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Abstract: Solution-processed devices with thermally activated delayed fluorescence (TADF) com-
pounds have gained great attention due to their low cost and high performance. Here, two solution-
processable TADF emitters named ACCz-DPyM and POxCz-DPyM were synthesized by coupled
9,10-dihydro-9,9-dimethylacridine or phenoxazine modified carbazole as donor with di(pyridin-3-
yl)methanone as acceptor. Both TADF compounds show same small ∆EST of 0.04 eV and high PLQY
of 66.2% and 58.2%. The devices fabricated by ACCz-DPyM and POxCz-DPyM as emitters show
excellent performance as solution-processed with low turn-on voltage of 4.0 and 3.4 V, high luminance
of 6209 and 3248 cd m−2 at 8 V, the maximum current efficiency of 9.9 and 15.9 cd A−1, the maximum
external quantum efficiency of 6.6% and 6.5% and low efficiency roll-off. The solution-processed
device based on ACCz-DPyM shows bluish-green emission. These results show that ACCz-DPyM
and POxCz-DPyM are suitable for solution processing devices.

Keywords: TADF; solution-processed; OLED

1. Introduction

Thermally activated delayed fluorescence (TADF) materials have attracted consider-
able interest from researchers over the past few years due to their ability to utilise triplet
state excitons through rapid reverse intersystem crossing (RISC) processes from an ex-
cited triplet state (T1) to a singlet state (S1), theoretically enabling 100% internal quantum
electrons (IQE) [1–8]. Most high-performance TADF-based organic light-emitting diodes
(OLEDs) are manufactured by a vacuum deposition process [9–14], which requires a com-
plex manufacturing process and is costly. However, a truly low-cost OLED device could
be developed by solution processing [15–18]. In recent investigations, the performance of
solution processing devices has also been further developed [19–23], while it is still to be
improved compared with that of the vacuum evaporation device at present.

Generally, TADF molecules are mainly concentrated on a twisted donor (D)-acceptor
(A) backbone, which can effectively separate the highest occupied molecular orbital
(HOMO) from the lowest unoccupied molecular orbital (LUMO) spatially, resulting in
a small ∆EST [24–29]. As shown in Scheme 1, carbazole, diphenylamine, acridine, phe-
noxazine and phenothiazine are usually selected as donor units, while benzophenone,
sulfonyldibenzene and 1,3,5-triazine are usually regarded as acceptor moieties [30–33].
However, the construction of TADF molecules with a D-A backbone using acridine or
phenoxazine-modified carbazole as the donor unit and di(pyridin-3-yl)methanone as the
acceptor unit is hardly reported. Moreover, increasing molecular weight can effectively
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improve the solution processability of TADF materials [31,34]. Hence, in order to obtain
suitable solution-processed TADF materials, we designed and synthesized two TADF com-
pounds named ACCz-DPyM and POxCz-DPyM which comprised a central di(pyridin-3-yl)
methanone (DPyM) acceptor core coupled with 3,6-bis(9,9-dimethylacridin-10(9H)-yl)-
9H-carbazole (ACCz) and 3,6-di(10H-phenoxazin-10-yl)-9H-carbazole (POxCz) as donors.
ACCz-DPyM and POxCz-DPyM have a higher molecular weight than the small molecule
TADF emitters. The major difference in molecular structure between the two emitters is the
9,10-dihydro-9,9-dimethylacridine of ACCz-DPyM and the phenoxazine of POxCz-DPyM
on POxCz. The absence of such a heteroatom in 9,10-dihydro-9,9-dimethylacridine, in
contrast to the presence of an oxygen atom in phenolizine, may make the structure of ACCz
more molecularly rigid than POxCz. The phenoxazine has stronger electron-donating
ability than acridine. Therefore, it could be predicted that the emission spectrum of POxCz-
DPyM will be red-shifted compared to ACCz-DPyM. The PL quantum yields (PLQY) of
ACCz-DPyM and POxCz-DPyM were 66.2% and 58.2% in film state, respectively. The
ACCz-DPyM-based and POxCz-DPyM-based solution-processed devices exhibited the
maximum electroluminescence (ELmax) of 510 vs. 560 nm, the maximum current efficiency
(CEmax) of 9.9 vs. 15.9 cd A−1, the maximum external quantum efficiency (EQEmax) of 6.6%
vs. 6.5%, the maximum luminance (Lmax) of 6209 vs. 3248 cd m−2 at 8 V and CIE coor-
dinates of (0.28, 0.48) and (0.43, 0.51) with relatively low turn-on voltage of 4.0 vs. 3.4 V,
respectively. Furthermore, both solution-processed devices have shown low efficiency
roll-off.
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2. Results and Discussion
2.1. Synthesis and Characterization

