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Abstract: In this paper, we study the effects of GeSi quantum dot emission coupling with the collective
modes in the linear chains of Si disk resonators positioned on an SiO2 layer. The emission spectra
as a function of the chain period and disk radius were investigated using micro-photoluminescence
(micro-PL) spectroscopy. At optimal parameters of the disk chains, two narrow PL peaks, with quality
factors of around 190 and 340, were observed in the range of the quantum dot emission. A numerical
analysis of the mode composition allowed us to associate the observed peaks with two collective
modes with different electric field polarization relative to the chain line. The theoretical study
demonstrates the change of the far-field radiation pattern with increasing length of the disk chain.
The intensive out-of-plane emission was explained by the appearance of the dipole mode contribution.
The obtained results can be used for the development of Si-based near-infrared light sources.

Keywords: photoluminescence; GeSi quantum dots; disk resonator; quality factor

1. Introduction

Many results have now been obtained indicating that the modification of the opti-
cal properties of materials by using various types of micro- and nano-resonators can be
successfully applied to create efficient photon radiation sources, lasers with low thresh-
old powers and narrow generation lines, optical filters with controlled bandwidth, and
others [1–11]. This approach is already being used for solving the urgent problem of
creating compact, efficient light sources compatible with Si technology. The solution of
this problem can lead to great progress in the development of silicon photonics. One
of the promising variants is tunable structures with dielectric Mie resonators, allowing
control of the light–matter interaction [6–12]. Emission enhancement can be achieved
due to an increase in the probability of optical transitions, when some kinds of emitters,
which can be quantum dots, are placed at the maximum of the electric field inside the Mie
resonator (Purcell effect [12,13]). In the frame of Si-based technology, GeSi quantum dots
(QDs) can be considered a suitable variant of radiation sources with emission bandwidth
coinciding with the highly demanded near-infrared range [14–18]. The choice of GeSi QDs
as an emitting medium is determined by several factors. The localization of the charge
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carriers on GeSi QDs weakens the influence of surface defects on the emitting properties
of the structures. The possibility of the growth of structures with GeSi quantum dots on
silicon-on-insulator (SOI) substrates allows limiting the propagation of light in one of the
directions and simplifies the preparation of dielectric resonators. The luminescence signal
of GeSi QDs is characterized by a large width, which allows us to use it for studies of the
interaction with different modes of resonators. In addition, for this type of heterostructure,
there are well-developed methods of spatial ordering of QDs [19–27], which can be used for
the development of devices with high efficiency of interaction of a small number of emitters
(down to single emitter [1–3]) with the modes of micro- and nano-resonators. GeSi QDs
formed on silicon emit at room temperature in the wavelength range of 1.3–1.55 µm, which
makes them promising for the creation of light sources for silicon photonics. The best results
in QD emission enhancement were achieved by creating structures supporting high quality
states [28–36]. The high quality factor is an inherent property of a special type of states,
bound states in continuum (BIC) [37]. There are two types of BICs: the first type is the
symmetry-protected BIC arising inthe center of the Brillouin zone (in the Γ-point) of some
periodical photonic structure and completely decoupled from the radiation continuum due
to the high symmetry [38–40]; the second type is off-Γ BIC, which can be obtained by tuning
the parameters of the photonic system [41–44]. This latter BIC is also called the accidental
BIC or Friedrich–Wintgen state (FW–BIC) [45]. The most intensive studies of BICs have
been conducted for PhC structures [18,42,46]; however, there are many works dealing with
dielectric Mie resonators. A large amount of theoretical and experimental material has
been accumulated in this direction, both on single resonators [8,9,47] and on chains of
resonators [5,7,10,11,44,48–51]. The possibility of creating experimental systems on the
basis of disk resonator chains supporting high quality states, such as symmetry-protected
and accidental BICs, was demonstrated [44,50]. Recently, a new approach for achieving the
giant Q-factors in finite-length periodic arrays of subwavelength optical Si resonators was
proposed [7]. It is based on the interference between the band-edge mode and a standing
mode in the resonator chain, which leads to the suppression of radiative losses and the
formation of high Q localized state. The collective band-edge modes were studied also in
linear chains of Si nanopillars with embedded GeSi quantum dots [10], where the effective
coupling of GeSi QDs to the Mie resonance modes of the nanopillars was demonstrated.
The 10-fold enhancement of the luminescent signal due to the excitation of resonant an-
tisymmetric magnetic and electric dipole modes was obtained for the nanopillar trimer.
In the next paper by the same authors [11], a Q-factor of around 500 was experimentally
measured for an array of 11 pillars, which demonstrates the potential of engineering optical
nanopillar cavities for active photonic devices on an Si platform. The high quality factor
was provided by the formation of the collective dipolar mode in a nanopillar array.

