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Abstract: We analyze the tight focusing of a generalized Poincaré beam using a Richards–Wolf for-
malism. Conventional Poincaré beams are superpositions of two Laguerre–Gaussian beams with 
orthogonal polarization, while the generalized Poincaré beams are composed of two arbitrary opti-
cal vortices with rotationally symmetric amplitudes. Analytical relationships for projections of the 
electric field in the focal plane are derived. Using the superposition of a right-handed circularly 
polarized plane wave and an optical vortex with a topological charge of −1 as an example, relation-
ships for the intensity distribution and the longitudinal projection of the spin angular momentum 
vector are deduced. It is theoretically and numerically shown that the original beam has a topolog-
ical charge of –1/2 and a C-point of circular polarization, and it is generated at the focal plane center, 
producing an on-axis C-line with a singularity index of –1/2 (a star). Furthermore, when making a 
full circle of some radius around the optical axis, the major axis vector of polarization ellipse is 
theoretically and numerically shown to form a one-sided polarization (Möbius) strip of order −3/2, 
which has three half-twists and a single ‘patching’ in which two oppositely directed vectors of the 
major axis of polarization ellipse occur close to each other. 

Keywords: polarization Möbius strip; generalized Poincaré beam; tight focusing of light;  
Richards–Wolf formulae; spin angular momentum; polarization singularity index 
 

1. Introduction 
On-axis superposition of a left-handed circularly polarized Gaussian beam and a 

right-handed circularly polarized Laguerre–Gaussian beam with azimuthal number 1 and 
radial number 0 has been theoretically shown to produce polarization Möbius strips [1]. 
In this case, a C-line is generated on the superposition of the optical axis. If the LG beam 
has a minor tilt with respect to the optical axis, when making a circle around the C-point 
(of circular polarization), the vector of the major axis of polarization ellipse forms a Mö-
bius strip with the number of half-twists increasing with the increasing radius of the circle. 
A polarization Möbius strip has been experimentally observed [2] at the tight focus of the 
superposition described in Ref. [1]. It was shown that, for an LG beam with the azimuthal 
number –1, a polarization Möbius strip formed at the focus around the central C-point 
with the vector of the major axis of polarization ellipse making three half-twists thanks to 
the C-point polarization singularity index being –3/2. In addition to the two seminal 
works we mentioned above, there have been many similar works concerned with polari-
zation Möbius strips. For instance, polarization Möbius strips have been revealed to form 
in paraxial laser vector beams [3–6]. In particular, it has been shown [6] that when making 
a circle around a C-point with an integer polarization index, the vector of major/minor 
axis of polarization ellipse forms a two-sided twisted ribbon with an even number of half-
twists. Polarization Möbius strips generated in converging vector beams have also been 
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described [7–11]. At the focal plane of a linearly polarized Gaussian beam, circularly po-
larized C-points have been found to occur not on but off the optical axis [7]. It has been 
numerically and experimentally shown that the vector of the major axis of polarization 
ellipse forms a single half-twist Möbius strip (with the singularity index of +1/2 or –1/2). 
Approaches for generating exotic Möbius strips at the focus have been numerically simu-
lated [8]. Polarization Möbius strips at the focus of linearly polarized trigonometric beams 
have been discussed [11] and shown to also have off-axis C-points around which a Möbius 
strip is generated by the polarization vector. 

It should be noted that, in the above-mentioned works, neither analytical relation-
ships to describe components of the electric field at the focus nor a theoretical explanation 
of why the polarization Möbius strip was generated at the focus were described. In this 
work, based on a Richards–Wolf formalism [12], we derive analytical relationships that 
can be looked upon as an explanation of the experiment described in Ref. [2]. 

2. Generalized Poincaré Beams at the Tight Focus 
A source field in the form of a generalized Poincaré beam [2,13] is described by the 

Jones vector given by the following: 

( ) ( ) ( )1 1
, ,in imA e A e

i i
ϕ ϕ   

θ ϕ = α θ + β θ   −   
E  (1)

where α and β are complex constants, A(θ) is the radially symmetric amplitude of the two 
optical vortices (e.g., a Gauss function), θ is the angle between the optical axis and a 
straight line connecting a point on the original spherical wavefront with the focal plane 
center, n and m are topological charges of the right- and left-handed circularly polarized 
optical vortices, respectively, and φ is the azimuthal angle at the beam cross-section. 

