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Abstract: The paper focuses on the problem of transverse electric wave propagation in a plane-
shielded waveguide filled with a nonhomogeneous and nonlinear (Kerr) medium. The nonlinear
part of the permittivity is characterized by the Kerr law in the focusing regime, while its linear part is
a constant that is perturbed by a small continuous function. Such perturbation can be considered to
be an attempt to take into account the inevitable presence of impurities in the medium, causing slight
deviations in the dielectric permittivity. In the paper, the existence of solutions to the considered
problem is proved, including solutions with and without linear counterparts. Some numerical results
are presented as well.

Keywords: Maxwell equations; Kerr nonlinearity; nonlinear waveguide; nonlinear permittivity;
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1. Introduction

The theory of guided waves, including electromagnetic cases, is one of the fruitful
sources of novel mathematical problems. The classical theory of guided electromagnetic
waves in plane dielectric waveguides and films with linear homogeneous and nonhomoge-
neous fillings was well developed many years ago [1–3].

Sufficiently high-power optical processes are often nonlinear, and this nonlinearity cannot
be ignored [4–8]. This fact results in the wide and deep study of nonlinear optical processes
and, in particular, the vast development of nonlinear guided wave optics [6,7,9–12]. The
simplest nontrivial problems, in this case, are problems of propagation of a monochromatic
transverse electric (TE) electromagnetic wave in a plane waveguide filled with a homogeneous
nonlinear medium [6,13–15]. The best known (and in some senses the most studied) is the
so-called Kerr medium, i.e., the medium with dielectric permittivity of the form

ε = ε1 + α|E|2, (1)

where ε1 and α are real constants, and E is the electric field [4,6,13–17]. Usually, it is
assumed that ε1 > 0, negative α corresponds to the defocusing Kerr effect, and positive α
corresponds to the focusing Kerr effect.

However, real waveguides are never filled with an absolutely homogeneous medium;
in any medium, there is always some concentration of impurities that causes slight devia-
tions in the dielectric permittivity. To take into account the discussed effect, one can modify
Formula (1) in the following way

ε = ε1 + βε2 + α|E|2, (2)
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where β is a real constant that is supposed to be small, and ε2 is a continuous function with
respect to spatial variables. The term βε2 in (2) simulates slight deviations in the dielectric
permittivity of the medium.

The governing equations for TE waves and the Kerr medium can be solved exactly
using elliptic functions [6,13] if β = 0. The case when the permittivity depends on the
field as well as on coordinates is much more complicated. In particular, for TE waves and
nonlinearity (2), exact solutions to the governing equations of the problem cannot be found.

In many cases, for nonlinear processes, perturbation approaches can effectively be
applied, i.e., in fact, instead of finding solutions to a nonlinear problem, one uses solutions
to a linear problem taking into account some corrections [18–20]. Such approaches work
well if only small corrections are needed. However, corrections can be greater than what is
allowed using a perturbation approach, and therefore such an approach cannot be applied.
In addition, if a perturbation approach is based on a linear problem, then one can only
find solutions to a nonlinear problem that have linear counterparts. This means that if
the nonlinear problem has so-called nonperturbative solutions, then one is forced to use
other approaches.

This paper focuses on the problem of the propagation of monochromatic TE waves
in a plane-shielded waveguide filled with a nonlinear nonhomogeneous medium with
permittivity (2), where ε1, α are positive constants, β is a real constant and |β| is assumed
to be sufficiently small and ε2 ≡ ε2(x) is a continuous function, where x is the transversal
direction of the waveguide. This problem has solutions with as well as without linear
counterparts. In this paper, we suggest some modification of a perturbation method based
on the usage of solutions to a simpler nonlinear problem (with β = 0) in order to find
solutions to the original one. Such an approach allows one to prove the existence of
eigenvalues (propagation constants) of the waveguiding problem including the ones that
do not have linear counterparts.

For waveguiding problems, the main question is to prove the existence of so-called
propagation constants (PCs), i.e., the full set of the guided waves that the waveguide supports.
From a mathematical standpoint, one needs to solve a boundary eigenvalue problem for
the governing equations with appropriate boundary conditions. In this paper, we prove
the existence of the PCs (or eigenvalues) and carry out a few numerical experiments.