Until now, as far as we know, experimental structures with chains of Si disk resonators
supporting BIC states (symmetry-protected or accidental) have not yet been realized and
investigated. There are papers with impressive results on anapole-based energy transfer
along Si disk chains [52,53], but unfortunately no BIC states were detected there [53]. The
main results on the realization of BIC states in disk resonator chains are obtained on systems
with ceramic microwave resonators [44,50], which cannot be directly incorporated into the
existing Si technology. In the present paper, we have investigated structures with linear
chains of Si disk resonators on a SiO2 layer, depending on the period and radius of disks
in order to verify the possibility of the formation of high quality states in this system.
At optimal parameters, we have demonstrated the enhancement of the emission of GeSi
quantum dots. The micro-PL study demonstrates the appearance of two narrow PL peaks
even for short chains with the number of disks N ≥ 2. By analysis of the mode composition,
the correspondence between the observed PL peaks and two high quality collective modes
were found. The change of radiation pattern from in-plane to out-of-plane was detected
at the transition from the case of a single disk resonator to a linear chain of disks. The
obtained results can be used for the development of near-infrared light sources compatible
with Si-based technology.
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2. Materials and Methods

To fabricate the linear chains of disk resonators with embedded GeSi QDs, a silicon-
on-insulator (SOI) substrate with a 180 nm-thick top Si layer and a 3 µm-thick SiO2 layer
was used. At the first step, a 110 nm-thick Si buffer layer was grown by molecular beam
epitaxy at 500 ◦C ata rate of 0.6 Å/s. At the next step, ten layers of GeSi QDs separated
by 15 nm-thick silicon spacer layers were grown at 600 ◦C. Each QD layer was formed by
the deposition of 7 monolayers of Ge at a growing rate of 0.05 Å/s. At the final stage, the
structure was covered with a 15 nm-thick Si layer. Si spacers and cap-layer were grown at a
rate of 1 Å/s. The total thickness of the multilayer structure was 440 nm. Then, using e-beam
lithography and plasma-etching, linear chains of disk resonators with different diameters
and periods were formed on the surface of the SiO2 layer. In the first step, by means of
e-beam lithography, the chains of holes were created in positive resist PMMA-950K with a
thickness of 200 nm. The radius of the holes in the resist layer varied from 330 ± 10 nm to
385 ± 10 nm with a step of 15 nm. The distance between the linear chains d was chosen to
avoid the coupling of different chain resonators. It was varied depending on the period
of the chain a. In our experimental implementation, for a = 1 µm, d = 3 µm; for a = 2 µm,
d = 4 µm; for a = 3 µm, d = 6 µm; for a = 10 µm, d = 10 µm; for a = 15 µm, d = 15 µm were
chosen. Then, a thin layer of chromium (20 nm) was deposited by magnetron sputtering on
top of the resist layer with holes. After lift-off lithography, the periodic arrays of Cr disks
were obtained, which served as a mask for the fabrication of the resonators. In the next
step, anisotropic plasma chemical etching of the top Si layer with GeSi QDs was carried
out in SF6/CHF3 gas mixture through a Cr mask down to the SiO2 layer. The etching rate
was ~10 nm/s. According to scanning electron microscopy (SEM) measurements, the linear
chains of disk resonators with radii 330 ± 10 nm, 345 ± 10 nm, 365 ± 10 nm, 385 ± 10 nm
were obtained for each value of period. A schematic representation and scanning electron
microscopy image of the obtained 1D arrays of disks with embedded GeSi QDs are shown
in Figure 1. As well as the full-length chains, we investigated chains with different lengths.
Such structures were fabricated by ultrasonic treatment, which resulted in removing some
parts of the chains and the formation of chains with different lengths.
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The luminescent properties of the structures were studied by the mi-
cro-photoluminescence (micro-PL) method with high spatial and spectral resolutions. 