The synthetic lines and molecule structures of the ACCz-DPyM and POxCz-DPyM
are illustrated in Scheme 2. The TADF compounds had been successfully synthesized
according to the literature methods [35]. The molecule structure of the compounds was
determined by 1H NMR, 13C NMR and HRMS.

2.2. Thermal Stability and Film-Forming Properties of ACCz-DPyM and POxCz-DPyM

The thermal gravimetric analyses (TGA) and differential scanning calorimetry (DSC)
are tested to research the thermal properties of ACCz-DPyM and POxCz-DPyM. As shown
in Figure S1, TGA show that both of these materials have high thermal decomposition
temperatures with 434 ◦C and 527 ◦C for ACCz-DPyM and POxCz-DPyM, respectively.
The DSCs show that the glass transition temperature (Tg) of ACCz-DPyM and POxCz-
DPyM are 254 ◦C and 168 ◦C, respectively. The results of thermal analysis show that
ACCz-DPyM and POxCz-DPyM have good thermal stability, which may attribute to bulky
structure. The high thermal stabilities of ACCz-DPyM and POxCz-DPyM contribute to
the formation of amorphous films through solution processing. Additionally, in order to
research morphology further, it is necessary to investigate the surface morphologies of thin
film of the two emitters, which are analysed by atomic force microscopy (AFM), which
is shown in Figure S2. The films of ACCz-DPyM and POxCz-DPyM show pinhole-free
morphologies, with root mean squares (RMSs) of 0.50 and 0.64 nm. It can be concluded
that the bulky structure of the two emitters is beneficial for improving the morphological
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stability of the films, which is important for the fabrication of highly electronic sol-gel
treated OLEDs.
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2.3. Electrochemical Properties and Theoretical Calculation

Figure S3 shows cyclic voltammetry (CV) of ACCz-DPyM and POxCz-DPyM. ACCz-
DPyM and POxCz-DPyM exhibited quasi-reversible oxidation processes. The oxidation
potentials of ACCz-DPyM and POxCz-DPyM are 0.18 and 0.28 V, respectively. According
to the equation HOMO = −(4.8 +Eox

ons), the energy levels corresponding to the HOMO of
ACCz-DPyM and POxCz-DPyM are estimated to be −4.98 and −5.08 eV, respectively. The
LUMO energy levels of ACCz-DPyM and POxCz-DPyM estimated from the HOMO energy
levels and optical bandgaps were −2.20 and −2.51 eV. Additionally, in order to research
the structure-property relationships of the compounds, DFT calculations were used to
calculate HOMO and LUMO distributions of ACCz-DPyM and POxCz-DPyM. As shown
in Figure 1, the HOMO distributions of both emitters are located at the donors, and LUMOs
are located at the acceptors, respectively. The HOMO and LUMO distributions of the two
target molecules are well separated, which leads to a small ∆EST. The calculated HOMO
levels of ACCz-DPyM and POxCz-DPyM were −4.95 and −4.72 eV, while the calculated
LUMO levels were −2.45 and −2.53 eV for ACCz-DPyM and POxCz-DPyM, respectively;
the results of DFT calculation are comparable with experimental data.
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2.4. Photophysical Properties

