
Citation: Wu, H.; Wu, J.; Hu, N.; Cui,

H.; Wu, P.; Lin, G.; Cao, D.; Zhang, Z.;

Shao, Y.; Li, B. A Transmissive

Imaging Spectrometer for

Ground-Based Oxygen A-Band

Radiance Observation. Photonics 2022,

9, 729. https://doi.org/10.3390/

photonics9100729

Received: 5 September 2022

Accepted: 4 October 2022

Published: 6 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

A Transmissive Imaging Spectrometer for Ground-Based
Oxygen A-Band Radiance Observation
Heng Wu 1,2 , Junqing Wu 3, Nanxi Hu 3, Hang Cui 3, Pengfei Wu 4, Guanyu Lin 1, Diansheng Cao 1,*,
Zihui Zhang 1, Yingqiu Shao 1 and Bo Li 1

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Beijing Institute of Control and Electronic Technology, Beijing 100038, China
4 Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of

Sciences, Hefei 230031, China
* Correspondence: caodiansheng1987@163.com

Abstract: The oxygen A-band (759–770 nm) is a commonly used band for atmospheric observations.
The signal in this band has wide dynamic range and can be used to invert several atmospheric
parameters, such as air pressure and atmospheric optical depth, at different altitudes. High-resolution
oxygen A-band radiance imaging spectrometer (HARIS) is an imaging spectrometer that operates in
the oxygen A-band, which is designed for the observation of the direct solar radiance that passes
through the atmosphere. HARIS is a transmissive imaging spectrometer that uses a compact transmis-
sive optical system combined with reflective grating spectroscopy, while an area scan CMOS detector
is used as the photosensitive element for the observations. HARIS response is associated with the
observed target through a calibration process, which uses a monochromator with a supercontinuum
laser for the spectral calibration, an integrating sphere with a spectrophotometer for the radiometric
calibration and a meridian for the geometric calibration is employed to correct for distortions. The
calibration results show that HARIS has an average spectral resolution of 0.33 nm and a field-of-view
of 3.085 × 0.03◦ with an average spatial sampling interval of 0.0138◦. Finally, the performance of
HARIS is verified through field tests, in which the solar radiance data with an average signal-to-noise
ratio of 438.93 is obtained.

Keywords: oxygen A-band; transmissive imaging spectrometer; spectrum calibration; absorp-
tion spectrum

1. Introduction

The oxygen A-band is one of the most commonly used spectral bands in ground-based
and space-borne atmospheric remote sensing, with a spectral range of 759–770 nm. The
atmospheric absorption spectral line distribution on the oxygen A-band is regular, the
signal dynamic range is large, and the absorption intensity varies drastically. The above
characteristics make it an ideal band for atmospheric parameter inversion [1–7]. Cloud
top-height inversion, atmospheric optical depth inversion, and daylight-induced chloro-
phyll fluorescence analysis can be performed by analyzing the intensity of the radiation
signal [8–12]. Atmospheric pressure profile inversion can be performed by analyzing the
spectral signal broadening of the absorption band [13]. The radiation transmission patterns
can be improved, and the cloud 3D effects can have a greater understanding, by analyzing
the photon transport paths in the absorption band [14]. The aerosol profile information
can also be inverted by use of the oxygen A-band polarization signal [15]. Furthermore,
on-orbit upper atmospheric oxygen A-band airglow emission observations can be used for
the inversion of atomic oxygen densities [16].
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With the growth of greenhouse gas detection requirements and the improvements
in precise spectroscopic measurement techniques, remote sensing technology (and its
applications with respect to the oxygen A-band) is beginning to experience a new period of
rapid development. A number of advanced spectrometers are now employed for oxygen
A-band observations. Among these, the greenhouse gases observing satellite-2 (GOSAT-2)
is able to use its Fourier transform spectrometer-2 (TANSO-FTS-2) with a biaxial scanning
mirror to examine multiple observation areas, which are 8 × 88 km in size over a span of
790 km [17,18]. The TanSat (a carbon observing satellite) is able to observe sub-satellite
areas with a ground sample distance of 2 × 2 km over an area of 20 km in width [19]. The
Earth Polychromatic Imaging Camera (EPIC) is able to observe the Earth disk at the L1
point with 8 km spatial resolution at sub-satellite points [20,21].

The above-mentioned instruments are able to obtain remote sensing data for the
oxygen A-band from space with global coverage at high spectral resolution and high
spatial resolution. However, these space-borne instruments have the weakness of a limited
temporal resolution for the remote sensing observations, a relatively fixed visit time over
each region, and a satellite attitude-limited observation angle. Therefore, ground-based
instruments are also required to obtain a high temporal resolution and a multi-angle data
for certain regions [22].