2. Materials and Methods

Although the paper focuses on the analytical study of the problem, some numerical
results are presented as well; see Section 3.4. The description of numerical methods used
in this study is given in Section 3.4. All numerical methods are implemented with the
package Maple.

3. Results
3.1. Statement of the Problem

We consider a monochromatic electromagnetic TE wave (E, H)e−iωt, where

E =
(
0, Ey(x), 0

)
eiγz, H =

(
Hx(x), 0, Hz(x)

)
eiγz (3)

are electric and magnetic fields, ω is circular frequency, and γ is an unknown real parameter
that propagates in the plane waveguide Σ := {(x, y, z) ∈ R3 : 0 ≤ x ≤ h, (y, z) ∈ R2}
which has absolutely conducted walls at both boundaries.

The permittivity ε in layer Σ has the form ε = ε1 + βε2 + α|E|2, where ε1, α are positive
constants, β is a real constant, and |β| is assumed to be sufficiently small, and ε2 ≡ ε2(x) is a
continuous function for x ∈ [0, h]. The permeability is µ = µ0, where µ0 is the permeability
of free space. The geometry of the problem is shown in Figure 1.
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Figure 1. Geometry of the problem.

Fields (3) satisfy Maxwell’s equations

rotH = −iωε0εE,

rotE = iωµH,
(4)

where ε0 is a constant (permittivity of free space). The tangential component Ey of the
electric field vanishes at the absolutely conducted walls. Besides this, we assume that the
tangential component Hz of the magnetic field is fixed at the boundary x = 0.

Problem P is to find γ such that there exist fields (3) satisfying Maxwell’s Equation (4)
and the above-listed conditions; such values γ are called propagation constants of the waveg-
uide (or eigenvalues of problem P).

Substituting fields (3) into Equation (4), one obtains

iγHx −H′z = −iωεε0Ey,

−γEy = ωµHx,

E′y = iωµHz.
(5)

Expressing Hx and H′z from the second and third equations, respectively, and substituting
them into the first equation, one arrives at the following equation

E′′y (x) = γ2Ey(x)−ω2ε0µ0
(
ε1 + βε2(x) + αE2

y(x)
)
Ey(x). (6)

Let us introduce the notation
k2

0 = ω2ε0µ0 (7)

and perform the normalization in accordance with the formulas x̃ = k0x, γ̃ = k−1
0 γ, h̃ = k0h.

Using the notation Ey := u and omitting the tilde symbol, one can rewrite (6) in the form

u′′(x) = −(ε1 + βε2(x)− γ2)u(x)− αu(x)3. (8)

The third equation of system (5) expresses the link between the tangential component
Hz of the magnetic field and the first derivative E′y of the tangential component Ey of the
electric field. Taking into account the performed normalization by k0, one obtains

u′(x) =
√

µ0

ε0
iHz(x) = 120πiHz(x).

From the conditions imposed on fields (3) and the above link between u′ and compo-
nent Hz, one obtains the following boundary conditions

u(0) = 0, u′(0) = A, (9)

u(h) = 0, (10)

where A 6= 0 is a real constant connected with the value of component Hz at the boundary
x = 0 by the relation A = 120πiHz(0).

Please note that u(x) satisfies Equation (8) and u′(0) = A, then −u(x) with u′(0) =
−A also satisfies Equation (8); for this reason, it is enough to consider only the case where
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A > 0 in (9). Besides this, if a couple (γ, u) satisfies Equation (8) and conditions (9), (10),
then the couple (−γ, u) also satisfies Equation (8) and conditions (9), (10); for this reason, it
is enough to consider only the case γ > 0.

From a mathematical point of view, physical problem P = P β
α of wave propagation is

equivalent to the problem of finding γ = γ̂ > 0 such that there exists twice the continuous
differentiable on [0, h] function u(x) satisfying Equation (8) and conditions (9), (10). We
call the looked-for values γ = γ̂ propagation constants (or eigenvalues) and we call the
corresponding functions u(x; γ̂) eigenmodes (or eigenfunctions) of problem P . We often
omit the dependence of function u on α, β, γ if it does not lead to misunderstanding.