Figure 1. Left—a schematic view of the structure under study. Right—a scanning electron microscopy
image of the sample with linear chains of disk resonators. The disk diameter is 770 nm, the period is
1 µm, and the distance d between chains is 3 µm.

The luminescent properties of the structures were studied by the micro-photoluminescence
(micro-PL) method with high spatial and spectral resolutions. The micro-PL signal was
excited by a continuous laser at the wavelength of 532 nm. The laser radiation was
focused in a spot of ~2 µm with a Mitutoyo M Plan APO 50× objective (numerical aperture
NA = 0.42). The excitation power was 5 mW. Measurements were carried out in the
normal incidence geometry of the exciting and detected beams. The PL signal collection
angle was 2ϑ = 48◦.The micro-PL signal was detected by a cooled Ge detector using a
Bruker IFS 125HR high-resolution Fourier spectrometer. The spectra were recorded with
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resolution 4 cm−1. The measurements were carried out at a temperature of 77 K. To
analyze the obtained experimental results, we have simulated the emission spectra of the
studied structures with resonator chains. The near-field components distributions and
dispersion dependences of the eigenmodes are numerically calculated using COMSOL
Multiphysics software.

3. Results and Discussion

The micro-PL study shows that the formation of linear chains of Si disks with embed-
ded GeSi QDs led to PL spectra modification as compared with the original, unprocessed
area (Figure 2). The most significant changes were observed for chains with period 1 µm
(Figure 3). In contrast, at periods ≥ 2 µm, the spectra are very similar to the spectrum of
a single disk and represent broad PL peaks with a maximum position depending on the
disk radius (Figure 2b). At period 1 µm and disk radius ≈ 385 nm, two narrow peaks at
E1 ≈ 827 meV and E2 ≈ 849 meV appear in the PL spectra (Figure 2a, red curve, the data
are given for maximum chain length N = 51). These peaks are present in the spectra of
even very short chains, for example, when the number of resonators in the chain N = 2.
With increasing N, these peaks became narrower and more intensive. At N = 51, the quality
factors of the peaks were 190 (peak at 827 meV) and 340 (peak at 849 meV). These values
were obtained on the basis of PL spectrum fitting by a set of Lorentz functions (Figure S1 in
Supplementary Materials).
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The gap between the narrow peaks depended on the number of disks in the chain, it 
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≈17 meV (E1 ≈ 831 meV and E2 ≈ 848 meV). By increasing the number of disks, the nar-

Figure 2. (a) Micro-PL spectra measured at 77 K on the samples with linear chains of Si disks with
embedded GeSi QDs (red curve, disk radius ≈ 385 nm and period ≈ 1 µm, the number of disks in
the chain N = 51). For comparison, the PL spectra of the non-processed area (gray spectrum) and the
single disk (dark cyan spectrum) are presented. The laser radiation was focused in a spot of ~2 µm.
In the case of the non-processed area, all QDs under the laser beam were excited, while in the case of
a disk chain, only QDs in two disks in the central part of chain were excited. Therefore, the number
of excited QDs in the disk chain is about 3 times less than in the non-processed area. Taking this fact
into account, it was possible to estimate the true ratio (~6 times for the low-energy narrow peak) of
PL signal intensities of the disk chain (red spectrum) and the non-processed area (gray spectrum).
(b) The PL spectra in dependence on the disk radiusat fixed period of a chain, a = 2 µm (at this period
the disks can be considered as isolated).