In terms of the ground-based instruments, high-resolution oxygen A-band and wa-
ter vapor band spectrometer (HAWS) and high-resolution oxygen A-band spectrometer
(HABS), which use grating for spectroscopy, have obtained oxygen A-band radiation data
with high resolution. The HABS has an excellent spectral resolution (i.e., 0.016 nm) and it
has a frontal telescope with a 2.71◦ field-of-view (FOV) that can be adjusted for observing
both direct solar radiation and the sky scattering signals. However, the large structure of
the instrument and the accompanying cooling equipment means that it is inconvenient
to deploy in the field [7,23]. Although rotating shadowband spectrometers (RSS) are also
capable of obtaining radiation data in the oxygen A-band, their spectral resolution is low
(i.e., 2.3 nm) [24]. In recent years, researchers have also designed ground-based hyperspec-
tral instruments for oxygen A-band observations, such as the double-grating spectrometer
system (DGSS) and simultaneous multipolarization and high-resolution oxygen A-band
spectrometer (SPHABS), but they have not yet been in use or have large dimensions [25–27].

Simultaneously, for the application of oxygen A-band remote sensing data, if the data
has a high spectral resolution, signal-to-noise ratio (SNR), out-of-band rejection ratio (OOB),
and suitable spectral sampling interval, it can provide more independent information
for the inversion of atmospheric parameters [23,28]. In addition, direct observations of
direct solar radiation can also provide more atmospheric information, such as photon path
length distributions, and higher SNR [7]. Therefore, it is necessary to use the hyperspectral
instruments with high spatial resolution, high spectral resolution and high SNR to observe
the atmosphere in the oxygen A-band. However, compact and easily deployable observing
instruments that are designed for this purpose are rarely reported in the literature.

In this paper, a compact imaging spectrometer for the oxygen A-band observation, the
high-resolution oxygen A-band radiance imaging spectrometer (HARIS), is proposed and
designed, which is able to observe direct solar radiation with a high spectral resolution and
a high SNR under uncooled conditions. The design and the calibration of the instrument
are introduced, and this is followed by the description of the field test and a brief analysis
on the field test results. These outcomes show that the instrument can meet observation
requirements for oxygen A-band radiance with a high spatial resolution and a high SNR.

2. Instrument Design and Calibration
2.1. Optical Design

To reduce the size and the weight of the optical system, HARIS has been designed
as a transmissive imaging spectrometer. All the components of HARIS except for the
grating are transmissive, and the layout of the optical system is shown in Figure 1. The
incident light radiation is imaged onto the focal plane after it sequentially passes through
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the band-pass filter, neutral density filter, telescope system, slit, collimation system, grating,
and focusing system.

Photonics 2022, 9, 729 3 of 19 
 

 

2. Instrument Design and Calibration 
2.1. Optical Design 

To reduce the size and the weight of the optical system, HARIS has been designed as 
a transmissive imaging spectrometer. All the components of HARIS except for the grating 
are transmissive, and the layout of the optical system is shown in Figure 1. The incident 
light radiation is imaged onto the focal plane after it sequentially passes through the band-
pass filter, neutral density filter, telescope system, slit, collimation system, grating, and 
focusing system. 

 
Figure 1. Layout for the optical system based on HARIS. 

The bandpass filter in the system serves to eliminate stray light and the higher-order 
spectral effects from the non-observation bands, which also improves the OOB levels of 
the instrument; the neutral density filter is used to attenuate the excessive sunlight to a 
level acceptable for the detector. The focal length of both the telescope and the whole op-
tical system of HARIS is 55 mm. The slit is positioned at the focal point of the telescope 
system and has a width of 25 µm, which limits the FOV of the spectral dimensions of the 
instrument to 0.03°. A holographic planar grating with 1200 lines/mm is used. The detec-
tor resolution is 2048 × 2048 and the pixel size is 6.5 × 6.5 µm. The designed operating band 
covers from 758 nm to 778 nm, the designed spectral resolution is greater than 0.5 nm, and 
the designed FOV is 3 × 0.03°. 