If β = 0, one obtains problem Pα, which is a special case of problem P . Problem Pα is
to find γ = γ̄ > 0 such that there exists function v ≡ v(x; γ̄, α) satisfying equation

v′′(x) = −(ε1 − γ2)v(x)− αv3(x), (11)

and boundary conditions

v(0; γ, α) = 0, v′(0; γ, α) = A, (12)

v(h; γ, α) = 0, (13)

where A is the same as in condition (9). The value γ̄ is called a propagation constant and
function u is called an eigenmode of problem Pα.

ProblemPα is quite well studied [21–23] and we use the main properties of its solutions
to solve problem P . To be more precise, we prove that if γ = γ̄ is a solution to problem Pα,
then there exists a constant β0 > 0 such that for any β, where |β| < β0, problem P has at
least one solution γ = γ̂ in the vicinity of γ̄ and limβ→0 γ̂ = γ̄.

If α = 0 then problem P degenerates into the linear problem P0, where β is not
necessarily equal to zero, which is to find γ = γ̃ such that there exists a nontrivial solution
w ≡ w(x; γ̃, β) to equation

w′′(x) = −(ε1 + βε2(x)− γ2)w(x), (14)

satisfying boundary conditions

w(0; γ, β) = 0, (15)

w(h; γ, β) = 0. (16)

The value γ̃ is called a propagation constant and the corresponding function v is called an
eigenmode of problem P0.

Please note that the second condition in (9), which is necessary to determine discrete
propagation constants in (nonlinear) problem P as well as in (nonlinear) problem Pα, is
unnecessary in the linear problem, and, for this reason, it is omitted.

Problem P0 is classical in the linear waveguide theory [1,24,25]. The following result
takes place.

Statement 1. Problem P0 has a finite number of propagation constants γ̃. Moreover, if β = 0,
then all positive propagation constants γ̃ belong to the interval (0,

√
ε1).

We omit the proof as this result is a part of classical Sturm–Liouville theory [26].
Problem P0 can be used to develop a standard perturbation approach to find solutions

to problem P . Indeed, let γ̃′ be a propagation constant of problem P0. It can be shown that
for sufficiently small α in some vicinity of γ̃′ there is at least one propagation constant γ̂′ of
problem P and limα→+0 γ̂′ = γ̃′.

Obviously, this approach allows one to only find propagation constants of problem P ,
which have linear counterparts (in other words, those which can be linearized). However,
problem P can have solutions without linear counterparts (so-called nonperturbative
nonlinear solutions). Such solutions cannot be found using the discussed approach. Indeed,
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since problem Pα has infinitely many nonperturbative solutions [21–23], then it is natural to
expect the existence of nonperturbative solutions to problem P at least for small (positive) α.

3.2. Problem Pα

To develop our approach, we need to present some known results on problem Pα.
This problem is very deeply studied in [21–23]; using the results presented in the cited
papers, we easily obtain the following facts.

Statement 2. The Cauchy problem for Equation (11) with conditions (12) is globally uniquely
solvable, and its solution v ≡ v(x; γ, α) depends continuously on x, γ, α, where x ∈ [0, h] and
α, γ > 0.

It is clear that solution v(x; γ, α) to the Cauchy problem (11), (12) is an eigenmode
of problem Pα if it satisfies condition (13). Therefore, one obtains the following quite
obvious result.

Statement 3. Value γ = γ̄ is a propagation constant of problem Pα if and only if it satisfies the
characteristic equation

v(h; γ, α) = 0, (17)

where v(x; γ, α) is the above-mentioned solution to the Cauchy problem (11), (12).

We call function v(h; γ, α) the characteristic function of problem Pα.

Theorem 1. Problem Pα has infinitely many positive propagation constants γ = γ̄ with the
accumulation point at infinity. In addition, among all propagation constants of the problem, there is
an infinite number of propagation constants γ̄k, where k = 1, 2, . . ., such that for any of them there
exists a vicinity Γk = (γ̄k − δk, γ̄k + δk), where δk > 0 is a constant, and on the opposite ends of
Γk there is the inequality

v(h; γ̄k − δk, α) · v(h; γ̄k + δk, α) < 0 (18)

holds, where v is defined in (17) and Γk does not contain other propagation constants except γ̄k.

