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Abstract: In an optical wireless power transmission (OWPT) system, position and size of the photo-
voltaic device (PV) should be accurately determined from the light source position. Even though the
detection of PV for OWPT has been studied and reported in some literature, the methods reported
thus far are not so robust against varying background illumination. This study aims to solve such
problems utilizing an image sensor which generates a differential absorption image from two wave-
length images. Unnecessary background illumination presented in the two images is subtracted in the
differential image. The differential image of the Si substrate target, which simulates PV, was detected
by this sensor from a 104.5 cm distance. Signal illumination intensity was less than 1 µW/cm2 on the
target, and detection accuracy was 3.1% for the diameter of the substrate and about 6.3% for the area.
The system level requirement is derived, and they were verified by these results. The detection range
of this sensor is shown to be expandable at the cost of, for example, increasing the receiver diameter
of the image sensor or controlling the transmitter beam’s divergence. With the simple experiment
apparatus, preliminary results of performance assessment were obtained and issues for performance
improvement and potential of this image sensor were recognized.

Keywords: optical wireless power transmission; differential absorption; photovoltaic device; system
level requirement; background illumination; power generation ratio

1. Introduction

Wireless power transmission includes a variety of systems from a few hundred milli-
watts’ transmission power and a few meters’ transmission range [1,2] to large systems of
more than a hundred kilowatts’ power and more than a hundred kilometers’ range [3,4].
OWPT transmits a light beam to a photovoltaic device (hereafter, PV) from a light source.
Since the ratio of generated electric power in PV to the transmitted beam power is an
important parameter of system performance, it is necessary to align the light beam to
PV accurately to increase this efficiency. In addition to this, it is also necessary for the
transmitted beam to uniformly cover the whole area of the PV. The general tendency
is that the further the target is, the stronger these difficulties are [5]. To accommodate
these conditions, the light source needs to accurately detect the position and size of PV
before and while it transmits the beam to PV. In former OWPT research, recognition of
PV was studied by detection of its figure or outline by image processing [6–12] or using a
retroreflector mounted on targets [13]. Trials have been reported to increase recognition
power by painting an outline of PV in a specific color, putting a specific shaped marker
and installing visible or infrared LEDs blinking with a particular pattern. Utilization of
machine learning technology in conjunction with these methods is studied, as well. These
methods are reported as successful in certain conditions. However, especially in the case
that outdoor background illumination varies by weather or during day and night, recog-
nition is reported to become unstable. This is due to reduction in illumination intensity
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in some cases or increase in unnecessary light intensity in other cases. Even though it is
an important technical challenge in OWPT to recognize PV stably and accurately under
varying illuminating conditions, current approaches are not mature enough. Moreover,
there are not enough studies so far to numerically estimate conditions, especially accuracy
and range for stable detection.

This study proposes a method to solve these problems by utilizing a differential absorp-
tion image sensor. The objective of this study is to validate the feasibility of a differential
absorption image sensor and to recognize its potential. PV has, in principle, selective ab-
sorption characteristics for wavelength. By utilizing this specific feature of PV, more robust
detection of PV would be achievable than other methods trying to recognize much more
general features, such as shapes or colors. In the method proposed in this study, images
are captured in both wavelengths which are strongly absorbed by PV (hereafter, λON) and
in the wavelength which is not absorbed by PV (hereafter, λOFF). A differential image
is generated from two images, and any unnecessary background illumination presented
in these images is subtracted in the resultant differential image. Then, the PV image is
extracted from it.

In OWPT, it is necessary for image sensors to accommodate necessary system-level
accuracy requirements for the recognition of center coordinates and size (area) of target
PV. Such requirements are derived. Even though these system-level requirements and
performance assessment results depend on experiments and the experimental system, the
methodology in this study is general, and it is applicable for deriving other criteria and
assessing performances for other systems based on different conditions.

In this paper, the principle of a differential absorption image sensor is introduced in
Section 2, and experiments for the detection of an Si substrate, which simulates PV, are
reported in Section 3. In Section 4, the system level requirement is studied for the detection
of PV. Then, ‘detectability criteria’ is defined as a set of accuracy requirements which shall
be simultaneously satisfied by the differential image sensor and ‘detectable range’ as the
maximum distance that accommodates the detectability criteria. In Section 5, outcomes of
this study are summarized.

2. Principle of Differential Absorption Image Sensor

The differential technique is widely used for contrast enhancement in both signal
and image processing. When the target shows different absorption properties for two
wavelengths, such a differential technique applied to the absorption image is useful to
enhance detection performance [14–16]. Regarding OWPT, many PVs are semiconductors,
such as Si or GaAs, and their light absorption properties change rapidly with wavelength.
Such change is observed in the narrow wavelength range from one side to the other side
of the band gap wavelength. On the other hand, comparing with PV, the wavelength’s
dependence of absorption and reflection of the environments surrounding PV is expected
to be sufficiently flat in such a narrow wavelength range. Thus, differential absorption has
a potential advantage for active PV detection in OWPT. Validation of such potential is the
objective of this study.

Figures 1 and 2 show the principle of differential absorption in an image sensor. λON
is assumed to be shorter and λOFF is assumed to be longer than bandgap wavelength,
respectively. In addition, these are assumed to be close enough regarding their reflection
that absorption properties for external environments are quite similar. Assume the front
surface of PV is processed with low reflectivity for both λON and λOFF and its rear surface
is diffuse. This feature would be preferable for this proposed method to stabilize λOFF
reflection from the rear surface. PV is assumed to be thick enough for λON to be completely
absorbed inside PV. On the other hand, λOFF is not absorbed and diffusely reflected by the
rear surface of PV. A differential image is generated from two images of λON, λOFF, and it is
binarized. A PV image is extracted from the binarized differential image, while variating
background illumination of the environment is subtracted as a common background. Thus,
only PV is detected robustly.
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Figure 1. Principle of differential absorption image sensor.
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Figure 2. Generation of differential absorption image.

