250.4).
The average BER for the n-th hop is defined as

Pe,av,n =
∫ ∞

0
fhn(hn)Pe,av,ndhn, (20)

Consequently, by substituting (17) and (19) by (20), we obtain

Pe,av,n=
αn βnψ2

n
2A0,ngnhl,n Γ(αn)Γ(βn)

×
∫ ∞

0 erfc
(

Pthn√
2σn

)
G3,0

1,3

(
αn βnhn

A0,ngnhl,n

∣∣∣∣ ψ2
n

ψ2
n − 1, αn − 1, βn − 1

)
dhn

(21)

In order to solve the integral of (20), we initially transform the above complementary
error function in terms of Meijer G-function by utilizing [71], (03.04.26.0009.01). Next,
by using [72], Equation (21), and after performing some mathematical manipulations,
we obtain:

Pe,av,n=
2αn+βn−4ψ2

n√
π3Γ(αn)Γ(βn)

×G2,6
7,4

(
8P2

t A2
0,ng2

nh2
l,n

σ2
n a2

n β2
n

∣∣∣∣∣ 1, 1−ψ2
n

2 , 2−ψ2
n

2 , 1−αn
2 , 2−αn

2 , 1−βn
2 , 2−βn

2

0, 1
2 ,−ψ2

n
2 , 1−ψ2

n
2

)
,

(22)
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By simplifying (22) through [71] (07.34.03.0002.01) and also considering (3) and
N0,n = σ2

n/2, we eventually obtain

Pe,av,n=
2αn+βn−4ψ2

n√
π3Γ(αn)Γ(βn)

×G2,5
6,3

(
16P2

t h2
f l,nh2

vl,nh2
wl,n

N0,n A−2
0,n g−2

n a2
n β2

n

∣∣∣∣∣ 1, 2−ψ2
n

2 , 1−αn
2 , 2−αn

2 , 1−βn
2 , 2−βn

2

0, 1
2 ,−ψ2

n
2

)
.

(23)

Thus, it becomes evident that the ABER for a THz link is obtained through (23) which
incorporates atmospheric turbulence, NZB or ZB pointing errors, FSPL, attenuation due to
water vapor along with attenuation due to weather conditions.

According to the analysis performed in [73], the total ABER for a multi-hop system is
given by

Pe,av,tot =
N

∑
i=1

[
Pe,av(i)

N

∏
j=i+1

(1− Pe,av(j))

]
, (24)

Therefore, considering the same single-hop ABER value Pe,av,n in all N hops of the
system under investigation, the latter expression can be accurately written as

Pe,av,tot =
N

∑
n=1

Pe,av,n

N

∏
j=n+1

(1− 2Pe,av,n), (25)

or alternatively as described in [73]

Pe,av,tot = Pe,av,n ∑N
n=1 ∏N

j=n+1(1− 2Pe,av,n) = Pe,av,n ∑N
n=1(1− 2Pe,av,n)

N−n. (26)

Consequently, by substituting (23) by (25), we eventually obtain the total ABER for the
examined THz multi-hop system as follows:

Pe,av,tot =
N
∑

n=1
ΞnG2,5

6,3

(
16P2

t h2
f l,nh2

vl,nh2
wl,n

N0,n A−2
0,n g−2

n a2
n β2

n

∣∣∣∣∣ 1, 2−ψ2
n

2 , 1−αn
2 , 2−αn

2 , 1−βn
2 , 2−βn

2

0, 1
2 ,−ψ2

n
2

)

×∏N
j=n+1

(
1− 2ΞnG2,5

6,3

(
16P2

t h2
f l,nh2

vl,nh2
wl,n

N0,n A−2
0,n g−2

n a2
n β2

n

∣∣∣∣∣ 1, 2−ψ2
n

2 , 1−αn
2 , 2−αn

2 , 1−βn
2 , 2−βn

2

0, 1
2 ,−ψ2

n
2

))
,

(27)

where we have set Ξn = 2αn+βn−4ψ2
n√

π3Γ(αn)Γ(βn)
.

Therefore, through (27), the total ABER for a multi-hop THz system is obtained,
which mainly includes the impact of atmospheric turbulence, generalized pointing errors,
number of hops, FSPL, attenuation due to water vapor along with attenuation due to
weather conditions.