We stress that problem Pα has infinitely many propagation constants without linear
counterparts. Such propagation constants correspond to a novel guided regime arising due
to the Kerr effect.

3.3. Problem P
In the beginning, we prove the global unique solvability of the Cauchy problem for

Equation (8) with initial conditions (9).

Statement 4. For γ ∈ [0, γ0] and α ∈ (0, α0), where γ0, α0 > 0 are constants, there exists β0 > 0
such that the Cauchy problem for Equation (8) with conditions (9) is globally uniquely solvable
and its solution u ≡ u(x; γ, α, β) depends continuously on x, γ, α, β for x ∈ [0, h] and γ ∈ [0, γ0],
α ∈ (0, α0), |β| < β0.

It is clear that the above-mentioned solution u(x; γ, α, β) to the Cauchy problem (8), (9)
is an eigenmode of problem P if it satisfies the condition (10). Therefore, one obtains the
following result.

Statement 5. Value γ = γ̂ is a propagation constant of problem P if and only if it satisfies to the
characteristic equation

u(h; γ, α, β) = 0, (19)

where u(x; γ, α, β) is the above-mentioned solution to the Cauchy problem (8), (9).

We call function u(h; γ, α, β) the characteristic function of problem P .
Now, we need one more result for the solution u(x; γ, α, β) to the Cauchy prob-

lem (8), (9) and solution v(x; γ, α) to the Cauchy problem (11), (12). The following result
takes place:
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Statement 6. Let u(x; γ, α, β) be a solution to the Cauchy problem (8), (9), and v(x; γ, α) be a
solution to the Cauchy problem (11), (12). Then, for β→ 0, it is true that

u(x; γ, α, β)→ v(x; γ, α),

uniformly on x ∈ [0, h] and γ ∈ [0, γ0] for fixed α ∈ (0, α0).

We note that results presented in Theorems 4 and 6 are based on the classical theorem
of the ordinary differential equation theory, which states that if a Cauchy problem has
a unique globally defined solution, then another Cauchy problem with the same initial
data and regular small perturbation in the equation also has a unique continuous solution
defined globally on the same segment [27].

Everywhere below, we assume that γ ∈ Γ, where Γ = [0, γ0] and γ0 > 0 is a sufficiently
large constant, i.e., the segment Γ contains at least n propagation constants γ̂ of problem
Pα satisfying property (18). The existence of such solutions is guaranteed by Theorem 1.

Subtracting the characteristic function v(h; γ, α) of problem Pα from the both sides
of (19), one obtains

u(h; γ, α, β)− v(h; γ, α) = −v(h; γ, α). (20)

Studying Equation (20), one arrives at the main result.

Theorem 2. Let problem Pα have n solutions γ̄k ∈ Γ, where k = 1, n, satisfying property (18).
Then, there exists β0 > 0 such that for any β ∈ (−β0, β0) problem P has at least one solution γ̂k
in the vicinity of γ̄k and limβ→0 γ̂k = γ̄k for each k = 1, n.

In view of Theorem 2 we should give the following comments.
Theorem 2 states the existence of n solutions to problemP if problem Pα has n solutions

in Γ and |β| is sufficiently small. Here, integer n can be as large as needed but it affects the
upper bound β0 of possible values of β; namely, the larger the n, the smaller the β0. Trying
to pass to the limit n→ +∞, one obtains β0 → 0; in other words, in this case, problem P
degenerates into problem Pα.

If γ0 is sufficiently large, then at least some of the propagation constants γ̄k ∈ Γ do
not have linear counterparts. This means that those propagation constants γ̂k for which
limβ→0 γ̂k = γ̄k, where γ̄k ∈ Γ is nonlinearizable, are also nonlinearizable.

3.4. Numerical Results

In this section, we present some numerical results. In all calculations we used
α = 6.4× 10−12 m2/V2 (except for the linear case where α always equals zero), ε1 = 2.405
and A = 120π · 103 V/m [28–30]; other parameters are given in the captions. Let us note
that A is the value of u′ at the boundary x = 0; moreover, A is connected to the value of the
z-th component of the magnetic field at the boundary x = 0 by the relationship

A =

√
µ0

ε0
iHz(0) = 120πiHz(0).