The Poincaré beams are coaxial superpositions of two Laguerre–Gaussian beams 
with different topological charges and with orthogonal polarization states [2,13]. In the 
current work, by the generalized Poincaré beams (1), we describe a coaxial superposition 
of two orthogonally polarized optical vortices with different topological charges and with 
a rotationally symmetric amplitude that can be described by an arbitrary real-valued func-
tion A(θ) depending on the radial coordinate r = f cos θ. 

Using formulae from [14], projections of the electric field in the focal plane can be 
written as follows: 

( ) ( )
( ) ( )

1 2 1 2
0, 2, 2 0, 2, 2

2 2
0, 2, 2 0, 2, 2

( 1) ( 1)
1, 1 1, 1

,

,

2 2 .

n in i m im i
x n n m m

n in i m im i
y n n m m

n i n m i m
z n m

E i e I e I i e I e I

E i e I e I i e I e I

E i e I i e I

− ϕ ϕ − ϕ − ϕ
+ −

ϕ ϕ ϕ − ϕ
+ −

+ ϕ − ϕ
+ −

= α + + β +

= α − + β − +

= − α + β

 (2)

Equation (2) contains functions Iµ,ν that depend on the radial variable r and the lon-
gitudinal coordinate z: 

( ) ( ) ( )1 3 1/2 cos
,

0

2 sin cos cos sin ,
2 2

ikzI kf A e J kr d
α

ν+ −ν θ
ν μ μ

θ θ   = θ θ θ θ   
     (3)

where k = 2π/λ is the wave number of light of wavelength λ, f is the focal length of a 
focusing lens, α is the maximum angle of the ray tilt to the optical axis, which defines the 
aplanatic lens NA: NA = sin α, and Jν(ξ) is the Bessel function of the ν-th order and first 
kind. 

As was the case in Refs. [1,2], in superposition (1), we put n = 0, m = –1, and α = β = 1. 
Then, Equation (1) is rearranged to the following: 
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( ) ( ) ( ) ( ) / 2

cos
1 1 2

, 2 .
sin

2

i iA A e A e
i i

− ϕ − ϕ

 ϕ  
        θ ϕ = θ + θ = θ     − ϕ     −  

  

E  (4)

From (4), the topological charge of the original beam is seen to equal –1/2, with the 
polarization singularity of field (4) also being equal to –1/2. Actually, in the cross-section 
of field (4), linear polarization is inhomogeneous and has a polarization singularity line at 
φ = 0, which is a line (horizontal semi-axis) where polarization is indefinite, as at angles 
slightly larger than φ = 0, polarization is horizontally directed to the right, whereas at 
angles slightly less than 2π, polarization is horizontally directed to the left. After making 
a full circle centered on the beam center, the linear polarization vector rotates clockwise 
by π, meaning that for field (4), the polarization singularity index is I = –1/2. In the mean-
time, as field (4) propagates, a C-point of circular polarization is formed at the center. 

For field (4), instead of Equation (2), the electric field projections in the plane of tight 
focus reads as follows: 

( ) ( )
( ) ( )

2 2
0,0 2,2 0,1 2,3

2 2
0,0 2,2 0,1 2,3

2
1,1 1,2

,

,

2 2 .

i i i
x

i i i
y

i i
z

E i I e I e I e I

E I e I ie I e I

E e I ie I

ϕ − ϕ − ϕ

ϕ − ϕ − ϕ

ϕ − ϕ

= − + + +

= − − −

= − −

 (5)

From (5), the on-axis electric field projections (r = 0) are seen to take the form: 

0,0 0,1
0,0 0,1

0,0 0,1

( 0) 1 1
.

( 0)

i
x i

i
x

iI e IE r
iI e I

E r i iI ie I

− ϕ
− ϕ

− ϕ

 − +→     
 ≈ = − +      → −−       

 (6)

At the center of the focal plane, there is a C-point of right-handed circular polariza-
tion. As seen from Equation (6), the polarization singularity index near the C-point equals 
I = –1/2 (star-type), as for the initial field (4). 

From (5), the intensity of the on-axis field projection in the focal plane is as follows: 

( )2 2 2
1,1 1,2 1,1 1,24 2 sin 3z zI E I I I I= = + + ϕ  (7)

With the intensity dependent on the triple azimuthal angle, when making a full circle 
of some radius around the optical axis, three maxima are found on the circle: at angles φ 
= π/6, 5π/6, and 3π/2, with the intensity pattern in the form of three intensity spots cen-
tered on the maxima. Relationships to describe transverse intensity projections are more 
complex: 

( ) (
) ( )

( ) (
)