In detail, Figure 1 shows reflections from the front and rear surfaces of PV when λON
and λOFF are illuminated. For both λON and λOFF, (a) shows illumination and reflection of
the background and (d) shows the reflection from the front surface of PV. Even though PV
is processed to be less reflective for both wavelengths, there would remain some reflection
light from the front surface. (b) is the λON light penetrating into PV, which, in an ideal case,
is totally absorbed. (c) shows the λOFF light penetrating into PV and reflected by the rear
surface. Since λOFF is not absorbed in PV, there are reflection lights from the rear surface.
In the Figure 1 system, both λON and λOFF images are captured by the camera and generate
a differential image from the two images. The concept of generating a differential image is
shown in Figure 2.

In Figure 2, the center circle in both λON and λOFF images represents a PV image,
and the area between the circle and the surrounding rectangle is the background image.
Since λON and λOFF are close enough, the background images are almost the same for
the two images on the right-hand side. The PV image is a superposition of the front
surface reflection image and the background reflection image. The front surface reflection
is assumed to be quite low, and their images are almost the same for both λON and λOFF,
as in the images of the background. On the other hand, reflections from the rear surfaces
of PV are zero or quite low for λON (‘black’ in λON image) and sufficiently high for λOFF
(‘blue’ in λOFF image). The differential image generated from the λON and λOFF images is
the left-hand side image in Figure 2, and it shows that the PV image is captured without
any disturbance from the background nor from the front surface reflection.
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3. Detection Experiments of Simulated PV
3.1. Design of Experiments

To validate robust and accurate detection of PV by a differential absorption image,
preliminary experiments were conducted. Figure 3 shows the experiment apparatus. An Si
substrate (two-inch diameter) was utilized to simulate PV. Its front surface was flat and
polished, and its rear surface was flat and diffuse. For experiments, two kinds of samples
were prepared. In one sample, the Si substrate was attached to a 10 cm × 10 cm frost glass
plate (hereafter, Si target). The other sample is a frost glass of the same size without the Si
substrate (hereafter, frost glass target). The frost glass simulates a reflection from the rear
surface of PV and the background. In this preliminary research, instead of switching two
wavelengths of λON and λOFF, the single wavelength λ = 532 nm was utilized, which is
absorbed by Si. This made the experiment easier to execute than handling two invisible
wavelengths of infrared, and a general visible light camera can be used instead of a camera
for a special wavelength for image acquisition. Two images were captured by switching the
above two samples. For λ = 532 nm, the Si target behaves like PV illuminated by λON, and
the frost glass target behaves like PV illuminated by λOFF. This configuration is equivalent
to a two wavelength one. A differential image was generated from the two images of
these samples.
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Furthermore, for the image capturing camera, a small, off-the-shelf product was
used without any zooming capability. With the simple experiment apparatus, the essence
of preliminary concept validation was focused on. With such a simple but equivalent
experiment configuration, preliminary results of performance assessment were obtained,
performance improvement was predicted to be verified in experiments with more a complex
apparatus and issues were identified. These are described in later sections.

In actual operation of OWPT, illumination by two beams of λON, λOFF is utilized for
target detection. Since the two wavelengths are close enough to each other, the optics of
main power transmission beam of OWPT are commonly usable for optics of both λON, λOFF
beams. Especially for the λON beam, the main power transmission beam of OWPT itself
is commonly usable with power adjustment. In some application scenarios, these two-
wavelength lights will be prepared as lighting for the area. Regarding the image-capturing
camera, since performance of this image sensor is beyond the resolution limit of it, a zoom
lens will be necessary for the long range system.

As shown in Figure 3, the light source was λ = 532 nm and CW and power were
5 mW, with an almost top-hat beam pattern. The distance between the RGB camera and
Si/frost glass target was 104.5 cm. The diameter of the beam was 7.4 cm when it irradiated
the target directly. Since the beam was arranged to irradiate the target uniformly and to
be large enough, compared with the FOV of the camera, the fly eye lens was always set in
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front of the light source during data acquisition. To control uniform irradiation power onto
the target in detail, some white scattering ‘filter papers’ were placed in front of the light
source. To change the intensity on the Si/frost glass target, the amount of filter paper was
varied. It should be noted that intensity reduction on the Si/frost glass target is equivalent
to scattered light around the surrounding environment. Such background intensity is
subtracted in data processing. Regarding the image capturing camera, 640 × 480 pixel (px)
RGB images were acquired by Intel’s Realsense D435TM [17]. Even though this camera
supports to output depth information, these experiments did not employ it.

3.2. Acquired Raw Data in the Experiment

The γ parameter, which indicates the intensity response characteristics of an image, of
Realsense was set by its internal parameter GAMMA = 450 by PC. For parameter setting
and control software for the camera, RealsenseTM SDK [18], Open CV [19] and Python [20]
were utilized. Correspondence between γ and GAMMA is studied in a later section. A
every time of data acquisition, the exposure time of the camera (39, 78, 156, 412, 625,
1250, 2500, 5000, 10,000 µ sec) was set and reconfirmed by PC. Other internal parameters
of RealsenseTM were not changed from their default values. To control intensity on the
Si/frost glass target, the amount of filter paper was varied between 0, 1, 5, 10, 15 and 20
(hereafter, P0, P1, P5, P10, P15, P20). Consecutively, 100 images were taken for both the Si
target and frost glass target, with every combination of the parameter set of exposure time
(39, 78, 156, 412, 625, 1250, 2500, 5000, 10,000 µ sec) and the number of filter papers (P0, P1,
P5, P10, P15, P20).

To assess intensity reduction by a fly eye lens for calibration, the frost glass intensity
of the diffuse reflection was also measured using the frost glass target with and without a
fly eye lens. These data were taken as varying the number of filter papers.