The gap between the narrow peaks depended on the number of disks in the chain,
it increased with N (Figure 4). At N = 2, the gap between peaks is smallest and consists
of ≈17 meV (E1 ≈ 831 meV and E2 ≈ 848 meV). By increasing the number of disks, the
narrower peak was practically unchanged in its position, while the broader peak slightly
shifted (by ~4 meV) to longer wavelengths. Also, the dependence of the PL peak position
on the radius of the disks was observed. The PL spectra at the period of the chain a = 1 µm
(Figure 3a) showed the blueshift of narrow peaks with decreasing radius.
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The arrows indicate the positions of narrow peaks. (b) Micro-PL spectra depending on the period of
the chain at fixed radius R = 385 nm. The number of disks in the chain N = 51.
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To understand the nature of the observed narrow peaks, we performed simulations
for model structures that represented the linear chains of disk resonators with parameters
corresponding to experimental ones. First, we studied the eigenmodes of the single disk
resonator with radius 385 nm and height 440 nm. In the range 790–870 meV, we have
found many eigenmodes (~60) and made a selection by the value of the quality factor. We
have chosen a two-fold degenerate mode with energy of 831 meV and a quality factor
of 97, an order of magnitude higher than the others. The near-field configuration shown
in Figure 5a indicates that this is the Mie mode with orbital angular momentum m = 3
(magnetic octupole, MO mode). The far-field pattern demonstrated the predominantly
in-plane emission (Figure 5b).
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Figure 5. (a) The near field distribution, calculated for the Mie mode with an orbital angular
momentum m = 3 in a single Si resonator positioned on the SiO2 layer. (b) The cross-section of the far
field radiation pattern for this mode, calculated without SiO2 layer, in the homogeneous medium
approximation. The radius of disks was 385 nm. The refractive index and the extinction coefficient of
silicon and SiO2 were taken according to [54,55].

At the second step, we studied the modes of linear chains with different numbers of
resonators. Special attention is paid to the evolution of the MO mode. Already at N = 2 the
mode splitting occurs and two collective modes were formed (Figure 6). One of the modes,
with larger electric field amplitude in the gap between disks, shifted downward in energy
scale, while the other shifted upward. In the following, we will refer to the former as
the “longitudinal” mode (with a spread electric field along the chain) and the latter as
the “transverse” mode. By increasing N, the splitting between modes increased and after
N = 10 practically did not change. According to the calculation results, with enough long
chains (N ≥ 10) the “longitudinal” mode had energy ≈ 822 meV, while the “transverse”
mode achieved energy ≈ 841 meV, which is in good agreement with the experiment. The
“transverse” mode is characterized by a higher field concentration inside disk than the
“longitudinal” one. This corresponds well to the experimentally revealed difference in
the quality factor of low- and high-energy peaks (Figure 2a). We would like to point out
that the near field configurations of the considered modes (see the wave field pattern in
Figure S3) are very similar to configurations of the true BICs found for infinitely long rods
and cylinders [56–58], namely, the field pattern of our “transverse” mode is similar to one
of the symmetry-protected BIC, while the field pattern of the “longitudinal” mode is close
to one of the accidental BIC studied in these works.
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Figure 6. The left panel shows the calculated spectral positions of “longitudinal” (red symbols) and
“transverse”(blue symbols) modes depending on the number of Si disks in the chain positioned on
SiO2 layer. The right panels demonstrate the near-field distributions for “transverse” (top panels) and
“longitudinal” (bottom panels) modes in the chains of 2 and 5 disks. We show |E| as in Figure 5. The
radius of the disks is 385 nm, and the period is 1 µm. The refractive index and extinction coefficient
of silicon and SiO2 were taken according to [54,55].
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Figure 7 demonstrates the results of calculations of quality factors for “transverse”
and “longitudinal” modes depending on the chain period and on the number of disks in
the chain.
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Figure 7. The dependences of quality factors of “transverse” and “longitudinal” modes (a) on the
chain period and (b) on the number of Si disks in the chain with period 1 µm. The dependence on
the chain period is calculated for N = 11. The radius of disks is 385 nm. The refractive index and
extinction coefficient of silicon and SiO2 were taken according to [54,55].