2 2 2 2 2
0,0 2,2 0,1 2,3 0,0 0,1 0,0 2,2

0,1 2,3 0,0 2,3 0,1 2,2 2,2 2,3

2 2 2 2 2
0,0 2,2 0,1 2,3 0,0 0,1 0,0 2,2

0,1 2,3 0,0 2,3 0,1 2

2 sin 2 cos 2

2 sin 3 2 sin 5 ,

2 sin 2 cos 2

2 sin 3

x x

y y

I E I I I I I I I I

I I I I I I I I

I E I I I I I I I I

I I I I I I

= = + + + + ϕ + ϕ +

+ + ϕ + + ϕ

= = + + + − ϕ − ϕ +

+ + ϕ +( ),2 2,2 2,32 sin 5 .I I− ϕ

 (8)

It has been shown [15] that a major contribution to the field energy comes from the 
Iν,µ component with zero first index (I0,µ). With the contribution from the components I1,µ 
being essentially less and from I2,µ being even lesser, in (8), we retain only terms containing 
I0,µ. Thus, relationships depicted in (8) are approximately given by the following: 

2 2
0,0 0,1 0,0 0,1

2 2
0,0 0,1 0,0 0,1

2 sin ,

2 sin .
x

y

I I I I I

I I I I I

≈ + + ϕ

≈ + − ϕ
 (9)
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From (9), the intensity Ix is seen to have a single maximum lying on the vertical axis 
in the upper semi-plane with the intensity Iy also having a single maximum lying on the 
vertical axis but in the lower semi-plane. Such an intensity pattern is in agreement with 
that derived experimentally [2]. 

Next, we find the longitudinal projection of the spin angular momentum (SAM) vec-
tor, ( )*Im= ×S E E , in the focal plane for original field (4): 

( ) ( )2 2 2 2
0,0 2,3 0,1 2,2 0,0 2,3 0,1 2,22 4 sin 3 .zS I I I I I I I I= + − − + ϕ −  (10)

The longitudinal SAM component distribution in (10) is seen to be similar to the lon-
gitudinal intensity distribution in (7), as both relationships contain the sine function of the 
triple azimuthal angle. Hence, similar to the intensity in (7), the SAM distribution in (10) 
has three maxima lying at angles φ = π/6, 5π/6, and 3π/2. Meanwhile, minimal SAM val-
ues are found at angles φ = π/2, 7π/6, and –π/6. At points where the longitudinal SAM 
component has a near-zero minimal value, the polarization ellipse is almost perpendicular 
to the focal plane. Below, we show that it is approximately at those points (or, putting it 
more exactly, at those angles) where twists of a polarization Möbius strip occur, which is 
generated by the major/minor axis of the polarization ellipse when moving along a certain 
circle centered on the on-axis C-point. 

3. Polarization Ellipse at the Focus of a Generalized Poincaré Beam 
The location of the major/minor axis of the polarization ellipse in the focal plane can 

be derived using the Berry formulae [16], which enable the polarization singularity index 
to be calculated for arbitrary vector fields. Following the said formulae, the electric field 
vector E can be expressed via real vectors A and B that are extended along the major and 
minor axes of the polarization vector at a given point of space: 

( )

( )

( )
( )

2 2

* *

* *

*

( ), ,

0, ,
1 arg ,
2

1 Re ,

1 Im ,

Im 2( ).

ie i Iγ= + = +

= ≥

γ =

=

=

= × = ×

E A B A B
A B A B

E E

A E E E
E E

B E E E
E E

S E E A B











 (11)

In Equation (11),   denotes a dot product of vectors, ×  is a cross product, Re and 
Im are the real and imaginary parts of the number, S simultaneously defines the SAM 
vector and the normal vector to the polarization ellipse plane formed by the vectors A and 
B, and I is the intensity expressed via projections of the vectors of the polarization ellipse 
axes. Separating in field (5) the real and imaginary parts, projections of the vectors A and 
B are given by the following: 
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3 /2

0,0 2,2 0,1 2,3

0,0 2,2 0,1 2,3

1,1 1,2

( ),
3 7 3sin sin cos cos ,
2 2 2 2
3 7 3cos cos sin sin ,
2 2 2 2
52 cos 2 sin ,
2 2

i

x

y

z

x

e i

A I I I I

A I I I I

A I I

B I

− ϕ= +
ϕ ϕ ϕ ϕ       = + + +       

       
ϕ ϕ ϕ ϕ       = − + +       

       
ϕ ϕ   = − −   

   

= −

E A B

0,0 2,2 0,1 2,3

0,0 2,2 0,1 2,3

1,1 1,2

3 7 3cos cos sin sin ,
2 2 2 2

3 7 3sin sin cos cos ,
2 2 2 2
52 sin 2 cos .
2 2

y

z

I I I

B I I I I

B I I

ϕ ϕ ϕ ϕ       − + −       
       
ϕ ϕ ϕ ϕ       = − − +       

       
ϕ ϕ   = − −   

   