An example of raw data acquired in the experiments is shown in Figure 4. Figure 4a is
frost glass target data acquired with λ = 532 nm light source illumination. Figure 4b is a
sample with the Si target acquired under the same conditions. A black circular object cen-
tered in Figure 4b is the Si substrate, and the white diffusing rectangular image surrounding
the Si substrate is the frost glass. The frost glass is seen in Figure 4a image, as well.
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(a) Raw data with frost glass sample; (b) Raw data with Si sample.

3.3. Data Processing and Software Tools

Acquired image data were processed after trimming. The following several trimming
sizes were investigated in this study: 48 × 49, 72 × 71, 95 × 95, 143 × 143, 237 × 237,
331 × 331, 384 × 448, 384 × 480 and 640 × 480 px. In this study, the relative position
between the camera and sample were fixed, and the image was trimmed for each image
size so that the position (center coordinate) of Si in the trimmed image varies with trimming
size. It does not vary among the same trimming size images. On the other hand, the area
of the Si image does not vary with trimming size nor among the same trimming size
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images. The default size used for image processing in this study was 48 × 49 px, except in
investigation regarding trimming size’s effect on ‘detectability’, described in a later section.
For trimming, image processing and data analysis software, MathematicaTM [21] was used.

After trimming, a differential image was generated and binarized. Then, the Si image
was extracted. The position of the Si image was determined in local coordinates of each
trimmed image. Figure 5a is a binarized image including Si, and Figure 5b is a boundary
rectangle of the extracted Si image superimposed on the original differential image before
binarization. The data analysis process is described in a later section.
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3.4. Calibration of Experiment System

First, as calibration of the experiment system, Realsense’s internal γ value after setting
GAMMA = 450 was estimated. Since the estimated γ value was close to 1 (one), γ parameter
correction is not applied in the following data analysis.

Next, the intensity reduction factor on Si/frost glass targets was estimated in the
following manner: The fly eye lens and the filter papers set in front of the camera reduce
the intensity of λ = 532 nm on the Si/frost glass targets. Intensity reduction on the samples
is represented by intensity reduction factor T, defined as below:

T = Ew/FE, P/Ew/o FE, P = TFE × Tp(n) (1)

Ew/FE, P represents intensity on the Si/frost glass targets through both the fly eye lens
and the filter papers. Since it should be background free, if there is any non-negligible
intensity from background illumination, such background should be subtracted. Ew/o FE, P
represents intensity with neither the fly eye lens nor the filter papers. This should also
be background free. Since the fly eye lens and the filter papers provides independent
contribution to intensity reduction, T is factorized as TFE × Tp(n). TFE represents the
contribution from the fly eye, and Tp(n) represents the contribution from the filter papers,
which depends on the number of papers ‘n’. Details of estimations are summarized in
Appendix A. Estimation of Tp(n) shows Tp(n) = (0.13)n and TFE = 0.06± 0.03. These
parameters are used in a later section. From estimation of Tp(n) and TFE, intensity on the
Si/frost glass targets for the number of filter papers is calculated in Figure 6. Note that in
the calculation, the following numbers are used to calculate absolute power on the target.
Light source power is 5 mW, and the beam diameter on the Si/frost glass is 7.4 cm when
any filters and lens were not introduced.
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3.5. Data Processing of Acquired Image

The 640 × 480 px size images, which are taken from Si/ frost glass targets with
λ = 532 nm light source illumination, are trimmed down to images of 9 trimming sizes. To
extract an Si image from the trimmed images, data processing continues to generate differen-
tial images and binarize them. Regarding the binarization scheme, the Otsu algorithm [22],
implemented in Mathematica [23], is exploited, in which the binarization threshold is
determined globally as providing the minimum of each variance of two classes dividing
the whole image histogram. Generation of differential images and their binarizations is
conducted in the following manner:

1. First, 100 raw 640 × 480 px image data points of the frost glass target (λOFF im-
age: ImgOFF(Exp, P, i)raw) and 100 same-size images of the Si target (λON image:
ImgON(Exp, P, i)raw) are taken for each combination of parameter set (Exp = 39, 78,
. . . , 10,000 µsec and P = 0, 1, . . . , 20, i = 1, 2, . . . , 100).

2. These images are trimmed down to each image size (48 × 49, 72 × 71, 95 × 95,
143 × 143, 237 × 237, 331 × 331, 384 × 448, 384 × 480, 640 × 480 px) and grayscaled.

3. For each λON, λOFF image data point, P20 data are regarded as background data, and
their grayscaled images are subtracted from ImgON(Exp, P, i)raw,gray and
ImgOFF(Exp, P, i)raw,gray. Then, background-free 100 λON and 100 λOFF grayscale
images are generated, respectively.

ImgOFF(Exp, P, i) = ImgOFF(Exp, P, i)raw,gray − ImgOFF(Exp, 20, i)raw,gray (2)

ImgON(Exp, P, i) = ImgON(Exp, P, i)raw,gray − ImgON(Exp, 20, i)raw,gray (3)

4. One hundred differential images are generated for each combination of the parameter
set of exposure time and the number of filter papers by subtracting the grayscale level
of the λON image from the λOFF image.

ImgDiff(Exp, P, i) = ImgOFF(Exp, P, i)− ImgON(Exp, P, i) (4)

5. Differential images are accumulated n times n=1, 2, . . . , 100.

ImgAcc(Exp, P, n) = ∑n
i=1 ImgDiff(Exp, P, i) (5)

6. Generated differential images are binarized by Otsu algorithm.

ImgBin(Exp, P, n) = Binarize
[
ImgAcc(Exp, P, n)

]
(6)

As an example of 5 and 6 above, differential images and binarized images of trimming
size 48 × 49 px and exposure time 10,000 µ sec are attached in Appendix B.
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Differential images and binarized images as in Figure A7 vary with the number of
filter papers and the number of accumulations. They also vary with exposure time (39, 78,
156, 412, 625, 1250, 2500, 5000, 10,000 µ sec) and trimming size (48 × 49, 72 × 71, 95 × 95,
143 × 143, 237 × 237, 331 × 331, 384 × 448, 384 × 480, 640 × 480 px). Both differential
images and binarized images are generated for all combinations of these parameter sets,
and Si images are extracted from each binarized image. By the following procedures, the
center coordinates, the area and the SNR are calculated from the extracted Si images:

7. From the binarized image by Equation (6), the connected component with maximum
area is extracted, and this is regarded as the Si image.