The UV-visible absorption spectra and photoluminescence (PL) spectra of the target
compounds ACCz-DPyM and POxCz-DPyM in dilute solution are shown in Figure 2a, and
the data are summarized in Table 1. For the target molecule ACCz-DPyM, the absorption
band of 330–450 nm is attributed to intramolecular charge transfer (ICT) transitions between
the ACCz moieties as donor and the DPyM unit as acceptor, with the high energy absorption
coming from local transitions between the ACCz and DPyM units, while for POxCz-DPyM,
the absorption band of 305-500 nm is attributed to ICT and local transitions between the
POxCz and DPyM units in dilute solution [29,30]. It is well known that the fundamental
principles of TADF molecules are the separation of HOMO–LUMO and the small enough
∆EST value [1]. The experimental ∆EST of two emitters doped in the mCBP as host material
(8 wt%) were determined by the onsets of the fluorescence and phosphorescence spectra
at 77 K (delayed 100 µs) (Figure 2b), which were both estimated to 0.04 eV for ACCz-
DPyM and POxCz-DPyM. Moreover, Figure 1 shows that the HOMO orbitals of the target
molecules ACCz-DPyM and POxCz-DPyM are all located on the ACCz or POxCz moieties
without distribution on the acceptor moiety. In contrast, the LUMO orbitals of the target
compounds ACCz-DPyM and POxCz-DPyM are located almost on the DPyM unit, with
a slight distribution on the donor unit. Hence, the spatial separation of the HOMO and
LUMO between the donor and acceptor units in ACCz-DPyM and POxCz-DPyM are
beneficial to realize a small ∆EST. The theoretical calculations values of ∆EST were 0.005
and 0.004 eV for ACCz-DPyM and POxCz-DPyM, respectively. As shown in Figure 3, the
transient PL decay experiment of the two doped films shows prompt fluorescence lifetimes
of 39.8 ns and 98.9 ns and delayed fluorescence lifetimes of 7.2 µs and 8.7 µs, respectively.
The absolute PL quantum efficiency values measured using an integrating sphere for the
two doped films are 66.2% and 58.2% for ACCz-DPyM and POxCz-DPyM, respectively.
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Table 1. The test data of ACCz-DPyM and POxCz-DPyM.

Compound λabs
a

(nm)
λPL

a/λPL
b

(nm) ΦPL
b/% Eox

ons
c

(V)

HOMO d

/HOMO e

(eV)

LUMO f/
LUMO e

(eV)

kRISC
g

(s−1)

∆EST
h/

∆EST
e

(eV)

τp/τd
i

[ns]/[µs]
Td/Tg

j

(◦C)

ACCz-
DPyM 366 541/503 66.2 0.18 −4.98/−4.95 −2.20/−2.45 4.5 × 105 0.04/0.005 39.8/7.2 434/254

POxCz-
DPyM 321 590/541 58.2 0.28 −5.08/−4.72 −2.51/−2.53 2.9 × 105 0.04/0.004 98.9/8.7 527/168

a In solution. b Film states. c Oxidation potential values. d HOMO energy levels deduced from the equation
of HOMO = −(4.8 + Eox

ons). e Data of calculations. f LUMO = HOMO + Eg
opt.

g kRISC: the rate constant for

RISC. h Subtraction of the onsets of spectra at 300 K and 77 K. i Obtained in films at 300 K. j The heating rate is
10 ◦C mim−1.
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2.5. Electroluminescence Properties