 
(12)

The vectors in Equation (12) lie on the polarization ellipse but are not mutually or-
thogonal. However, by taking into account just the highest contributing terms, the vectors 
A and B in (12) can be considered approximately orthogonal and expressed as follows: 

0,0 0,1

0,0 0,1

1,1 1,2

0,0 0,1

0,0 0,1

1,1

3sin cos ,
2 2
3cos sin ,
2 2
52 cos 2 sin 0,
2 2

3cos sin ,
2 2

3sin cos ,
2 2
52 sin

x

y

z

x

y

z

A I I

A I I

A I I

B I I

B I I

B I

ϕ ϕ   ≈ +   
   

ϕ ϕ   ≈ +   
   

ϕ ϕ   = − − ≈   
   

ϕ ϕ   ≈ − +   
   
ϕ ϕ   ≈ −   

   
ϕ= − 1,22 cos 0.
2 2

I ϕ   − ≈   
   

 (13)

Near the optical axis, the second terms are negligibly small compared to the first ones 
and can be dropped; thus, the components of the vector A can be read as follows: 

0,0

0,0

3( 1) sin ,
2
3( 1) cos ,
2

( 1) 0.

x

y

z

A kr I

A kr I

A kr

ϕ ≈  
 

ϕ ≈  
 

≈







 (14)

Expressions depicted in (14) are easy to analyze. We have already shown that a C-
point with index I = –1/2 is generated near the optical axis. From (14), one can infer that, 
at some distance from the focal spot center, the tip of the vector A makes not one but three 
half-twists by angle π. Hence, at a distance from the center, the polarization singularity 
index of the focal field equals I = –3/2. Actually, the vector A is directed vertically upwards 
at φ = 0, vertically downwards at φ = 2π/3, again vertically upwards at φ = 4π/3, and again 
vertically downwards at φ = 2π. We note that, in Ref. [2], the polarization singularity index 
at the focus also had a negative value (I = −1/2). The fact is that the intensity patterns in 
this work and in Ref. [2] are mutually rotated by π. Thus, Equation (14) suggests that when 
moving in the focal plane along a circle centered on the optical axis the polarization el-
lipse’ vector A generates a one-sided, Möbius strip-type surface with the half-twists oc-
curring at angles φ = π/3, π, and 5π/3, with a ‘patch’ line (where two oppositely directed 
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vectors A meet) found at φ = 0, 2π. It is worth noting that the Möbius strip described 
herein is different from that discussed in Ref. [2], being rotated by π/2. For the Möbius 
strip, the polarization index is assumed to be positive if moving clockwise on a circle, 
leading to the Möbius strip twisting clockwise as well. By analogy, the index is negative 
if moving on a circle anticlockwise (as shown in Figure 1), and the Möbius strip is also 
twisted anticlockwise. 

(a) 

 
(b) 

 
(c) 

Figure 1. Intensity pattern in the focal plane from the original field (4) forms a colored (yellow-red) 
triangle with a downward apex (a); arrows within the polarization ellipses mark the major axis vec-
tors: red ellipses have a positive projection on the optical axis and blue ones have a negative projec-
tion. A white horizontal line in the bottom is 1 uµm long. A white dashed circle is where a polariza-
tion Möbius strip with three half-twists and index –3/2 is generated. The polarizing Möbius strip 
has three half-turns and an index of −3/2. It is deposed along the white dotted circle (b). The gray 
dotted circle of smaller radius passes through the polarization ellipses, which make one half turn 
and one stitch. Therefore, the polarizing Möbius strip on this small circle (c) has an index of −1/2. 
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4. Two-Sided Polarization Strips with an Even Number of Half-Twists 
Putting n = 0 and m = –2 in Equation (1) for the generalized Poincaré beam, the initial 

field in (4) is replaced by the following: 

( ) ( ) ( ) ( ) ( )
( )

2 cos1 1
, 2 .

sin
i iA A e A e

i i
− ϕ − ϕ

ϕ    
θ ϕ = θ + θ = θ       − − ϕ     

E  (15)

Field (15) has a topological charge of –1, describing an optical vortex with cylindrical 
polarization, which is a modification of radial polarization with its linear polarization vec-
tors lying along hyperbolas. When making a full circle around the optical axis, the linear 
polarization vector in Equation (15) makes two half-twists meaning that the polarization 
singularity index equals I= –1. On the optical axis, there is a V-point polarization singu-
larity where linear polarization is indefinite. Thus, in the focal plane, field (15) has the 
following projections of the electric field: 