Si Image ≡ connected component with max area in ImgBin(Exp, P, n) (7)

8. The center coordinates are calculated as the center of the boundary rectangle of the
extracted Si image.

Center cordinates(Exp, P, n) ≡ center coordinates of boundary rectangle (8)

9. The area is calculated as the area of the extracted Si image.

Area(Exp, P, n) ≡ area of Si image (9)

10. Regarding signal intensity, the Si portion is extracted from the λOFF image by image
multiplication of the λOFF image and the binarized Si image. Then, signal intensity is
calculated as the mean intensity of the extracted Si portion of the λOFF image. Noise
intensity is calculated as the P20 mean intensity of the frost glass target with light
source OFF. SNR is calculated as the ratio of signal intensity to the noise intensity.
To avoid instability, such as that which occurred in estimation of TFE, described in
Appendix A.2, the definition of SNR uses raw image data.

SNR(Exp, P, n) ≡
mean intensity of

[
ImgOFF(Exp, P, n)raw × ImgBin(Exp, P, n)

]
mean intensity of

[
ImgOFF(Exp, 20, n)raw

] (10)

To assess performances of the image sensor, determined values, such as the center
coordinates and the area of the Si image, were compared with true coordinates and values
of the area which were measured from differential images before binarization. For measure-
ment of true value, high SNR images were used, such as P0 and Exp = 10,000 msec. The
measured true area is the same for all combinations of parameter sets and the measured
true center coordinates are the same for all combinations of parameter sets, unless the
trimming size were to change. In the case of a 48 × 49 px trimming size, the true center
coordinates of the Si image that directly read out from the differential image are (X: 27.68,
Y: 21.67), and the true value of the area is 706.85 px (circle image of 15 px radius).

For a 48 × 49 px trimming size, the determination error of X, Y center coordinates and
area is plotted for exposure time. Figures are attached in Appendix C. Similar plots were
generated for other trimming sizes and analyzed in a similar manner.

4. Discussion
4.1. Detectability Criteria

Even though all the data in the experiments were taken at 104.5 cm from the Si/frost
glass targets, the real target will be at some different distance in actual operation. Regarding
center coordinates and area of the target, it should be required that accuracy of determina-
tion be within some limits. The maximum distance to the target that accommodates the
requirements of error will depend on exposure time, the number of accumulations or the
number of averaging and trimming sizes. The performance of this image sensor is defined
as the maximum distance which accommodates determination of the center coordinates
and the area of PV, which is, in this experiment, the Si substrate, within required error limits.
To assess this performance, system-level requirements for errors are necessary. These re-



Photonics 2022, 9, 861 9 of 23

quirements are derived from a discussion based on the power generation ratio. The power
generation ratio has been discussed in previous studies [5,24]. Then, an equation which
determines the maximum distance is derived. In this study, that differential absorption
image sensor accommodates the requirement is referred to as ‘target is detectable’, and the
maximum distance which accommodates the requirements is ‘detectable range’.

4.1.1. Cooperative OWPT Utilizing Fly Eye Module

There are two kinds of OWPT system. One is cooperative OWPT, the other is non-
cooperative [5]. In cooperative OWPT, utilization of a fly eye module relaxes the system-
level requirement with regard to beam alignment and shaping [25,26]. When fly eye lenses
and a condenser lens are integrated with PV, they form a fly eye module. In case a fly
eye module is utilized, the power generation ratio is basically determined only by the
overlapping ratio of the incident beam to the area of the fly eye module. When the incident
beam size is smaller than the fly eye module size and no portion of the incident beam is
outside of the fly eye lens, then the power generation ratio becomes 100%. Large errors of
the center coordinates decrease the overlapping ratio, then, also, the power generation ratio.
In the following discussion, both the fly eye module and the incident beam are considered
to be circles, and their radii are R (=15 px), R/2, respectively. It should be noted that the
radius of the incident beam is not 15/2 px in the experiment. Let (∆x, ∆y) be errors in
x direction and y direction, respectively. The overlapping region (x, y) satisfies the fol-
lowing relationship:

{
(x, y) ∈ x2 + y2 ≤ R2

}
∩
{
(x, y) ∈ (x− ∆x)2 + (y− ∆y)2 ≤ R2/4

}
.

Assume the usable lower limit of the power generation ratio from the system point of
view is 80%. Then, (∆x, ∆y) is determined such that the area of this overlapping region is
greater than 80% of the area of the beam (≥ 0.8× πR2/4). Since it is sufficient to consider
only the X direction, then, setting ∆y = 0 and by numerical calculation, ∆x is determined
to be ∆x ≤ 0.718× 15 px = 10.77 px. A requirement is allocated for each X, Y direction
as ±10.77/

√
2 = ±7.6px. During operation, beam area information is necessary when

the beam size R/2 (≡ r) ratio is adjusted to the fly eye module size R. In the assumption
adopted in this study, it is not necessary for this ratio (1: 2) to be quite as rigorous and
accurate as the beam area (S) determination is. Since ∆S/S = 2∆r/r = 4∆r/R, and er-
ror allocation is set as ∆r/R ≤ ±0.1, then the requirement for the area determination is
∆S ≤ ±0.4S = ±282.74.