The dependence of the quality factor on the chain period a (calculated at N = 11)
showed that for the “transverse” mode the optimal period is slightly smaller than experi-
mental value (a = 1 µm) and consisted of 950 nm, while for the “longitudinal” mode it is
equal to 1020 nm. So, the chosen experimental period is very close to optimal one. The
Q dependence on the period calculated for infinite chain is presented in Supplementary
Materials (Figure S4). This dependence demonstrates that the quality factor can reach the
value Q = 7500 at a = 1400 µm, if we turn off the material losses in the SiO2 substrate.

The Q dependence on N (calculated at a = 1 µm) shows that the quality factor of the
“transverse” mode increased with chain length, while the quality factor of the “longitudi-
nal” mode tended to stabilize at 200 after an initial growth. For the “transverse” mode,
the quality factor reached the value of ~1100 at N = 11, demonstrating an almost linear
dependence. Such dependence is preserved up to N = 20, and then the increase in the
quality factor slows down, reaching saturation (Figure S5) near the value ~3000. The exist-
ing studies of the dependence Q(N) carried out on chains of dielectric resonators [44,50]
show the dependence Q~N2 for BIC at Γ-point and Q~N for accidental BIC. However, it is
also shown there that the presence of radiation losses can lead to a weaker dependence on
N [50].

The theoretical consideration of infinite chains can give more detailed physical insights
into the nature of the observed modes, so we have calculated the dependence of Q on
the wave vector kx (along the chain line) and dispersion dependence of radiation losses
γ = Im[ω(kx)] for the “transverse” and the “longitudinal” modes in the infinite chain of Si
disks (Figure 8a,b). These dependences demonstrated the growth of Q near the Γ-point for
the “transverse” mode and the presence of Q maximum out of the Γ-point (at kx =0.36π/a)
for the “longitudinal” mode. This behavior indicated that these modes can be considered
as candidates for BICs, but the non-zero radiation losses at maximum Q points do not allow
them to be so classified.

We think that the main reason of finite Q values is that the dispersion branches are
located in regions with one and two open diffraction channels (Figure 9). The leakage into
the 2nd diffraction continuum can leads to a significant decrease of Q factors [50,59].

In the experiments we have obtained a lower value Q = 340 than predicted theoretically,
which could be for several reasons. The first possible reason was of some imperfections in
the experimental structures, which could have led to additional radiation losses. However,
we think that this is not the main reason. The second, main reason in our opinion, is
the absorption on free charge carriers excited by laser pumping during the micro-PL
measurements. At given sizes of disks the excitation, already at low pump powers, could
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have led to a significant concentration of charge carriers in the disk, since the “diffusive
escaping” is problematic. In general, this could even have caused the overheating of the
sample. In our experiments, we controlled the power of pumping to avoid the displacement
of PL peaks to the long-wavelength region due to overheating of the sample.
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Figure 8. The dependences of quality factors (a) and radiation losses γ = Im[ω(kx)] (b) on the
wave vector kx (along the chain line) calculated for the “transverse” and the “longitudinal” modes
in the infinite chains of Si disks. The radius of the disks was 385 nm, and the period was 1 µm.
Calculations were done without substrate, and the refractive index of the surroundings was taken
as n = 1. The refractive index and extinction coefficient of silicon were taken according to [54]. The
results of calculations performed for the disk chains positioned on SiO2 substrate are presented in the
Supplementary Materials (Figure S6).
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Figure 9. Diagram showing the number of open diffraction channels, Λ, depending on the frequency
ω and the wave vector kx. Blue and red curves show the dispersion dependences for the “transverse”
and the “longitudinal” modes, respectively, in infinite chains of Si disks. The radius of disks is
385 nm, and the period is 1 µm. The calculations were done without substrate, the refractive index of
surroundings was taken as n = 1. The refractive index and extinction coefficient of silicon are taken
according to [54].