3.2. L-Symbol Pulse Amplitude Modulation Modulation

It is worth mentioning that the analysis performed above can be extended to accom-
modate more complex modulation formants. An example is theL-symbol Pulse Ampli-
tude Modulation (L-PAM) modulation format which has been proved to achieve spectral
efficiency enhancements in the wider wireless communications field in comparison to
OOK [74–76]. According to L-PAM, the information is encoded into L different amplitudes,
which represent the L different symbols. Thus, considering in Equation (1) that xn−1 is the
corresponding L-PAM symbol amplitude, the instantaneous BER for the L-PAM signaling
technique can be, correspondingly to Equation (19), obtained as described in [76]

Pe,n,L−PAM =
L− 1

L log2 L
erfc

(√
P2

t h2
n log2 L

2σ2
n(L− 1)2

)
. (28)
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Next, by following the analysis performed above and correspondingly to Equation (23),
we obtain the ABER for each L-PAM THz hop as

Pe,av,n,L−PAM = 2αn+βn−3ψ2
n√

π3Γ(αn)Γ(βn)

(L−1)
(L log2 L)

×G2,5
6,3

(
16(log2 L)P2

t h2
f l,nh2

vl,nh2
wl,n

N0,n A−2
0,n g−2

n a2
n β2

n

∣∣∣∣∣ 1, 2−ψ2
n

2 , 1−αn
2 , 2−αn

2 , 1−βn
2 , 2−βn

2

0, 1
2 ,−ψ2

n
2

)
.

(29)

Consequently, correspondingly to Equation (27), we eventually obtain the ABER for
the total L-PAM THz multi-hop system as

Pe,av,tot,L−PAM =
N
∑

n=1
ΦnG2,5

6,3

(
16(log2 L)P2

t h2
f l,nh2

vl,nh2
wl,n

N0,n A−2
0,n g−2

n a2
n β2

n

∣∣∣∣∣ 1, 2−ψ2
n

2 , 1−αn
2 , 2−αn

2 , 1−βn
2 , 2−βn

2

0, 1
2 ,−ψ2

n
2

)

×∏N
j=n+1

(
1− 2ΦnG2,5

6,3

(
16P2

t h2
f l,nh2

vl,nh2
wl,n

N0,n A−2
0,n g−2

n a2
n β2

n

∣∣∣∣∣ 1, 2−ψ2
n

2 , 1−αn
2 , 2−αn

2 , 1−βn
2 , 2−βn

2

0, 1
2 ,−ψ2

n
2

))
,

(30)

where we have set Φn = 2αn+βn−3ψ2
n√

π3Γ(αn)Γ(βn)

(L−1)
(L log2 L) . It is worth noting that when L = 2,

Equation (29) reduces into Equation (23), and Equation (30) reduces into Equation (27). The
latter indicates that 2-PAM is a special case equivalent to OOK.

4. Analytical Results

In this section, proper analytical results obtained by the derived closed-form expres-
sions are presented. These results mainly aim to reveal the individual impact of each
of the above-mentioned major impairments as well as their joint influence on the total
ABER and the coverage area of a typical THz system which may employ multiple hops.
In more detail, the THz system under investigation may consist of N = {1, 2, 3 or 4} hops.
Each of the n = 1, 2, ..N hops are assumed to have the same, equal to zn = 150 m, link
length. The refractive index structure parameter is assumed to be C2

n = 5× 10−14 m−2/3

for weak or C2
n = 2.3 × 10−9 m−2/3 or strong turbulence, similarly to the experimen-

tal measurements in [14]. Additionally, the system may operate with frequency equal to
f = fn = 0.3 THz or f = fn = 0.35 THz, while in terms of the antenna characteristics,
they have either aperture radius rn = 0.15 m with gain G = Gt = Gr = 55 dBi or aperture
radius rn = 0.7 m with gain G = Gt = Gr = 70 dBi [19]. Note that unless otherwise
stated, the f = fn = 0.3 THz and rn = 0.15m with gain G = Gt = Gr = 55 dBi trans-
mitter and receiver pair is utilized in the following figures and results. Such transceiver
antennas can practically support up to several hundreds of meters propagation distances
which is consistent with the THz hop length of the investigated system. Specifically, the
selected antenna gain can be practically achieved by employing high-gain Cassegrain
antennas which are commonly used in the THz frequency regime of the selected central
frequency [27], while the 55dBi antennas are also already manufactured and tested with
success [77]. Consequently, we have selected the above operation frequency values for
the examined link because they are appropriate for the operation of the practically ap-
plicable transmitter and receiver antenna terminals mentioned above, while they also
are within the proper frequency regime in which Equation (6) is valid. In terms of the
stochastic influence of the generalized pointing errors, different practical boresight and
jitter component values have been assumed for each hop transmission, i.e., wn/rn =9 with(
µx,n/rn, µy,n/rn, σx,n/rn, σy,n/rn