These requirements are already included in Figures A8 and A9 in Appendix C as
horizontal dashed lines. If accuracy of only the center coordinates’ determination or of the
area determination is required, there could be a possibility of accidental accommodation of
each requirement. To avoid such an accidental case, all three requirements, which are the
accuracy of X and Y center coordinates’ determination and accuracy of the area determina-
tion, are required. Hereafter, that a differential absorption image sensor accommodates all
the three requirements is referred to as ‘it accommodates detectability criteria’.

4.1.2. Cooperative/Non-Cooperative OWPT without Fly Eye Module

In case that a fly eye module is not utilized, it is necessary to assess both the first factor
of the power generation ratio (overlapping ratio of incident beam area to PV area) and the
second factor (nonlinear output characteristics of PV based on power distribution inside
it). Misalignment requirements for such systems were discussed in an earlier study [5].
Assume the usable lower limit of the power generation ratio is 80%, then, when target
distance is 1 m, requirements are 2.21 mrad (X direction) and 2.51 mrad (Y direction) for
non-cooperative OWPT and 6.9 mrad for cooperative OWPT. Since the angle resolution of
Realsense D435 is 1.54 mrad/px in the case of a 640× 480 px image size, these requirements
are equivalent to 1.4 px (X), 1.6 px (Y) for non-cooperative OWPT and 4.5 px for cooperative
OWPT. To accommodate these requirements, zooming or a much higher-resolution camera
are necessary. Comparing these with requirements for the fly eye module, these are quite
strong. In the following section, cooperative OWPT with the fly eye module is investigated.
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4.2. Assessment of Detectable Range

Detectability criteria, at a 104.5 cm target distance in the case of trimming size
48 × 49 px, are read from Figures A8 and A9. In the case that 100 data points are ac-
cumulated, detectability criteria are not accommodated by any number of filter papers
for exposure time = 39 µ sec. For 78 ∼ 156 µ sec, they are accommodated by P0. For
312 ∼ 10, 000 µ sec, they are accommodated by P0 and P1. In the case that 100 data points
are averaged, detectability criteria are not accommodated for exposure time = 39 µ sec.
For 78 ∼ 312 µ sec, they are accommodated by P0. For 625 ∼ 5000 µ sec, they are
accommodated by P0 and P1. For 10, 000 µ sec, they are accommodated by P0, P1 and P5.

When trimming size is varied like exposure time, the number of filter papers (such as
P0, P1, · · · ) which accommodates detectability criteria also varies. Plots, as in
Figures A8 and A9, were generated for each trimming size, and the relationship with
exposure time and number of papers, such as P0, P1, was read from the figures in a similar
manner. According to the following discussion, the number of papers is translatable to the
detectable range. Thus, the detectable range is determined for exposure time and trimming
size. Therefore, the performance of a differential absorption image sensor is determined by
these two parameters.

In the following discussions, target size is assumed to proportionally increase with
distance to the target, or the target is proportionally zoomed in with respect to the distance.
In this way, detectability criteria at 104.5 cm are applicable to any distance, and the de-
tectable range is calculated by the following SNR discussion. When fly eye lens and filter
papers are removed, the detectable range increases from the 104.5 cm in the experiment. In
Figures A8 and A9, even though SNR approaches 1 (one) due to the saturation effect as
exposure time increases, it appears that SNR monotonically increases with exposure time
in the region of the lower saturation effect. If there were not such a saturation effect due to
hardware constraints, SNR would increase monotonically with exposure time. Therefore,
an SNR value determines corresponding exposure time for each number of filter papers. By
the determined exposure time, the error of the center coordinates and the area is determined
from the error plots for exposure time, as in Figures A8 and A9. Then, comparing these
errors with requirements, conditions such as P0, P1 accommodating detectability criteria
are determined.

The detectable range with neither fly eye lens nor filter papers is simulated as in the
following equation. The equation is for a system with a diameter of camera optics D′ and
target distance R′ based on D, R in the experiment ad calibration parameter TFE and Tn

p.

R′4 = R4(D′/D
)2/
(

TFETn
p

)
(11)

Derivation of the equation is summarized in Appendix D. According to D435′s data
sheet [17], F number of its color sensor optics is 2.0, and its focal length is 1.88 mm. Thus,
the camera’s diameter D of experiment apparatus is 0.94 mm. R is the distance to the target
in the experiments, and it was 104.5 cm. Figure 7 shows simulation results of the detectable
range (R’) based on Equation (11) for trimming size and exposure time, in the case that
D’ = D. It should be noted that first order interpolation is used in the plot. These plots
essentially show an SNR-based performance limit of a system with a 5 mW light source and
D435 RGB camera. Plots are shown for two different image processing schemes, accumu-
lation 100 times (Figure 7a) and averaging 100 data points (Figure 7b). The accumulation
scheme follows from Equation (5). Averaging does not accumulate data but averages them.
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Figure 7. Detectable range plot: (a) 100 accumulation; (b) 100 averaging.

In Figure 7, generally, the detectable range tends to increase as the exposure time
increases and image size decreases (the upper left corner). Comparing two image processing
schemes, the detectable range is quite enhanced by averaging. The maximum value of
the detectable range is about 3.5 m in an accumulation scheme with a 104 µsec exposure
time. It reaches around 30 m in an averaging scheme in the case of a 104 µsec exposure
time and 48 × 49 image size. This figure indicates that the performance limit of this image
sensor is largely boosted when an averaging scheme and trimming down to an appropriate
image size are applied. In image processing in this study, binarization is based on the
unique threshold determined by the Otsu algorithm in the entire image. As trimming size
increases, such a binarizing threshold tends to increase due to effects from objects other
than target and noise. On the other hand, in the case that the trimming size is small, the
area of the Si image is relatively large and dominant in the trimmed image. In such cases,
the binarizing threshold tends to decrease, and the Si image is detectable even for a larger
number of filter papers, such as P5 with Exp = 10, 000 µ sec. When trimming size is small,
averaging provides a longer detectable range than accumulation (e.g., upper left corner of
Figure 7b). This is because, in addition to the decrease in the binarizing threshold, scattered
data tend to converge close to the true value by averaging. This is observed in 48 × 49 px
and 72 × 71 px cases. Even for the same trimming size, the accumulation in Figure 7a does
not show such a performance improvement. This is because that accumulation provides
single data points for the center coordinate and the area. As a result, there still remains
unevenness, and this tends not to accommodate detectability criteria. This tendency is
observed in Figures A8 and A9, as well.