In Figures 2–11, we plot the dispersion curves (DCs) of problems P0, P0 with β = 0,
Pα and P . In these figures, only the first three DCs for each case are shown (this does not
mean that there exist only three DCs in each case).

Generally speaking, DCs are plotted as the dependence of a wave number γ on either
frequency ω of a wave or thickness h of a waveguide. Problems P0, Pα, and P do not
contain ω explicitly due to the normalization (7); for this reason, we plot DCs as γ vs h.

Please note that due to the normalization in the presented results, quantities γ and h
are dimensionless; the real values of the wave number and width of the waveguide are k0γ
and k−1

0 h, where k0 is defined in (7).
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The vertical black dashed line h = h∗ in Figures 2–9 corresponds to a waveguide with
fixed width k−1

0 h∗. This line intersects DCs at some points denoted by solid diamonds;
these points are propagation constants of the corresponding problem.

In nonlinear cases, it is possible that a few (different) propagation constants belong to
the same DC. For this reason, to distinguish such propagation constants, we also use the
notation γ̄n,m and γ̂n,m for propagation constants of problems Pα and P , respectively. In
this notation, n = 1, 2, . . . is a number of DC and m = 1, 2, . . . is a number of the propagation
constant among all eigenvalues that lie on the same DC and arranged in ascending order.

Figure 2. Dispersion curves of problem Pα (blue curve) and problem P0 with β = 0 (red curve). Solid
diamonds denote the propagation constants γ̃1 ≈ 1.415 (red) , γ̃2 ≈ 0.902 (green) of problem P0 with
β = 0 and propagation constants γ2,1 ≈ 1.141 (brown), γ2,2 ≈ 3.705 (blue) of problem Pα.

Figure 3. Dispersion curves of problem Pα (blue curve) with ε = 2.405 and problem Pβ
α (green curve)

with ε = 2.405 + 0.05 cos(x). Solid diamonds denote the propagation constants γ2,1 ≈ 1.141 (blue),
γ2,2 ≈ 3.705 (orange) of problem Pα and propagation constants γ̂2,1 ≈ 1.131 (green), γ̂2,2 ≈ 4.197

(purple) of problem Pβ
α .
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(a) (b)

Figure 4. Subfigure (a): the eigenfunction of problem Pβ
α (green curve) corresponding to the propaga-

tion constant denoted by the green diamond in Figure 3. Subfigure (b): the eigenmodes of problems
Pβ

α (purple curve) and Pα (orange curve) corresponding to the propagation constants denoted by the
purple and orange diamonds in Figure 3.

Figure 5. Dispersion curves of problem Pα (blue curve) with ε = 2.405 and problem Pβ
α (green curve)

with ε = 2.405 + 0.05 cos(10x). Solid diamonds denote propagation constants γ2,1 ≈ 1.141 (blue),
γ2,2 ≈ 3.705 (orange) of problem Pα and propagation constants γ̂2,1 ≈ 1.115 (green), γ̂2,2 ≈ 3.656

(purple) of problem Pβ
α .

In Figure 2, DCs of problem Pα and problem P0 with β = 0 are shown. The brown
diamonds denote the propagation constant γ̄2,1 of problem Pα; this solution is close to
the propagation constant γ̃2 of problem P0 with β = 0 denoted by the green diamond.
Moreover, it can be shown that limα→+0 γ̄2,1 = γ̃2 and the same is true about eigenmodes
corresponding to these propagation constants. The blue diamond denotes propagation
constant γ̄2,2 of problem Pα with no linear counterpart; this means that for any arbitrary
small α solution, γ̄2,2 does not tend to any propagation constant of the linear problem. Let
us call such solutions purely nonlinear, meaning that they are not perturbations of linear
solutions; these propagation constants correspond to novel eigenmodes of the waveguide.
In Figure 10, there are eigenfunctions of problems Pα and P0 with β = 0 corresponding to
the above-mentioned propagation constants.
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(a) (b)

Figure 6. Subfigure (a): the eigenmode of problem Pβ
α (green curve) corresponding to the propagation

constant denoted by the green diamonds in Figure 5. Subfigure (b): the eigenmode of problem Pβ
α

(purple curve) corresponding to the propagation constant denoted by the purple diamonds in
Figure 5.