2.2. Image Output Method 
To achieve high SNR measurements for uncooled conditions, HARIS uses a method 

of pixel binning with the simultaneous recording of reference dark column signals to re-
duce the effects of noise [29,30]. From the simulation results, the image plane of the optical 
system occupies approximately 2000 rows and 510 columns of the CMOS detector. To 
suppress the effect of noise and stray light as much as possible for the uncooled case, HA-
RIS also records 32 columns of unilluminated pixels that are a distance of 300 columns 
away from the effective detector region. This data will be used as the reference dark signal 
of the unilluminated condition, which is used for the spectral information extraction. A 
total of 2040 rows and 518 columns of the images that contain effective spectral infor-
mation is recorded for each observation, which leaves a slight margin for the effective 
region. So, a total of 2040 rows and 550 columns of the image data need to be recorded for 
the same observation. 

Due to compactness requirements, HARIS is not able to improve the SNR of the data 
through detector cooling components. Therefore, the SNR of the observed data is planned 
to be improved by pixel binning. The noise of the signal acquired by the CMOS detector 
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The bandpass filter in the system serves to eliminate stray light and the higher-order
spectral effects from the non-observation bands, which also improves the OOB levels of
the instrument; the neutral density filter is used to attenuate the excessive sunlight to a
level acceptable for the detector. The focal length of both the telescope and the whole
optical system of HARIS is 55 mm. The slit is positioned at the focal point of the telescope
system and has a width of 25 µm, which limits the FOV of the spectral dimensions of the
instrument to 0.03◦. A holographic planar grating with 1200 lines/mm is used. The detector
resolution is 2048 × 2048 and the pixel size is 6.5 × 6.5 µm. The designed operating band
covers from 758 nm to 778 nm, the designed spectral resolution is greater than 0.5 nm, and
the designed FOV is 3 × 0.03◦.

2.2. Image Output Method

To achieve high SNR measurements for uncooled conditions, HARIS uses a method of
pixel binning with the simultaneous recording of reference dark column signals to reduce
the effects of noise [29,30]. From the simulation results, the image plane of the optical
system occupies approximately 2000 rows and 510 columns of the CMOS detector. To
suppress the effect of noise and stray light as much as possible for the uncooled case,
HARIS also records 32 columns of unilluminated pixels that are a distance of 300 columns
away from the effective detector region. This data will be used as the reference dark signal
of the unilluminated condition, which is used for the spectral information extraction. A
total of 2040 rows and 518 columns of the images that contain effective spectral information
is recorded for each observation, which leaves a slight margin for the effective region.
So, a total of 2040 rows and 550 columns of the image data need to be recorded for the
same observation.

Due to compactness requirements, HARIS is not able to improve the SNR of the
data through detector cooling components. Therefore, the SNR of the observed data is
planned to be improved by pixel binning. The noise of the signal acquired by the CMOS
detector mainly consists of thermal noise, which obeys the statistical law, and the readout
noise brought by the circuit design. The pixel binning assists in reducing the influence
of the thermal noise of the signal, which results in the improvement of the SNR for the
observed data.
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From the optical design results, the detector has a redundancy in both the spatial and
the spectral dimension sampling intervals for the observed signal. Thus, HARIS is designed
to output the sum of every 10 rows and every 2 columns of the original detector data, so
that the 20 pixels are combined into 1 pixel, which provides a resolution of 204 × 275 for
the final output data. The image transmission process of HARIS is shown in the form of a
schematic in Figure 2.
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In the case of 20-pixel binning, after excluding pixel readout noise and bias (because
these two values are generally constant and can be eliminated by calibration), the digital
number after pixel binning DNbinning is the sum of the digital number of each pixel before
binning. During the pixel binning, the digital number from the optical signal conversion Li
are directly summed linearly and the random noise Ni is summed statistically. Thus, the
result of pixel merging can be calculated by the following equation

DNbinning =
20

∑
i=1

Li +

√√√√ 20

∑
i=1

N2
i , (1)

The sum of the random noise can also be approximated by the following equation√√√√ 20

∑
i=1

N2
i ≈
√

20 Ni , (2)

where Ni is the average of all pixel random noise. Then, if we allow the average of all pixel
response signal to be Li, the combined SNR can be calculated as

SNRbinning =
20Li√
20Ni

, (3)
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Meanwhile, the average SNR before merging can be expressed as Ni/Li, so after
20 pixels of merging, the SNR of the data is improved by a factor of

√
20.