)
= (0, 0, 5, 5) or (0, 0, 6, 6) for weak-to-strong ZB pointing

errors and
(
µx,n/rn, µy,n/rn, σx,n/rn, σy,n/rn

)
= (1, 2, 5, 5) or (1, 2, 6, 6) for weak-to-strong

NZB pointing errors, respectively [69]. Furthermore, it is assumed that in accordance with
the practical channel and environmental circumstances, the surface temperature is equal
to 20 ◦C, the air pressure is equal to 1 atm, while ρ = ρn = 7.5 g/m3 or ρ = ρn = 10 g/m3

for moderate-to-strong molecular attenuation due to water vapor along each THz hop,
respectively [19,27,60]. Regarding the impact of weather effects, with the exception of a
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clear sky along the THz channel, two different and realistic scenarios are examined. More
precisely, the impact of fog attenuation is determined by an additional attenuation factor
aw,n = 0.6 dB/km, while rain attenuation is determined, in turn, by an additional attenua-
tion factor aw,n = 3 dB/km at a precipitation rate of 2 mm/h [5,34], (Figure 1). It is worth
noting that unless otherwise stated, clear weather conditions are assumed and OOK modu-
lation is utilized. Finally, σn = 10−7 A/Hz in all link configurations [19,41], while Monte
Carlo simulations are marked below with solid dots, which have been generated by Matlab
software for values lower than 10−6. In this way, we further validate the corresponding
analytical results obtained.
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Figure 1. ABER vs. Transmitted power for single-hop and quad-hop THz link configurations under
different weather conditions, weak turbulence, FSPL, moderate water vapor concentration and strong
generalized pointing errors.

Figure 1 illustrates the ABER evolution for single-hop (N = 1) or the quad-hop
(N = 4) LOS THz link configuration over a wide range of transmitted power through
a weak turbulent channel with clear, rain or fog weather conditions and moderate air
humidity along with the presence of FSPL and strong ZB or NZB pointing errors. It is
depicted that for the same transmitted power and water vapor concentration values along
with identical turbulence conditions, the weather effects and NZB pointing errors, the
single-hop outperforms the quad-hop link configuration in terms of ABER. This is in accor-
dance with other multi-hop configurations in the wider outdoor wireless communications
literature [22,23,55], while it can be explained by the fact that most of the effects that af-
fect the THz ABER performance such as FSPL, water vapor attenuation and atmospheric
turbulence are distance-dependent. Thus, quadrupling the total THz coverage area be-
comes at the expense of this ABER performance degradation. Additionally, by focusing on
single-hop configuration’s ABER results, we can observe that higher corresponding ABER
values are obtained when NZB pointing errors are considered instead of ZB pointing errors
with the same spatial jitter. The latter indicates that as is the case with FSOs [2,28,67], the
boresight component should not be neglected when stochastic pointing errors are estimated
between THz transmitter and receiver terminals. Consequently, our initiative to include
NZB pointing errors for THz links alike seems to be reasonable. Furthermore, for each
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illustrated configuration, i.e., single-hop with ZB pointing errors, single-hop with NZB
pointing errors and quad-hop with NZB pointing errors, three different weather scenarios
are depicted, i.e., fog, rain or clear weather conditions. The performance comparison
between them reveals that corresponding ABER values under rain are the largest. Likewise,
ABER values under fog are slightly larger than their corresponding ABER values under
clear weather conditions. This behavior indicates that rain is the most detrimental weather
effect for THz signal transmissions while fog slightly aggravates the attenuation of the
propagating THz signal. It is worth noting that the latter is qualitatively consistent with the
experimental findings in [11,12,15–17]. It should be also recalled here that contrary to THz,
the most detrimental weather effect for FSO transmissions is fog due to the comparable size
of fog droplets with IR optical wavelengths [12,78], while conversely, FSO transmissions
suffer only slightly from rain. This fact enables THz as a key complementary wireless
technology to FSOs, paving the way for the development of hybrid FSO/THz links which
will be able to efficiently operate in both rain and fog conditions. Finally, it is shown that
higher transmitted power values lead to lower ABER values, as it was expected.