Figure 7. Dispersion curves of problem Pα (blue curve) with ε = 2.405 and problem Pβ
α (green curve)

with ε = 2.405 + 0.05 cos(4x). Solid diamonds denote propagation constants γ2,1 ≈ 1.141 (blue),
γ2,2 ≈ 3.705 (orange) of problem Pα and propagation constants γ̂2,1 ≈ 1.112 (green), γ̂2,2 ≈ 3.404

(purple) of problem Pβ
α .

Figure 12 shows the functions that we use to simulate perturbations of the linear part
of the permittivity.

In Figures 3, 5, 7 and 9, DCs of problem P and problem Pα are shown. Theorem 2
assures that for sufficiently small values of parameter β, problem P has at least n solutions
and each of them is located in some vicinity of the corresponding solution to problem Pα.
However, if |β| increases, then the numerical simulation produces unpredictable results.
This means that the perturbed term is greatly affected if the perturbation is not sufficiently
small (this is true at least for the range of parameters that we chose for the simulation).
We do not present such figures as we cannot yet offer enough comment on this issue. In
Figure 3, we demonstrate how the perturbed term presented in Figure 12, Subfigure (b)
affects DCs.
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(a) (b)

Figure 8. Subfigure (a): the eigenmode of problem Pβ
α (green curve) corresponding to the propagation

constant denoted by the green diamond in Figure 7. Subfigure (b): the eigenmode of problem Pβ
α

(purple curve) and Pα (orange curve) corresponding to the propagation constant denoted by the
purple and orange diamonds in Figure 7.

Figure 9. Dispersion curves of problem Pα (blue curve) with ε = 2.405 and problem Pβ
α (green curve)

with ε = 2.405 + 0.00526(−1.6x2 + 8x). Solid diamonds denote propagation constants γ2,1 ≈ 1.141
(blue), γ2,2 ≈ 3.705 (brown), γ3,1 ≈ 6.866 (orange) of problem Pα and propagation constants

γ̂2,1 ≈ 1.179 (green), γ̂2,2 ≈ 3.585 (red), γ̂3,1 ≈ 6.493 (purple) of problem Pβ
α .

We also note that pairs of DCs in the lower parts of Figures 3, 5 and 9 are very close to
each other.
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(a) (b)

Figure 10. Subfigure (a): the eigenfunctions of problem Pα (brown curve) and problem P0 with β = 0
(green curve) corresponding to the propagation constants denoted by the green and brown diamonds
in Figure 2. Subfigure (b): the eigenfunction corresponding to the propagation constant of problem
Pα denoted by the blue diamonds in Figure 2.

(a) (b)

Figure 11. Subfigure (a): the eigenmode of problem Pβ
α (red curve) corresponding to the propagation

constant denoted by the red diamonds in Figure 9. Subfigure (b): the eigenmodes of problems Pβ
α

(purple curve) and Pα (orange curve) corresponding to the propagation constants denoted by the
purple and orange diamonds in Figure 9.

(a) (b)

Figure 12. Cont.
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(c) (d)

Figure 12. In subfigure (a) ε = 2.405, in subfigure (b) ε = 2.405 + 0.05 cos(x), in subfigure (c)
ε = 2.405 + 0.05 cos(10x), in subfigure (d) ε = 2.405 + 0.00526(−1.6x2 + 8x).

3.5. Proofs
3.5.1. Proof of Statement 4

The claim of Statement 4 is a direct consequence of the so-called integral continuous
Theorem [27] applied to the Cauchy problem (8), (9) under the additional assumption about
the global unique solvability of the Cauchy problem (11), (12) for x ∈ [0, h], γ ∈ [0, γ0],
β ∈ (−β0, β0), and α ∈ (0, α0). The validity of this additional assumption is guaranteed by
Statement 2.

3.5.2. Proof of Statement 5

If γ = γ̂ is a propagation constant and u ≡ u(x; γ̂, α, β) is the corresponding eigen-
mode of problem P , then equality (19) is obviously satisfied.