If rough information on the target position is provided before and during operation
from a similar positioning system [27,28], the image size would be adjusted with target size
by zooming, and the detectable range would increase. For the actual operation mode of this
differential absorption image sensor, there would be such ‘assisted acquisition mode’ and
‘stand-alone acquisition mode’. ‘Assisted acquisition mode’ expects assistance information
of the target from an outside source and the zoom target image using such information and
achieves better performance than a stand-alone acquisition mode. ‘Stand-alone acquisition
mode’ supports a wider image size than the assisted acquisition mode and performs image
processing with a default image size and target acquisition by itself. Considering the size of
this experiment apparatus is compact, this image sensor would find near range application,
such as indoor small scale OWPT. Actually, these are a small off-the shelf camera, small
sized light source and laptop PC.



Photonics 2022, 9, 861 12 of 23

4.3. Improvement of Detectable Range

In the experiment, the target diameter (Si substrate) was 30 px, and its angler diameter
was 30 px × 1.54mrad/px = 46.2 mrad. In the following discussions, target size is assumed
to increase with distance to the target, or the target is zoomed into with respect to the
distance, as in Section 4.2.

4.3.1. Increase of Effective Diameter of Camera Optics

With the increase in the effective diameter of camera optics, the detectable range would
be expanded while the differential absorption image sensor’s performance is maintained.
If the diameter changes from D to D′( D′ > D), the detectable range increases, with:√

D′/D (12)

Figure 8 shows the simulation plot when the camera optics’ diameter D’ is 50 mm.
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Figure 8. Detectable range plot for 50 mm camera optics’ diameter: (a) 100 accumulation;
(b) 100 averaging.

With the increase in the cameras optics’ diameter from 0.94 mm to 50 mm and accu-
mulating 100 images, this image sensor potentially supports a 30 m detectable range in
case of a 104 µsec exposure time (Figure 8a). Such performance would be realized with,
e.g., a 10 cm size target and 15× zoom lens. When trimming down to an appropriate image
size, Figure 8b shows this image sensor would support about a 200 m detectable range,
based on the SNR discussion. Such performance would be realized with, e.g., a 1 m size
target and 10× zoom lens. These types of image sensors would find middle/long range
application such as powering over drones, vehicles and remote stations.

4.3.2. Beam Size (Beam Divergence) Control

When ASC < Atr, Equation (A10) becomes F(R) = ASC/Atr. If the distance to the
target is long enough, Atr is approximated by Equation (A16). Knowing the distance to
the target by ranging or information from a positioning system before operation (trans-
mission) and controlling θt so that F(R) is kept constant with respect to the distance, the
determination equation of R′ (Equation (11)) is replaced by the following equation:

R′2 = R2(D′/D
)2/
(

TFETn
p

)
(13)
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Figures 9 and 10 show a simulation plot based on Equation (13). Figure 9 shows D’
= 0.94 mm case. In this case, the accumulation scheme and averaging scheme support
about a 10 m and about a 600 m maximum detectable range, respectively. Comparing
this 10 m detectable range of accumulation scheme with Figures 7a and 8a, the maximum
detectable range in each figure is similar (not so different). Considering the beam adjusting
mechanism in the image sensor is necessary for beam size control, Figure 9a appears to
not have enough advantage to allow for introducing such complexity to the image sensor.
To achieve around a 10 m detectable range, increasing the diameter of the camera optics
would be a simple and better strategy.
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Figure 9. Detectable range plot for a 0.94 mm receiver diameter with beam size control: (a) 100
accumulation; (b) 100 averaging.
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This situation becomes quite different in the long range case. Both Figures 9b and 10a
support about a 600 m maximum detectable range. Figure 10b, especially, supports about a
35 km with 50 mm diameter of camera lens and trimming down to the appropriate image
size. Neither Figure 8 nor Figure 9a support such a long detectable range. For OWPT that
supports a long range, such as several hundred meters or more, the detection of PV in various
illuminating conditions would be a serious problem. These three figures (Figures 9b and 10a,b)
indicate that utilizing this image sensor with trimming down to an appropriate image size
or controlling beam size would be solutions for such problem. These types of image sensors
could find long range and large-scale applications, such as powering over large drones,
vehicles and remote stations.

4.4. Effect of Background

Figure 6 shows that intensity on the Si/frost glass target is less than 1 µW/cm2 for
P1 and less than 1 nW/cm2 for P5. Therefore, if enough λOFF intensity is contained in
the background, this differential absorption image sensor does not need any active λOFF
illumination. In fact, during the experiments shown in Figure 3, the Si image was extracted
and generated a differential image with enough SNR using only the room light of the
laboratory or much stronger illumination from a white LED light. External illumination
was an unnecessary disturbance in former studies; however, it functions as additional λOFF
illumination, which helps it to detect the target in this sensor. These aspects show the
robustness of this differential absorption image sensor. On the other hand, leakage of λOFF
to the measurement of λON (λOFF leakage) degrades SNR. In the actual operation scene, the
background spectrum would be wide enough to cover both λON and λOFF, and there would
be λOFF leakage to the λON image. Such leakage should be subtracted as a background in
the differential image generation process (software measure), or λOFF leakage should be
suppressed by inserting the λOFF cut filter (hardware measure) in front of an image sensor
device in the case that λOFF leakage is near saturation level.