( ) ( )
( ) ( )

2 2 2
0,0 2,2 0,2 2,4

2 2 2
0,0 2,2 0,2 2,4

3
1,1 1,3

,

,

2 2 .

i i i
x

i i i
y

i i
z

E i I e I ie I e I

E I e I e I e I

E e I e I

ϕ − ϕ − ϕ

ϕ − ϕ − ϕ

ϕ − ϕ

= − + + +

= − + −

= − +

 (16)

Similarly to Equation (6), Equation (16) allows obtaining an expression for transverse 
components of the field (15) near the optical axis: 

2
0,0 0,2 2

0,0 0,22
0,0 0,2

( 0) 1 1
.

( 0)

i
x i

i
x

iI ie IE r
iI ie I

E r i iI e I

− ϕ
− ϕ

− ϕ

 − +→     
 ≈ = − +      → −+       

 (16.1)

From (16.1), it can be seen that there is a C-point of right-handed circular polarization 
with the same polarization singularity index as in the original field: I = –1. 

For field (15), the longitudinal spin density in the focal plane reads as follows: 

( ) ( )2 2 2 2
0,0 2,4 0,2 2,2 0,0 2,4 0,2 2,22 4 cos 4 .zS I I I I I I I I= + − − + ϕ −  (17)

The longitudinal intensity distribution in the focal plane reads as follows: 

( )2 2 2
1,1 1,3 1,1 1,24 2 cos 4 .z zI E I I I I= = + − ϕ  (18)

Unlike Equations (7) and (10), it is seen from (17) and (18) that the patterns of intensity 
and longitudinal spin are in the form of a square and not a triangle because both the in-
tensity and SAM depend on the azimuthal angle multiplied by four. 

In view of Equation (14), near-axis projections of the major axis of polarization ellipse 
can be approximately deduced from (18) as follows: 

0,0 0,2

0,0

cos(2 ) ,
sin(2 ),

0.

x

y

z

A I I
A I
A

≈ ϕ −
≈ − ϕ

≈

 (19)

From (19), it can be seen that the polarization ellipse major axis vector is predomi-
nantly directed downwards in the right upper quadrant, upwards in the left upper quad-
rant, downwards in the left bottom quadrant, and upwards in the right bottom quadrant. 
Thus, when making a circle around the central C-point, the ellipse axis vector makes four 
half-twists, with the polarization singularity index being I = –2. 

5. Numerical Modeling 
Figure 1 depicts an intensity pattern in the focal plane generated by beam (4), putting 

A(θ) = 1, a focusing lens with NA = 0.95, and a 532 nm wavelength. The intensity was 
calculated using Richards–Wolf integrals [3]. From Figure 1, the intensity is seen to form 



Photonics 2024, 11, 430 8 of 14 
 

 

a triangle with the apex directed downwards, unlike the upwards intensity triangle de-
scribed in [2]. The polarization states are depicted as ellipses with the major axis denoted 
by arrows. Red polarization ellipses have a positive z-component of the major axis, 
whereas blue ellipses have a negative z-component of the major axis, with z denoting the 
optical axis. An analysis of ellipses located on a circle marked as a white dashed line in 
Figure 1 shows that the major axis vector of polarization ellipse is directed downwards in 
the upper right quarter of the circle, upwards in the bottom right quarter, downwards in 
the bottom left quarter, and upwards in the upper left quarter. Hence, when making a 
circle around the optical axis, the major axis vector of polarization ellipse can be said to 
generate a Möbius strip (I = –3/2) with three half-twists at approximate angles of φ = π/6, 
3π/2, and 5π/6 and a ‘patch’ (where two oppositely directed vectors of the polarization 
ellipse major axis meet) at φ = π/2. We note that the Möbius strip in Figure 1 is rotated by 
π/2 relative to the theoretical strip calculated using the approximate relation (14). We also 
note that, when making a circle around the C-point, the polarization ellipses located close 
to the center are located on three hyperbolas and make just one half-twist, proving that 
the polarization singularity of the C-point actually equals I = –1/2. A polarizing Möbius 
strip on a circle in the form of a white dashed line is shown in Figure 1. It has three half-
turns and one stitch at the top, and the index I = −3/2. We also show a polarizing Möbius 
strip on a circle of smaller radius (gray dotted circle) (Figure 1c). It has one half-turn and 
one stitch at the bottom, and the index I = −1/2. 