The solution-processed devices were fabricated to research the electroluminescent
characteristics of two emitters ACCz-DPyM and POxCz-DPyM. The devices’ structure
was the following: ITO/PEDOT:PSS/PVK/mCBP: emitter (8 wt%)/TPBI/Yb/Ag, where
PEDOT:PSS and PVK act as the hole-injection and the hole-transporting layer, respectively.
TPBI act as the electron-transporting layer. The materials in the emitting layer are ACCz-
DPyM and POxCz-DPyM doped in mCBP, respectively. As illustrated in Figure 4d, the
electroluminescence spectra of devices come from the luminescence of the emitter without
any emission of the host material, which shows that the energy transfer between host and
guest materials was completed. Additionally, the devices’ electroluminescence spectra
show the maximum peaks at 510 and 560 nm with CIE coordinates of (0.28, 0.48) and
(0.43, 0.51), respectively. As shown in Figure 4c,d, both solution-processed devices show a
good electroluminescence performance. The devices I and II exhibit relatively low driving
voltages with 4.0 and 3.4 V, which recorded at a luminance of 1 cd m−2. The performance
of device I shows the Lmax of 6209 cd m−2 at 8 V, the CEmax of 9.9 cd A−1 and the EQEmax
of 6.6%. The device II exhibits the performance with Lmax of 3248 cd m−2, the CEmax of
15.9 cd A−1 and the EQEmax of 6.5%, the corresponding data were summarized in Table 2.
These results show that both emitters are suitable for solution processing devices. Device I
shows a relatively higher electroluminescence performance than that of device II. It could
be explained by a better film-forming property of the ACCz-DPyM, which is beneficial to a
solution-processed device, and a more molecular rigidity of the ACCz-DPyM than that of
POxCz-DPyM, which could suppress the nonradiative transition with higher PLQY [31,33].
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Table 2. The data for electroluminescence performance of devices.

Device λELmax
(nm) Von (V) Lmax

(cd m−2)
CEmax

(cd A−1)
EQEmax

(%) CIE (x, y)

I 510 4.0 6209 9.9 6.6 0.28, 0.48
II 560 3.4 3248 15.9 6.5 0.43, 0.51

3. Conclusions

In conclusion, the ACCz-DPyM and POxCz-DPyM as two novel TADF compounds
with ACCz and POxCz as the donor and DPyM as acceptor were synthesized. ACCz-DPyM
and POxCz-DPyM have shown high PLQY, small ∆EST and excellent performances for
solution-processed devices. The ACCz-DPyM-based device has shown a higher perfor-
mance with driving voltages of 4.0 V, the Lmax of 6209 cd m−2 at 8 V, the CEmax of 9.9 cd
A−1 and the EQEmax of 6.6%, which has shown a bluish-green emission. The performance
of device II has shown low driving voltages of 3.4 V, Lmax of 3248 cd m−2 at 8 V, the CEmax
of 15.9 cd A−1, the EQEmax of 6.5% and the CIE coordinates of (0.43, 0.51). Additionally,
both devices had low efficiency roll-off. Due to the better film-forming properties and more
molecular rigidity of ACCz for ACCz-DPyM, the ACCz-DPyM-based solution-processed
device has shown better performance than that of POxCz-DPyM.

4. Experimental
4.1. General Information

Unless otherwise stated, all commercially available reactants and solvents were used
without further purification. NMR spectra including 1H NMR and 13C NMR spectra
were measured on Bruker Avance 400 MHz spectrometer. High-resolution mass spectra
were obtained on Bruker Daltonics Inc. (Billerica, MA, USA). UV spectra were measured
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with Mapada UV-1800PC (Shanghai, China). PL spectra were collected on Perkinelmer
LS-55 (Waltham, MA, USA). The PLQYs of the materials were collected on Edinburgh FLS
980 (Edinburgh, UK). TGA were determined on Hitachi STA7300 (Tokyo, Japan). DSC
was measured with Mettler Toledo. CV were performed on CorrTest electrochemical
workstation (Wuhan, China). Platinum wire, platinum plate and an Ag/AgNO3 electrode
as the auxiliary electrode, working electrode and quasi-reference electrode were used in
CV system. Ferrocenium/ferrocene act as the external standard.