5. Conclusions

Concept validation is conducted for a differential absorption image sensor regarding
optical wireless power transmission (OWPT). Since this utilizes a differential absorption
image, the Si substrate which simulates PV is detected and its X, Y center coordinates
and area are determined within acceptable accuracy compared with requirements derived
for OWPT.

The experiment apparatus was a 5 mW, λ = 532 nm CW light source, RGB sensor of
Intel’s Realsense D435 depth camera, whose optics diameter is calculated from D435′s data
sheet [17] as 0.94 mm. For a stationary PV simulated by a 2-inch Si substrate at a distance of
104.5 cm, and when the image size is trimmed down to 48 × 49 px, this differential image
sensor detects the Si image with an accuracy of ±1 px for center coordinates and less than
50 px for area. Considering 1 px is equivalent to 1.54 mrad in D435 and a 104.5 cm distance
to the target, an Si image was acquired with an accuracy of ±1.6 mm for center coordinates
and of ±128 mm2 for area, which are about 3.1% for the diameter and about 6.3% for the
area. Performance limitation regarding target distance based on SNR discussions is shown
much better in Figure 7. To reach these detectable range limits, there are two issues which
should be considered. One is the resolution of the camera, and this would be improved
by utilizing a high-resolution camera or zoom lens. The other is image size trimming.
This would be aided by knowing the approximate position information from an external
source and then trimming the acquired image down to an appropriate size. With the simple
experiment apparatus, preliminary results of performance assessment were obtained.

Performance in detecting the target is further improved by image processing, such as
trimming the size with respect to the target size, number of accumulation or averaging.
Moreover, performance is improved by the increase in the effective diameter of camera
optics and beam divergence control of the transmitter. The current status is a simulation
based on preliminary experiments, and such performance enhancement would be verified
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in experiments with a more complex apparatus and under various illuminating conditions.
Even though values regarding detectability criteria derived in this study depend on condi-
tions of the experiment and its apparatus in this study, nevertheless, the methodology in
this study is general and it easily derives new values accommodating a new experiment
and its apparatus.

Thus, regarding active PV detection for OWPT, the feasibility of this image sensor was
validated, and its potential was realized.
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Appendix A. Estimation of Calibration Parameters

Appendix A.1. Estimation of γ Parameter

Light source beam power is 5 mW (CW) and the quantity of the accumulated intensity
over exposure time (hereafter, this is also referred to as ‘intensity’), should be proportional
to exposure time. The γ parameter of the applied camera is not published, and thus, the γ
parameter is estimated by verification of the proportional relationship between exposure
time and intensity, recorded on pixels in image data. Figure A1 shows the exposure time
dependence of the grayscale level of a frost glass target illuminated by the light source.
Data are plotted with the number of filter papers as a parameter.

In this paper, ‘with’ is abbreviated as ‘w/’ and ‘without’ as ‘w/o’. One hundred
images are taken for every combination of parameter set of exposure time and the number
of filter papers.

Each data point is the grayscale level of a pixel, which is the average of 100 images of
mean intensity of a 48 × 49 pixel image. Since the Figure A1 plot is a log scale for both the
vertical and horizontal axis, the slope of each plot represents the γ parameter. Each slope is
not stable for a small grayscale level, and the saturation effect is visible for a large level,
especially in the P0 plot.

Even though grayscale level differs nearly 10 times between P0 and P1, P5, P10, P15
and P20, each estimation of the γ parameter using data from each plot’s linear region is
close to one. Therefore, γ parameter correction is not applied in the following data analysis.
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Appendix A.2. Estimation of Intensity Reduction Factor

• Estimation of Tp(n)

Setting the fly eye lens and varying the number of filter papers, the mean intensity
of each acquired image is measured as grayscale intensity for exposure time (Exp) as a
parameter (Figure A2).
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Figure A2. Frost glass intensity.

As the number of the filter papers increases, each grayscale level approaches a constant
value. From Figure A2, this value is confirmed to be monotonically increasing with exposure
time. This is regarded as the background. Let n be the number of filter papers and E(n)
be intensity. E(n) is assumed to be expressed using attenuation factor Tp(n) and by the
flowing equation:

E(n) = [E(0)− E(∞)]Tp(n) + E(∞) (A1)
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Since each intensity value at the number of papers = 20 looks stably constant for each
exposure time, these data are regarded as constant offsets and set as follows:

E(∞) = E(20) (A2)

Then, Equation (A1) is modified as:

Tp(n) = [E(n)− E(20)]/[E(0)− E(20)] (A3)

Tp(n) is plotted for each exposure time in Figure 8. It should be noted that plotted data
are limited within the Exp = 625, 1250, 250, 5000, 10, 000 µ sec range, since, in Figure A1,
frost glass intensity become stable only in this region.

Figure A3 is fitted by the following function, with a constant parameter β.

Tp(n) = e−βn (A4)

Let Tp be Tp ≡ e−β, then Tp(n) = Tn
p. Figure A4 shows an estimation of Tp; it appears

constant for exposure time, and its value is Tp = 0.13± 0.04.
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Therefore, Tp(n) becomes Tp(n) = (0.13)n. Even though Tp value would tend to be
smaller due to the saturation effect of P0 data, nonetheless, this provides a margin for the
performance assessment of this image sensor.

• Estimation of TFE

TFE is expressed by the following equation:

TFE =
[
Ew/FE − EBg

]
/
[
Ew/o FE − EBg

]
(A5)

Ew/FE − EBg represents the background free intensity on an Si/frost glass target with
the fly eye lens and filter papers. Ew/o FE − EBg represents the background free intensity
on an Si/frost glass target with neither the fly eye lens nor the filter papers. EBg is the
100 image average of mean intensity of a 48 × 49 pixel image with the light source OFF.
Figure A5 shows the Ew/FE/EBg and Ew/o FE/EBg plot for exposure time.