The most interesting result of our theoretical study is the change of the far-field pattern
with increasing length of the disk chain. The typical far-field distribution for magnetic
octupole mode is shown in Figure 5b. Such a far-field pattern is very suitable for use
in planar device structures, but for up-emission light sources it is major disadvantage.
However, in our structures, as the number of disks in the chain increased, the far-field
distribution changed (Figure 10). For both modes, it is clearly seen that the probability of
up-emission increased even for a two-disk chain (Figure 10b,d). For the “transverse” mode,



Photonics 2023, 10, 1248 9 of 14

at N = 3, the angle distribution of emission is broader than that for the “longitudinal” mode
(Figure 10f).
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To explain the obtained result, one can assume that at the formation of the collective
state another mode with high out-of-plane emission was mixed with the main octupole
mode. This assumption can be verified by analysis of the mode composition for the case
of the infinite disk chain. To make the calculations as close as possible to our experiment,
we placed inside each disk a point dipole, and considered all possible orientations of this
dipole (the X-dipole is oriented along the chain, the Y-dipole is transverse to the chain line
orientation, and the Z-dipole is oriented along the vertical axis of the disk).

It turned out that Z-dipole predominantly excited the “longitudinal” collective mode
in the chain. The up-emission intensity spectrum of Z-dipole is shown in Figure S7. There
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is only one intensive peak at λ ≈ 1.506 µm (E ≈ 823 meV), which corresponds to our
“longitudinal” mode. In Figure 11, the near-field distribution for this mode is shown. We
have plotted separately the Ex, Ey, Ez components distribution in XY, XZ, YZ-sections. It
is clearly seen that the collective “longitudinal” mode is a superposition of the TM mode
(magnetic octupole) and the two TE modes (dipole and quadrupole modes).

Photonics 2023, 10, x FOR PEER REVIEW 10 of 14 
 

 

Figure 10. The left panels (a,c,e,g) show the near-field distributions calculated for the “longitudi-
nal” (a,e)” and transverse” (c,g) modes in the model structures corresponding to the experimental 
chains of resonators with N = 2, 3 positioned on SiO2 layer. The right panels (b,d,f,h) show the 
corresponding cross-sections of the far-field radiation pattern, calculated without SiO2 layer, in the 
homogeneous medium approximation. The radius of the disks is 385 nm, and the period of the 
chains is 1 μm. The refractive index and extinction coefficient of silicon and SiO2 were taken ac-
cording to [54,55]. 

To explain the obtained result, one can assume that at the formation of the collective 
state another mode with high out-of-plane emission was mixed with the main octupole 
mode. This assumption can be verified by analysis of the mode composition for the case 
of the infinite disk chain. To make the calculations as close as possible to our experiment, 
we placed inside each disk a point dipole, and considered all possible orientations of this 
dipole (the X-dipole is oriented along the chain, the Y-dipole is transverse to the chain 
line orientation, and the Z-dipole is oriented along the vertical axis of the disk). 

It turned out that Z-dipole predominantly excited the “longitudinal” collective 
mode in the chain. The up-emission intensity spectrum of Z-dipole is shown in Figure S7. 
There is only one intensive peak at λ ≈ 1.506 μm (E ≈ 823 meV), which corresponds to our 
“longitudinal” mode. In Figure 11, the near-field distribution for this mode is shown. We 
have plotted separately the Ex, Ey, Ez components distribution in XY, XZ, YZ-sections. It is 
clearly seen that the collective “longitudinal” mode is a superposition of the TM mode 
(magnetic octupole) and the two TE modes (dipole and quadrupole modes). 