Assuming that the Poincaré beam in Equation (1) has topological charges (n, m) = (0, 
–2), we find that the intensity pattern at the focus forms a square (a yellow-red area in 
Figure 2) with the central C-point with the polarization singularity index I = –2. Thus, 
when making a full circle of certain radius around the C-point (white dashed line in Figure 
2), the major axis of polarization ellipse will make four half-twists. The index sign is neg-
ative because when making a circle anticlockwise, the half-twisted surface also twists an-
ticlockwise. In Figure 2, polarization ellipses on the white circle are directed downwards 
in the upper right quadrant, upwards in the upper left quadrant, downwards in the bot-
tom left quadrant, and upwards in the bottom right quadrant. Thus, Figure 2 validates the 
relationship in Equation (19). In a three-dimensional space, the major axis vector of polar-
ization ellipse forms a strip with an even number of half-twists (two half-twisted and two 
patches). Unlike the Möbius strip (Figure 1), the said strip is two-sided (because of the 
even number of patches), receiving the name ‘twisted ribbon’ [4]. We note that, when mak-
ing a full circle around the C-point inside the intensity square, the polarization ellipses 
make just two half-twists, proving that the polarization singularity index of the C-point 
actually equals I = –1. 

Interestingly, in Figures 1 and 2, we find separate subwavelength regions containing 
different-colored polarization ellipses. We recall that red ellipses have a positive tilt rela-
tive to the optical axis, while blue ellipses are tilted negatively. The red ellipses denote a 
positive longitudinal SAM, and the blue ellipses mark negative longitudinal SAM. Be-
cause of this, at the focus of both light fields in Equations (4) and (15), a longitudinal op-
tical spin Hall effect occurs, according to which regions with different-signed longitudinal 
spins are spatially separated [17,18]. 
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Figure 2. Intensity pattern at the focus for the original field (1) at n = 0, m = –2 forms a colored 
(yellow-red) square; green arrows mark the major axis vector of polarization ellipses: red ellipses 
mark a positive on-axis projection and blue ones mark a negative one. The white horizontal line is 
1 um long. The white dashed circle is where a two-sided half-twisted ribbon with four half-twists 
and index –2 is generated. 

6. Discussion of the Results 
In this section, we make a detailed comparison of the obtained results with the results 

of a similar recently published paper [19]. The work [19] does not contain a detailed ana-
lytical theory for describing the properties of the intensity, spin and orbital angular mo-
mentum, and polarization ellipses in the tight focus. Instead, these characteristics have 
been only computed numerically. This is the principal difference of our work from the 
work [19]. The work [19] gives Cartesian components of the intensity distribution (Figure 
5 in [19]) in the tight focus of hybrid Poincaré beams from Equation (1) with the vortex 
topological charges m = 0, n = –1 and m = 1, n = 0. They form in the tight focus a triangular 
intensity distribution, which has in its center a C-point of polarization singularity with the 
index I = –1/2. In this case, the patterns of polarization ellipses in the focus are the same as 
that in the initial plane, if m = 1, n = 0, or is rotated by 180 degrees compared to the initial 
ellipses pattern if m = 0, n = –1. The numerical aperture in [19] is equal to NA = 0.95, similar 
to our work, but the wavelength of light was not given in [19]. In our work, the wavelength 
is 532 nm, and therefore, the frame size in Figures 1 and 2 slightly exceeds 1 µm. In [19], 
however, a similar intensity frame has the size (Figure 5 in [19]) of 0.5 µm. This causes 
doubts since the focal spot in [19] (Figure 5) turns out to be smaller than the wavelength 
(equal approximately to 0.5:3 = 0.17 µm). 

In addition, these two works are different since the patterns with polarization ellipses 
are significantly different. In work [19], the ellipses pattern in the focus was probably not 
computed since it is quite the same as that in the initial plane (Figures 2, 3 and 5–7 in [19]). 
In our work, the ellipses pattern was exactly computed, and it is, therefore, highly diverse 
(Figure 1). In addition to the polarization ellipses themselves in Figure 1, arrows illustrate 
the directions of the ellipses’ major axes in the same moment of time. Thus, turns of the 
ellipse arrows indicate half-turns of the Möbius stripe. In addition, ellipse colors in Figure 
1 show the tilts of the ellipses along the optical axis (red ellipses) and opposite to the op-
tical axis (blue ellipses). Therefore, Figure 1 practically depicts the 3D distribution of the 
polarization ellipses, and constructing only the Möbius stripe is already redundant. Anal-
ysis of the polarization ellipse pattern in Figure 1 reveals that, with an increasing radius 
of a circle around the center of the focus, the number of π-turns of the polarization ellipse’s 
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major axis also increases. Along the dashed line in Figure 1, the vector of major polariza-
tion axis rotates by the angle 3π, i.e., the polarization singularity index is I = −3/2, and the 
Möbius stripe makes three half-turns on this radius, and one stitching of oppositely di-
rected vectors of the polarization ellipses’ major axes occurs. Furthermore, contrary to 
work [19], Figure 2 of our work demonstrates a case when the topological charges of the 
optical vortices of the Poincaré beam (1) are chosen to be equal to (n, m) = (0, –2). In this 
case, a C-point with an integer polarization singularity index I = –1 is generated in the 
focus, and, instead of the Möbius stripe, the vectors of polarization ellipses’ major axes 
form a two-sided surface with an even number of half-turns (along a dashed circle in Fig-
ure 2). 