Figure 2 illustrates the ABER evolution for single-hop (N =1) or the quad-hop (N =4)
LOS THz link configuration over a wide range of transmitted power through the same
weak turbulence, FSPL, weather and air humidity conditions, but along with the presence
of weak ZB or NZB pointing errors this time. The ABER qualitative behavior of Figure 2
is very similar to the one of Figure 1, which further enhances the accuracy of the analysis
performed along with the conclusions discussed above. Nevertheless, all the ABER values
from Figure 2 are lower than their corresponding ABER values from Figure 1, owing to the
weaker amount of pointing mismatch which is assumed in the corresponding configurations
of Figure 2. It is also worth noting that the detrimental impact of boresight component is
now becoming more evident due to the lower spatial jitter values. Even for larger spatial
jitter values, however, the boresight should be taken into consideration for the design of
THz links, as indicated in Figure 1. Consequently, the performance comparison between
the first two figures mainly reveals the impact of generalized pointing errors on the ABER
performance of single-hop or multi-hop THz systems.
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Figure 3 illustrates the ABER evolution for the dual-hop LOS THz link configura-
tion over a wide range of transmitted power through weak-to-strong atmospheric tur-
bulence, weak ZB pointing errors, different transceiver antenna gains, clear weather
along with moderate-to-high air humidity conditions. For the same transceiver gain
of G = 55 dBi along with the same amount of pointing mismatch, it is highlighted that the
impact of stronger water vapor concentrations along with stronger atmospheric turbulence
significantly degrade the total THz ABER performance. It is also highlighted that especially
for low transmitted power values, the impact of attenuation due to water vapor dominates.
In fact, the worst-case scenario in Figure 3 is that represented by the blue solid line. Al-
though there is a performance improvement as turbulence becomes weaker (blue dashed
line),a better performance improvement can be observed when attenuation due to water va-
por becomes weaker (red solid line) instead of turbulence. Consequently, it is demonstrated
that the detrimental impact of attenuation due to water vapor is more important than the
impact of turbulence-induced scintillations on the THz outage performance. The latter
is qualitatively consistent with the experimental results in [11,14] that highlight that the
atmospheric turbulence-induced scintillations are much less detrimental for THz links than
molecular attenuation. Additionally, Figure 3 illustrates the potential of the utilization of
more effective transceiver antennas of a higher gain G = 70 dBi, in an attempt to overcome
turbulence, pointing errors and especially, high water vapor concentrations. Once again,
these depicted outage performance improvements are qualitatively in accordance with the
corresponding results obtained in several works.
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Figure 3. ABER vs. transmitted power for a dual-hop THz link configuration with different an-
tenna gains, weak-to-strong turbulence, moderate-to-high water vapor concentrations and weak ZB
pointing errors.

Figure 4 shows the ABER evolution for the triple-hop LOS THz link configuration over
a wide range of transmitted power through strong atmospheric turbulence, strong NZB
pointing errors, different operation frequencies, clear weather along with moderate-to-high
air humidity conditions. It becomes evident from the illustrated results that even for strong
joint turbulence and generalized pointing errors, the impact of THz signal’s attenuation
due to water vapor still drastically increases the total ABER of the system. Additionally,
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it is highlighted that further significant ABER performance degradations are observed by
increasing the operational frequency from f = 0.3 THz to f = 0.35 THz, especially for lower
transmitted power values. This is consistent with the findings reported in Figure (3.1) of [60]
which indicate that molecular attenuation due to water vapor becomes more significant in
the region of 0.35 THz in comparison with the region of 0.3 THz. Consequently, although it
appears that increasing the frequency of the carrier wave could have a positive contribution
to establish THz links of a higher available bandwidth, particular attention should be given
to the molecular attenuation due to water vapor.
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Figure 5 shows the ABER evolution for single-hop, dual-hop, triple-hop or quad-hop
LOS THz link configurations over a wide range of transmitted power through strong
atmospheric turbulence, strong NZB pointing errors, rain along with moderate-to-high air
humidity conditions. Thus, in view of the above, Figure 5 depicts the worst-case scenario
for each topology. In order to address this issue, we have selected the high gain transceiver
pair of G = 70 dBi along with the operation frequency f = 0.3 THz which is more resilient
to humid air than f = 0.35 THz, as mentioned above. The results demonstrate that, under
these adverse circumstances, it may not be wise to extend the end-to-end link length
beyond two or three hops, especially for low transmitted power values and high ABER
performance demands.