2.3. Wavelength Calibration

The accuracy of the wavelength calibration directly affects the accuracy of the inversion
results using the observational data [31]. The calibration method using the multipoint
monochromatic light is only able to fit the central wavelength on the image plane, without
the acquisition of the full width at half maxima (FWHM) of the slit function simultaneously.
Therefore, HARIS is calibrated pixel-by-pixel to obtain the slit function at each position
of the image plane. The equipment required for the wavelength calibration of HARIS is
shown in Figure 3. which consists of an NKT EXB-6 supercontinuum laser, a McPherson
Model 209 monochromator, and supporting optical components. After a beam expansion
and homogenization, the light emitted from the supercontinuum spectrum laser enters the
entrance slit of the monochromator. Then the beam comes out of the exit slit and, after a
color separation by the monochromator, is then expanded and imported into HARIS to
achieve wavelength calibration.
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After calibrating the monochromator, the wavelength calibration of HARIS was per-
formed using the above system. For this optical design, the wavelength scan interval for
the pixel-by-pixel calibration was taken as one-third the amount of the designed spectral
resolution at 0.15 nm, and a total of 148 points were scanned from 757 to 779.05 nm. Figure 4
shows the response of the 150th column on the HARIS image plane at 770.05 nm.

After the acquisition of the wavelength calibration data, the response of each pixel to
different wavelength light signals were fitted with the Gaussian curve, and the slit function
of each pixel on the image plane was obtained. Figure 5 shows the slit function of the 150th
pixel in the 120th row. The central wavelengths that correspond to the pixels in the 150th
column are presented in Figure 6, which depicts a nonlinear distribution of wavelengths
on the image plane.
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After the wavelength calibration, it can be determined that HARIS is able to cover the
spectral band from 758 nm to 778 nm with an average FWHM of 0.33 nm, and an average
spectral sampling interval of 0.25 nm.

2.4. Radiometric Calibration

As the target of HARIS observations is the Sun, and the currently used integrating
sphere light sources are not able to simulate high brightness targets such as the Sun, direct
calibration is difficult. The HARIS system has a neutral density filter with a transmittance
that is approximately 1.4%, the removal of which can significantly improve the radiometric
responsiveness of the instrument. Therefore, HARIS calibration is separated into two parts:
one for HARIS spectral irradiance responsivity calibration without the neutral density filter,
and the other for the spectral transmittance measurement of the neutral density filter.

The spectral radiance responsiveness was calibrated using an integrating sphere
with a spectral radiance, near to 760 nm, of 0.453 W·m−2·nm−1·sr−1. HARIS spectral
irradiance responsivity without the neutral density filter, Rwithout can be calculated based
on the standard spectral radiance of the integrating sphere LIS (which was transmitted
in advance), the digital number DN, and the integration time tint during the calibration,
so that:

Rwithout =
DN

LIStint
, (4)

The spectral transmittance measurements of the neutral density filters were performed
using a spectrophotometer. The spectral transmittance data for the neutral density filter
was obtained by averaging the measurements of the filter within the 750–790 nm band.
Due to the presence of the neutral density filter, the signal received by HARIS is reduced,
i.e., there is a relationship between the spectral irradiance of the observed target Ltarget and
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the spectral radiance received by the subsequent optical system of HARIS Lopt and the
transmittance of the neutral density filter T, given as follows:

Ltarget =
Lopt

T
, (5)

By combining Equations (2) and (3), the spectral radiance responsiveness of HARIS,
RHARIS, is calculated as:

RHARIS =
DN·T

Lopt·tint
. (6)

It is noteworthy, as shown in Figure 7, that HARIS also suffers from the Etalon effect
due to the use of a back-illuminated CMOS detector [32]. However, because of the high
stiffness of the HARIS optical structure, this effect can be circumvented by ensuring that
the image plane position during the observation is essentially the same as it was during
the calibration.
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2.5. Geometric Calibration and Correction

Due to the residual distortion within the optical design and the errors in the processing
and the mounting, there are some distortions in the imaging results (as shown in Figure 8).
In addition, since HARIS is an instrument for observing the sky with a high spatial resolu-
tion, it is also necessary to determine the pixel–spatial position relationship. Therefore, a
geometric calibration and a correction are required.
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Figure 8. Response of HARIS at the geometric calibration of 88.57◦. As shown, the instrument
response is a curve in the spectral dimension before the calibration is performed.