4.1.1. Synthesis of ACCz-DPyM

ACCz of 209 mg (0.36 mmol), DPyM of 60 mg (0.17 mmol), K3PO4 of 763 mg
(3.6 mmol), CuI of 9.2 mg (0.04 mmol) and 1,2-diaminocyclohexane of 6.0 mg (0.05 mmol)
and 1,4-dioxane of 3 mL were added into 20 mL flask. Then, the reaction system was
stirred at 110 ◦C for 12 h under Ar atmosphere. After the reaction was completed, solvent
was removed under vacuum; the crude product was purified by column chromatography
(hexane: ethyl acetate = 8:1) to obtain ACCz-DPyM. Yield: 50%. 1H NMR (400 MHz,
DMSO) δ 9.35 (d, J = 2.0 Hz, 2H), 8.73 (dd, J = 8.4, 2.4 Hz, 2H), 8.47 (d, J = 1.6 Hz, 4H),
8.42 (d, J = 8.8 Hz, 4H), 8.32 (d, J = 8.8 Hz, 2H), 7.56 (dd, J = 8.8, 1.6 Hz, 4H),
7.50 (dd, J = 7.6, 1.2 Hz, 8H), 6.96 (t, J = 7.6 Hz, 8H), 6.89 (t, J = 7.6 Hz, 8H),
6.27 (d, J = 8.4 Hz, 8H), 1.64 (s, 24H). 13C NMR (100 MHz, CDCl3) δ 190.6, 154.7, 151.6, 141.3,
140.2, 138.8, 135.7, 130.3, 130.1, 129.8, 126.8, 126.3, 125.2, 123.5, 120.6, 118.0, 114.4, 114.1,
36.0, 31.3, 29.7. HRMS (APCI) m/z: [M + H]+ calcd for C95H75N8O+, 1343.6058; found,
1343.6081.

4.1.2. Synthesis of POxCz-DPyM

The synthesis method was similar to ACCz-DPyM. The synthesis of POxCz-DPyM
using POxCz of 191 mg (0.36 mmol), DPyM of 60 mg (0.17 mmol), K3PO4 of 763 mg
(3.6 mmol), CuI of 9.2 mg (0.04 mmol), 1,2-diaminocyclohexane of 6.0 mg (0.05 mmol) and
1,4-dioxane of 3 mL. Yield: 48%. 1H NMR (400 MHz, DMSO) δ 9.30 (d, J = 2.4 Hz, 2H),
8.68 (dd, J = 8.4, 2.4 Hz, 2H), 8.49 (d, J = 2.0 Hz, 4H), 8.36 (d, J = 8.8 Hz, 4H),
8.25 (d, J = 8.4 Hz, 2H), 7.59 (dd, J = 8.8, 2.0 Hz, 4H), 6.76 (dd, J = 7.2, 2.0 Hz, 8H),
6.70–6.61 (m, 16H), 5.95 (dd, J = 7.2, 2.0 Hz, 8H). 13C NMR (100 MHz, CDCl3) δ 190.5, 154.5,
151.5, 144.0, 140.2, 138.9, 129.9, 126.7, 123.2, 121.5, 118.0, 115.4, 114.7, 113.4. HRMS (APCI)
m/z: [M + H]+ calcd for C83H51N8O5

+, 1239.3977; found, 1239.3994.

4.1.3. Device Fabrication and Measurement

Firstly, the ITO substrate treated with UV-ozone were spin coated with PEDOT:PSS
layer (40 nm thick) and heated for 15 min at 150 ◦C. Then, a PVK interlayer (5 nm) was spin
coated on the PEDOT:PSS layer, which annealed for 5 min at 110 ◦C. Then, the emitters
were spin coated on PVK layer with coating speed 2500 rad/min and annealing for 5 min
at 100 ◦C. Moreover, TPBi, Yb and silver cathodes were deposited by evaporation. The
performance of OLEDs which contained EQE-L-CE and J-V-L curves were researched by
Keithley 2400 (Ohio, USA). The electroluminescence spectra and CIE coordinates were
collected on PR-788 photometer (New York State, USA).
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