In the current work, we show theoretically that near the optical axis in the focus 
plane, polarization indices of the C-points are the same as in the initial plane (Equations 
(6) and (16.1)). We also show theoretically that the vectors of polarization ellipses in the 
focus make three half-turns (14) and four half-turns (19) for the two considered initial 
fields (4) and (15). In [19], polarization ellipses in the focus are just the same as polarization 
ellipses in the initial plane except for rotation of 180 degrees (Figures 2, 3 and 5–7 in [19]). 

In Figures 2, 3 and 5–7 in [19], polarization ellipses show that there are points with 
circular and elliptic polarization in the initial plane, but it is possible only for definite val-
ues B1, B2, and θ0 in Equation (1) in [19], i.e., for definite states on the Poincaré sphere. 
However, the parameters, for which these polarization ellipses are constructed, are not 
specified in the paper [19]. In our work, initial states of the Poincaré beams (4) and (15) 
are chosen with such parameters that the field in the initial plane has inhomogeneous 
linear polarization, while in the beam center, there is a polarization singularity line at φ = 
0 for the field (4) and V-point of polarization singularity in the center for the field (15). 
This is another difference of our paper from the work [19], since the choice of inhomoge-
neous linear polarization in the initial plane allows us to demonstrate arising spin Hall 
effect in the tight focus. Areas with a different sign of the spin angular momentum are 
shown in Figures 1 and 2 by red and blue ellipses. 

Another difference between our work and work [19] is that the topological charges 
of the optical vortices were chosen differently. In [19], the topological charges of the Poin-
caré beam, which generates in the focus a triangular-shaped intensity distribution with a 
vertex to the top, were chosen as (n, m) = (0, 1). In our work, we chose other topological 
charges (n, m) = (0, –1). This does not lead to change in the singularity index of the C-point 
in the center of the focus, I = –1/2, but leads to different polarization states in the initial 
plane. 

Figure 3 illustrates an optical setup that can be used for generating a Poincaré beam 
(4), for focusing it, and for studying its characteristics with a scanning near-field optical 
microscope. 

 
Figure 3. Optical setup for generating and focusing a Poincaré beam (4): L—laser with the wave-
length of 532 nm; BS—nonpolarizing beam splitters; QWP—quarter-wave plate; M1 and M2—rotat-
able mirrors; SLM—transmissive liquid-crystal spatial light modulator; MO—microobjective with a 
100× zoom (NA = 0.95); and SNOM—scanning near-field optical microscope. Red arrows show the 
direction of light propagation. 
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The Mach–Zehnder interferometer setup works as follows. A linearly polarized 
Gaussian beam comes out of the laser L (wavelength is 532 nm), and then splits into two 
beams with a beam splitter BS. One beam goes through a quarter-wave plate QWP and 
acquires right-handed circular polarization, whereas the second beam goes though a mod-
ulator SLM and through a rotated QWP and is thus converted to an optical vortex with 
the topological charge of –1 and with left-handed circular polarization. After the second 
beam splitter BS, both beams are combined into a single Poincaré beam, which is focused 
by a microobjective MO to the input of the scanning near-field optical microscope NSOM 
with a metallic cantilever with a nearly 100 nm hole. Such a microscope allows measuring 
the intensity distribution near the focus with a space resolution of nearly 30 nm. Shown 
in Figure 4 are the components of the intensity distribution in the focus plane for initial 
fields (4) and (15), computed by using the Richards–Wolf formalism [12]. 

 
Figure 4. Components of the intensity distribution in the tight focus (NA = 0.95) of the initial beams 
(4) (a–c) and (15) (d–f): Ix (a,d), Iy (b,e), and Iz (c,f). The wavelength is 532 nm, and the initial ampli-
tude of light is constant: A(θ) = 1. The colored bars under the figures describe the intensity values. 
The frame sizes are 1.2 µm (a–c) and 1.6 µm (d–f). 