The equipment for the geometric calibration of HARIS is shown in Figure 9, which
includes a xenon lamp, a collimator, a slit placed at the focal point of the collimator, and
a theodolite. The slit width wo is around 100 µm, the focal length fc of the parallel light
tube is 507.16 mm, and the focal length of HARIS, fHARS, is 55 mm. The theoretical
calculations can be obtained, for a width wi of the slit image on the image plane, from the
following expression:

wi =
wo· fHARS

fo
= 10.84 µm. (7)
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This is slightly smaller than the width of the binned pixel (i.e., 13 µm). The slit on the
collimator is aligned perpendicular to the slit inside HARIS to limit the FOV. The light from
the xenon lamp is incident onto the collimator, after it passes through the FOV limiting
slit, then incident onto HARIS. With the changing of the tilt angle of HARIS using the
adjustment table, the response of HARIS to different incident angles of parallel light can
be recorded. While adjusting the tilt angle of HARIS, the tilt angle was monitored and
then recorded with the theodolite, and the calibration data were collected at an interval
of around 6 arc minutes. Figure 8 shows the response of HARIS when the angle between
HARIS optical axis and the vertical direction is 88.57◦ during the geometric calibration.
This shows that there is some distortion at the edge of the image.

After completing the data acquisition of the geometric calibration, each set of data
was analyzed and the Gaussian fitting was performed row-by-row to obtain the position
of the incident light signal that is received by the image plane at different angles. The
response of the 120th row at 89.99◦ is shown in Figure 10 with its Gaussian fit. The final
image position–observation angle correspondence for the full image plane was obtained by
use of polynomial fitting results for the image position–observation angle relationship of
all the rows. The pixel–space angle corresponding to the 120th row is shown in Figure 11
which shows the angle between each pixel and the instrument optical axis. The geometric
calibration results show that the instrument FOV is 3.09 × 0.03◦, and the average spatial
sampling interval is 0.0138◦.
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Using the geometric calibration results, the distortion corrections for HARIS can be
determined. The correction method uses the FOV of the 102nd row as the reference, which
is located at the center of the image plane, then interpolates the data of the other rows to
obtain the corrected image; the results for which are displayed in Figure 12.
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3. Field Test
3.1. Overview of Field Test

To verify the performance of the HARIS system, it was tested in October and December
2021 at the Lijiang Observatory of the Yunnan Astronomical Observatory, CAS (latitude
26◦41′24.97′′ N, longitude 100◦01′49.91′′ E, and altitude 3200 m) during two field tests.
The Lijiang observatory is located on the top of Tiejia Mountain, which is around 40 km
from downtown Lijiang; it has the advantage of a high atmospheric visual nimbleness and
a low aerosol impact. The setup used for the field tests is shown in Figure 13, in which
HARIS is mounted onto the Paramount ME II equatorial mounting for solar tracking. This
equatorial mounting is capable of achieving a 30 arcsecond celestial pointing accuracy
and a 7 arcsecond tracking accuracy that ensures that the high-resolution observations of
HARIS are not affected by the pointing accuracy.
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3.2. Field Test Data and Analysis

During the tests, observations were conducted by HARIS at multiple solar altitude
angles. Figure 14 shows the spectral radiance values, and their relative values, during the
two observations on 9 October and 1 December at the same solar altitude angle of 41.263◦.
These two images demonstrate that HARIS is capable of achieving observations of the
oxygen A-band, and Figure 14b shows that the observation results of the instrument are
reproducible under similar conditions.
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In terms of the high-spatial resolution observations, which were taken on the after-
noon of December 3rd as an example, a number of broken clouds appeared in the sky at 
around 15:00 during the observation period, as shown in Figures 16 and 17 depicts the 
images (and their horizontal profiles) obtained during the observation at around 15:17, 
when the sky was nearly clear and when clouds were present. It can be observed that 
HARIS has a sensitive response when the cloud obscures the sun, which indicates that 
HARIS is capable of high-spatial resolution remote sensing observations of the sky. 

Figure 14. Spectral radiance data (a) and relative response (b) of HARIS obtained from the two
observa-tions in October and December.

The atmospheric conditions during these two observations are displayed in Figure 15.
There was a cloudy sky on 9 October and a clearer sky on 1 December; this difference is
also reflected by the variation in the absorption intensity of the oxygen A-band between
the two observations.
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Figure 15. Weather conditions for the two observations at the solar altitude angle of 41.263◦.

In terms of the high-spatial resolution observations, which were taken on the afternoon
of 3 December as an example, a number of broken clouds appeared in the sky at around
15:00 during the observation period, as shown in Figures 16 and 17 depicts the images
(and their horizontal profiles) obtained during the observation at around 15:17, when the
sky was nearly clear and when clouds were present. It can be observed that HARIS has a
sensitive response when the cloud obscures the sun, which indicates that HARIS is capable
of high-spatial resolution remote sensing observations of the sky.
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Figure 16. Weather at the time of the observation of 3 December at 15:00.