 
Figure 11. The near-field distributions calculated at λ = 1.506 (E ≈ 823 meV) μm for the infinite chain 
of resonators with embedded Z-dipoles. The radius of disks was 385 nm, the period of the chain is 1 
μm, and the height H = 440 nm. The Z-dipole was placed at a depth of 150 nm from the top plane of 
the disk. In XY-plane, this dipole was positioned on the Y-axis at a distance 2R/3 from the sym-
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Figure 11. The near-field distributions calculated at λ = 1.506 (E ≈ 823 meV) µm for the infinite chain
of resonators with embedded Z-dipoles. The radius of disks was 385 nm, the period of the chain
is 1 µm, and the height H = 440 nm. The Z-dipole was placed at a depth of 150 nm from the top
plane of the disk. In XY-plane, this dipole was positioned on the Y-axis at a distance 2R/3 from
the symmetry axis of the disk. The dashed lines show the positions of the XY- and XZ-sections.
The panels (a,d,g) are related to the Ex component. The panels (b,e,h)—Ey component. The panels
(c,f,i)—the Ez component. The refractive index and extinction coefficient of silicon and SiO2 were
taken according to [54,55].

The X-dipole predominantly excited the “transverse” collective mode in the chain.
The up-emission spectra of the X-dipole is shown in Figure S67. These spectra were richer
in peaks than the Z-dipole spectra, but there was only one intensive peak in the range of
interest to us, at λ≈ 1.488 µm (E ≈ 833 meV), which corresponded to our “transverse” mode.
In Figure 12, the near-field distribution for this mode is shown. It is clearly seen that the
collective “transverse” mode is also a superposition of TM mode (magnetic octupole) and
two TE modes (dipole and quadrupole modes). The principal difference of the “transverse”
collective mode case is another orientation of admixed dipole mode relative to the chain
line. For the “transverse” collective mode, the admixed dipole mode was oriented along
Y-axis, while for “longitudinal” collective mode the dipole mode was oriented along the
chain line.
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Thus, one can conclude that the intensive up-emission is provided by an appearance of 
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Figure 12. The near-field distributions calculated at λ = 1.488 µm (E ≈ 833 meV) for the infinite
chain of resonators with embedded X-dipoles. The radius of the disks is 385 nm, the period of the
chain is 1 µm, and the height H = 440 nm. The X-dipole is placed at a depth of 150 nm from the top
plane of the disk. In XY-plane, this dipole is positioned on the Y-axis at a distance of 2R/3 from
the symmetry axis of the disk. The dashed lines show the positions of the XY- and XZ-sections.
The panels (a,d,g) are related to the Ex component. The panels (b,e,h)—Ey component. The panels
(c,f,i)—Ez component.

It should be noted that the analysis of the mode composition in the case of a single disk
resonator demonstrates the presence of an admixture of the quadrupole mode (Figure S8).
But the dipole mode is added only in the case of the linear chain of disks. Thus, one can
conclude that the intensive up-emission is provided by an appearance of the dipole mode
admixture.

4. Conclusions

As a result of this study, it was obtained that for structures with linear chains of Si disks
on a SiO2 substrate it is possible to select such parameters (disk radius, period, and length
of the chain), which ensure the existence of high-quality collective modes. These modes
are distant relatives of the BIC states found for infinitely long rods in [56–58]. Embedding
quantum dots in such disk chains led to multiple amplification of the QD emission due to
interaction with these collective modes. The change of the far-field radiation pattern from
in-plane to out-of-plane emission is found with increasing length of the disk chain. The
result is explained by the appearance of the dipole mode admixture.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/photonics10111248/s1, Figure S1: The fitting of micro-PL spectra by
a set of Lorentz functions; Figure S2: The dependence of PL peak intensity on the number of Si disks
in the chain; Figure S3: The wave field pattern calculated for the “longitudinal” and “transverse”
modes; Figure S4: The dependences of quality factors of “transverse” mode on the period of the
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infinite chain; Figure S5: The dependences of quality factors on the number of disks calculated for
“transverse” and “longitudinal” modes in the chains of Si disks positioned on SiO2. Figure S6: The
dependences of losses γ = Im[ω(kx)] on the wave vector kx (along the chain line) calculated for
“transverse” and “longitudinal” modes in the infinite chains of Si disks. Figure S7: The calculated
up−emission intensity spectra for infinite linear chains of silicon disk resonators with embedded
point dipoles. Figure S8: The near field distributions for eigenmode at λ = 1.493 µm (≈830 meV) for
an isolated Si disk.
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