Looking into data of exposure time ≥ 625 µ sec, whose intensity data are stable in
Figure A1, Figure A5 shows that intensity on frost glass and background is almost equal
regardless of the fly eye lens. The Figure 6 plot indicates that the value of Ew/FE − EBg is
quite small. As a result, TFE becomes ∼ 0/0, and the estimation is not successful. Thus,
such data are difficult to use for estimation of TFE. Since usable data are limited whose SNR
to background is larger, thus, only P0 and P0 w/FE data are used for the estimation of TFE.
In Figure 6, P0 data look affected by saturation for exposure time ≥ 312 µ sec. To avoid
this saturation, TFE is estimated by data of exposure time = 3, 978, 156 µ sec. The result
is shown in Figure A6, and the estimation is TFE = 0.06± 0.03. The value increases with
exposure time due to the saturation effect of P0, P0 w/FE. This results in a larger estimation
standard deviation. However, the larger estimation provides a margin for the performance
assessment of this image sensor.
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Figure A6. Estimated TFE.

Appendix B. Differential Images and Binarized Images of Trimming Size 48 × 49 px,
Exposure Time 10,000 µsec

The upper row of Figure A7 represents the accumulated differential images
ImgAcc(Exp, P, n), and the lower row is binarized image ImgBin(Exp, P, n). The hori-
zontal row represents changes in differential images and binarized images by variation in
the number of accumulation (n: 1, 3, 5, 7, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100). The vertical
column represents changes by variation in the number of the filter papers (P: P0, P1, P5,
P10, P15, P20). In case of n = 1, images are not accumulated.
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Appendix C. Determination Error of X, Y Center Coordinates and Area (48 × 49 px
Trimming Size)

The determination error of the X, Y center coordinates and area are plotted
(48 × 49 px trimming size) in Figures A8 and A9. An SNR plot is included, as well. In both
Figures A8 and A9, the numbers of the filter papers are the parameters. The SNR ap-
proaches to one as the exposure time increases due to the saturation effect. In Figure A8,
each X, Y center coordinate, area and SNR is calculated after accumulating 100 data points.
In Figure A9, each point is the mean of the errors of 100 data with 1σ error bar. SNR is also
mean in Figure A9. Comparing Figures A8 and A9, the averaging in Figure A9 appears
more stable than the accumulation in Figure A8.
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Figure A8. Center coordinate error, area error, SNR (100 accumulation): (a) Center X-coordinate error;
(b) Center Y-coordinate error; (c) Si area error; (d) SNR.
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Figure A9. Center coordinate error, area error, SNR (100 averaging): (a) Center X-coordinate error;
(b) Center Y-coordinate error; (c) Si area error; (d) SNR.

Appendix D. Derivation of Equation (10)

Let the number of signal electrons and noise electrons be Ns, Nn, respectively. SNR is
expressed by Ns, Nn.

SNR = Ns/Nn (A6)

Since Nn is a function of exposure time, number of accumulations, internal noise pa-
rameter of camera and Ns, SNR is determined by Ns when the internal camera parameters,
exposure time and number of accumulations are a fixed constant. Assume the incident
beam is scattered by a Lambertian object. Let ηQ: quantum efficiency of a sensor inside the
camera, ∆σ/∆Ω: differential cross section of the target, ∆ω: field of view of the camera
(solid angle), It: incident beam power density, ηr: efficiency of camera optics, ρ: diffuse
reflectivity of the target, hc/λ: photon energy of the incident beam, Exp : exposure time.
From the definition of a differential cross section in the scattering process:

Ns = (λ/hc)ρItηrηQ(∆σ/∆Ω)∆ωExp (A7)

Let Pt: incident beam power, Atr: beam area at the target point, ηt: efficiency of
transmitter optics (including intensity reduction factor). It∆σ is written as follows:

It∆σ = ∆σηtPt/Atr (A8)
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∆σ is written as ∆σ = ASC when the area of target ASC is smaller than the area of
beam Atr, ∆σ = Atr when Atr > ASC. Thus,

It∆σ = PtηtF(R) (A9)

F(R) ≡
{

1 (if ASC ≥ ATR)
ASC/Atr (if ASC < Atr)

(A10)

When the target is Lambertian, ∆Ω is evaluated as follows:

∆Ω =
∫ π/2

0
2π sin θ cos θdθ = π (A11)

Let range to target: R and the effective area of the receiver optics of the camera: Ar.

∆ω = Ar/R2 (A12)

Therefore, Ns is written as follows:

Ns = (λ/hc)ηrηtηQPtF(R)ρArExp/πR2 (A13)

Note that the intensity reduction factor TFETn
p is included in ηt.

Assume two systems with different Ar, R, ηt provide the same SNR. Additionally,
assume one system includes both one fly eye lens and n filter papers, and the other includes
neither. The two systems are distinguished by adding a prime symbol to Ar, R, ηt. Then,
Ns of the two systems is equated.

ηrη
′
tηQPtF

(
R′
)
ρA′rExp/πR′2(λ/hc) = ηtηtηQPtF(R)ρArExp/πR2(λ/hc) (A14)

Assume ASC < Atr and let θt: transmitter beam divergence (half) angle. Atr is
represented as follows:

Atr = π
[
(θtR)

2 + D2
0

]
/4 (A15)

where D0 represents the incident beam diameter at the transmitter. In many cases, it would
be reasonable to assume (θtR)

2 � D2
0 and Atr is approximated as follows:

Atr ≈ π(θtR)
2/4 (A16)

Regarding Ar, it is expressed using the effective diameter of the receiver optics of the
camera.

Ar = πD2/4 (A17)

Therefore, R′ is expressed by the following equation, which is Equation (10), and this
determines the detectable range with neither fly eye lens nor filter papers.

R′4 = R4(D′/D
)2/TFETn

p (A18)

This expression does not include any unknown parameters, such as ηQ. All such
unknowns are confined in parameters R, TFE, Tp and n. Note that all of them are measured
and estimated by the experiments.
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