The continuous observation capability of HARIS was also verified during the field tests.
Figure 18 shows the radiance ratios of the absorbed trough at 761 nm to the unabsorbed
band at 758 nm that was obtained from the observations in the relatively clear weather
conditions of the afternoons of 2 December and 3 December; the weather conditions at
some moments during these observations are shown in Figure 19. From the observed
data, it is clear that, as the solar altitude angle decreases, the solar radiation needs to pass
through a longer path in the atmosphere before it is received by HARIS. Consequently, the
absorption in the oxygen A-band was more intense at low solar altitude angles, which is
reflected in the spectral data, since the ratio of the radiance of the 761 nm band to that of
the 758 nm band decreases with descending solar altitude angles. The comparison of the
observations for those two days also shows that a similar effect arises during the presence
of clouds in the observation path.
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The observed data also display a high SNR. Figure 20 provides the SNR data that
were calculated from 100 consecutive frames of data, during the observation at 15:41 on
9 October. For this period, the data acquisition rate was set at 43 Hz, the acquisition time of
the 100 frames was less than 3 s, and the sky radiation signal was presumed to be basically
unchanged during this period (and thus had little influence on the SNR calculations). Near
the unabsorbed region around 758 nm, the instrument SNR can be more than 500. With a
change in the atmospheric absorption and the instrument response, the lowest SNR appears
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at the bottom of the absorption trough close to 761 nm, in which the minimum SNR is 283.8,
and the average SNR of the full imaging area is 438.93.
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4. Discussion

The comparison between HARIS and the other oxygen A-band observation spectrom-
eters mentioned in the references is presented in Table 1. The compared parameters include
the size of the instrument, observation band, spectral resolution, maximum SNR, cooling
condition and imaging condition. The table show that HARIS covers the oxygen A-band
with acceptable spectral resolution and obtains a high SNR in a compact size. This ensures
that the instrument can obtain high-quality observations with a maximum SNR > 500, an
average SNR > 400, and a minimum SNR > 250.
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Table 1. Performance comparison of oxygen A-band spectrophotometers.

Instrument Reference Instrument
Dimensions (Mm)

Observation
Bands (nm)

Spectral
Resolution (nm)

Maximum
SNR Cooling Condition Imaging

Condition

HARIS This work 230(L) × 270(W) ×
170(H) 758–778 0.33 >500 without CMOS

cooling Direct imaging

HABS Min et al. [23]
Specific dimensional

parameters not
mentioned

759–769 0.016 >1300 cooling CCD to
−70 ◦C

Fiber optic
homogenization imaging

RSS Min et al. [24] not mentioned 750–780 2.3 not mentioned not mentioned not mentioned

SPHABS Xia et al. [26] not mentioned 759–770 0.016 not mentioned not mentioned Fiber optic
homogenization imaging

DGSS Li et al. [27] 1050(L) × 480(W) ×
350(H) 758–778 * 0.07 * >300 cooling CMOS to

−10 ◦C
Fiber optic

homogenization imaging

* DGSS has two different observation bands and resolutions, and the parameters marked here are those of the
instrument dedicated to the oxygen A-band observation.

Despite the trade-offs in optical parameters made in the miniaturization of HARIS, the
slightly lower spectral resolution of this instrument can still meet the needs of oxygen A-
band observations. At the same time, the instrument improves its SNR by operating in the
direct-to-sun observation mode, which greatly improves the data quality and compensates
for the performance loss caused by the uncooling and miniaturization.

In addition, HARIS also adopts a direct imaging observation method that increases
the spatial sampling interval to 0.0138◦, allowing more detail, such as the status of clouds
in the target area to be observed.

5. Conclusions

This paper initially introduces a compact optical system based on HARIS. Next, the
process of wavelength calibrating of HARIS using a system that is composed of a supercon-
tinuum laser and a monochromator was described; the instrument spectral measurement
performance parameters were also given. Subsequently, the method of radiometric cal-
ibration of HARIS using an integrating sphere and a spectrophotometer was described;
the results of the calibration were also given. Then, the method and the results of using a
geometric calibration to determine and correct the image distortion were presented, which
ensure that HARIS is capable of high-spatial resolution remote sensing observations. Fi-
nally, the field tests confirmed that HARIS is able to obtain oxygen A-band remote sensing
data, with both a high spectral resolution (0.33 nm) and a high SNR (283.8). This system can
thus be used for the efficient ground acquisition of oxygen A-band remote sensing data.
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