Figure 6 visualizes the ABER evolution for dual-hop or quad-hop LOS THz link config-
urations with different L-PAM modulation schemes over a wide range of transmitted power
through strong atmospheric turbulence, weak NZB pointing errors, rain and moderate air
humidity conditions. The ABER performance comparison between dual-hop configurations
indicates that 2-PAM, which is a special case equivalent to OOK, outperforms 8-PAM. Nev-
ertheless, considering that 8-PAM is more bandwidth-effective than OOK, it is highlighted
that especially for higher transmitted power values, the selection of 8-PAM instead of
OOK seems to be reasonable at the expense of an acceptable ABER increase for very high
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bandwidth demanding applications. Additionally, the ABER performance comparison
between quad-hop configurations indicates that, especially for lower transmitted power
values, 8-PAM outperforms 16-PAM. Thus, the number of symbols to be transmitted should
be increased with caution.
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5. Discussion

Single-hop and multi-hop LOS THz link configurations were investigated through
weak-to-strong atmospheric turbulent channels under the presence of moderate-to-high air
humidity, free-space path loss, different weather conditions including clear sky, rain, or fog
along with weak-to-strong generalized stochastic pointing errors. The stochastic effects of
turbulence-induced scintillations and generalized pointing error misalignment-induced
fading have been described through the appropriate statistical distribution models, i.e.,
Gamma–Gamma and Beckmann distribution models, respectively. Under these circum-
stances, the joint impact of all the above major effects has been evaluated in the open THz
literature for the first time. Furthermore, the potential of establishing multi-hop THz links
to increase the total coverage area has been first investigated. In this context, an outage
performance analysis has been performed in terms of the critical ABER metric. Thus, novel
closed-form ABER expressions that jointly incorporate the impact of atmospheric turbu-
lence, pointing errors with or without boresight, molecular attenuation due to water vapor,
free space path loss, attenuation due to rain or fog droplets were derived. Additionally,
the extracted closed-form ABER expressions include the impact of critical link parameters,
such as the operation frequency, the transmitted power, the transceivers’ antenna gain,
the number of the implemented relay nodes along with the link length of each hop. By
adjusting realistic values for each crucial parameter, their results demonstrate the feasibility
of significantly extending the end-to-end THz propagation distance through the use of
serially connected relay nodes in most of the examined scenarios. It is also worth noting that
the obtained results for each specific effect are qualitatively consistent with the previously
reported experimental and theoretical predictions in the open THz literature. Additionally,
proper simulation results further validate the obtained ABER analytical results. In short, the
proposed analysis may be a useful tool in the design of the emerging THz links intended to
cover longer propagation distances.

6. Conclusions

The use of THz band provides a prime alternative for establishing high-speed wire-
less communication links. In this context, the proposed LOS multi-hop DF relaying THz
system has been proved to significantly extend the total THz coverage area by achieving
encouraging results in terms of the ABER metric. According to our findings, the most
detrimental effect which mitigates the ABER performance is humid air by means of molec-
ular attenuation due to water vapor along the propagation path, especially along with
rain conditions. Contrary to FSOs, which are highly vulnerable to fog and atmospheric
turbulence and to a lesser extent to rain and humid air, our findings validate that fog, along
with atmospheric turbulence, are not the most important ABER degrading factors for THz
links. The latter therefore gives rise to the development of hybrid FSO/THz links which
will be able to efficiently co-operate in both rain and fog conditions along with humid
air turbulent channels. Another important outcome of this paper is that the boresight
component should be considered on the estimation of stochastic misalignment-induced
fading which can unavoidably but significantly further degrade the ABER performance
of THz links. Finally, the feasibility of utilizing higher order L-PAM modulation formats
in the THz band has been verified, which enhances the total spectral efficiency but at a
reasonable and acceptable expense of ABER performance degradation.
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