Let u ≡ u(x; γ, α, β) be a solution to a Cauchy problem (8), (9) and γ = γ∗ be a
solution to equation u(h; γ, α, β) = 0. The only reason that can destroy our consideration
is that there exists another solution u ≡ u∗(x; γ∗, α, β) to the Cauchy problem (8), (9) and
u 6≡ u∗ for x ∈ [0, h]. However, this is not possible due to the classical result about the
uniqueness of a solution to a Cauchy problem with some restrictions on the coefficients of
the equation (these restrictions are satisfied for our equation). We stress that in this case, it
is not important whether u∗(h; γ∗, α, β) equals zero or not.

3.5.3. Proof of Statement 6

Statement 4 claims that the Cauchy problem (8), (9) is globally uniquely solvable
and its solution u ≡ u(x; γ, β, α) is defined and continuous for x ∈ [0, h], γ ∈ [0, γ0],
β ∈ (−β0, β0), and α ∈ (0, α0). Statement 2 claims that the Cauchy problem (11), (12) is
globally uniquely solvable and its solution v ≡ v(x; γ, α) is defined and continuous for
x ∈ [0, h], γ ∈ [0, γ0], β ∈ (−β0, β0), and α ∈ (0, α0). The fact that u(x; γ, β, α)→ v(x; γ, α)
uniformly on x ∈ [0, h] and γ ∈ [0, γ0] as β → 0 for any fixed α ∈ (0, α0) results from the
integral continuous Theorem [27].

3.5.4. Proof of Theorem 2

Therefore, let γ0 be sufficiently large that problem Pα has n propagation constants
γ̄k ∈ Γ, where k = 1, k, such that for any γ̄k inequality (18) is satisfied.

Below, we need to use intervals Γk = (γ̄k − δk, γ̄k + δk), where k = 1, k and δk > 0 are
some constants, defined in Theorem 1. We note that Γk does not contain other propagation
constants except γ̄k for every k.

By virtue of Statement 6, the left-hand side of Equation (20) is bounded for γ ∈ [0, γ0],
β ∈ (−β0, β0) for any fixed α ∈ (0, α0) and vanishes as β→ 0.
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Taking into account the above consideration, one comes to the conclusion that in any
interval Γk there exists γ̂k satisfying Equation (20). Obviously, limβ→0 γ̂k = γ̄k. In view of
Statement 5 such γ̂k is a propagation constant of problem P .

4. Discussion

In this paper, we studied the problem of monochromatic TE wave propagation in a
plane-shielded waveguide filled with nonlinear nonhomogeneous medium with permit-
tivity in the form (2). Such a model takes into account the presence of impurities in the
medium causing slight deviations in the dielectric permittivity.

The main theoretical result of this study is Theorem 2. It states the existence of
solutions (in particular, solutions without linear counterparts) to problem P .

We note that in accordance with Theorem 1, problem Pα, which is a special case of
problem P , has infinitely many propagation constants. In this regard, it is interesting to
discover whether problem P has infinitely many propagation constants or not (there are
at least two intriguing subcases: (a) β > 0 and (b) real β, where |β| is sufficiently small).
However, the approach developed in the paper does not allow one to prove the existence
of infinitely many solutions; see the comment just after Theorem 2.

It is also interesting to note that the influence of the small perturbation grows larger
with the thickness of the waveguide and γ. This effect is readily seen in the upper part of
Figure 3, in the right upper part of Figure 5, and in Figure 9 for the central part of the third
DC. It is clear that the existence of infinitely many guided modes is impossible in any real
physical system; however, it would be interesting to check experimentally whether at least
a few first purely nonlinear solutions exist or not.

Despite the fact that absorption effects are some of the most important in any theory
of wave propagation, we should say that it is not possible to include losses in the model
under consideration. Indeed, the model under investigation in the paper was developed
for a lossless film, i.e., the permittivity of the film is real [4–6]. Talking about the model,
we mean the permittivity and the chosen type of fields. If the permittivity of the film has
an imaginary part (which corresponds to the film with losses), then γ must be complex.
However, this is impossible. Indeed, if γ is not real, then |eiγz| depends on z and therefore
the quantity |E|2 = |Ey(x)eiγz|2 also depends on z; see Formulas (1) or (2). This contradicts
the choice of the field components in the form (3). The problem of finding complex guided
modes in the nonlinear regime is a nontrivial one.
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