As seen in Figure 4, the initial field (4) generates in the focus the components of the 
intensity distribution, well described by the formulae (7) and (9). The transverse intensity 
Ix (Figure 4a) has one maximum, shifted to the top along the vertical axis y, whereas the 
intensity Iy (Figure 4b) has one maximum, shifted along the vertical axis to the bottom 
from the optical axis, which is consistent with Equation (9). The longitudinal intensity Iz 
(Figure 4c) has three maxima, according to Equation (7). When these three intensity com-
ponents are summed up, a triangle is generated with a vertex directed to the bottom (Fig-
ure 1). Similarly, the initial field (15) generates in the focus the intensity components, one 
of which (longitudinal intensity Iz in Figure 4f) is described by Equation (18). According 
to Equation (18), the longitudinal intensity has four maxima in the corners of a square, 
and the full intensity in the focus of a field (15) has a shape of the square (Figure 2). The 
colored bars in Figure 4 reveal that the maxima of the transverse intensity are several times 
higher than the maxima of the longitudinal intensity (since the latter has more maxima). 



Photonics 2024, 11, 430 12 of 14 
 

 

Figure 5 depicts polarization distributions of the beams (4) and (15) in the initial plane 
and in the focus plane. According to Figure 5a, in the initial plane of the beam (4), there is 
a polarization singularity line since at φ = 0 and at φ = 2π, the linear polarization vectors 
are opposite. It is also seen that, when passing along some contour around the center of 
Figure 5a, the vectors rotate by π, i.e., the index of the field (4) is I = –1/2. In center of the 
focus plane of such a field, a C-point is generated (a point with circular polarization), also 
with the index I = –1/2 (Figure 5b), but the ‘star’ structure is rotated by 90 degrees relative 
to the initial pattern (Figure 5a). We note that there is no such rotation in the polarization 
pattern in the focus in [19], although it should be present due to the phase singularity of 
the field (4) with the topological charge m = –1. Shown in Figure 5c is distribution of po-
larization vectors in the initial field (15). It is seen that the vectors are located along hyper-
bolas and that there is a singularity point (V-point) in the center. When passing around 
this point, vectors rotate by the angle of 2π, i.e., the index of the V-point equals I = –1. In 
the focus of the field (15), polarization ellipses are distributed as shown in Figure 5d. In 
the center of the polarization pattern, a C-point is generated with circular polarization and 
with the index I = –1. It is clear from Equation (16.1) that, for close values of the integrals 
I0,0~I0,2, we can approximately write next expression instead of (16.1): 

0,0

( 0) sin
2 .

( 0) cos
x i

x

E r
I e

E r
− ϕ→ ϕ   ≈   → ϕ  

 (20)

It is clear from a comparison of the vectors in parentheses in (15) and (20) that a con-
stant phase equal to π/2 has been added to the polar angle at the focus. This means that 
the polarization patterns in the focal plane are rotated by 90 degrees with respect to the 
polarization vector pattern in the initial plane. Therefore, the linear polarization vectors 
on the left part of Figure 5a are located vertically, and these linear polarization vectors 
near the center are located horizontally in Figure 5b (Figure 1a). 

 
Figure 5. Distributions of linear polarization vectors in the initial plane of the beam (4) (a) and of 
the beam (15) (c), as well as distributions of the polarization ellipses in the focus plane of the beam 
(4) (b) and of the beam (15) (d). The numerical aperture is 0.95. The frame size is 1 µm (b,d). 
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7. Conclusions 
Thus, using the Richards–Wolf theory [12], the exact relationships have been de-

duced for projections of the electric field vector in the focal plane of the generalized Poin-
caré beam. Analyzing two particular cases of Poincaré beams with topological charges (n, 
m) = (0, –1) and (n, m) = (0, –2) as an example, it has been shown that, in both cases, at the 
center of the focal spot, there occurs a circularly polarized C-point surrounded by polari-
zation ellipses that make three (three half-twisted and one patch) and four half-twists (two 
half-twisted and two patches) when making a full circle of certain radius around the C-
point. In a three-dimensional space, when making a full circle, the major axis vectors of 
polarization ellipse have been shown to generate a one-sided Möbius strip (for an odd 
number of patches) or a two-sided twisted ribbon (for an even number of patches). It has 
also been shown that, in both cases, at different regions of the focal plane, the polarization 
ellipses have a positive or negative tilt with respect to the optical axis. Thus, we infer that 
ellipses with the longitudinal spins of different signs are separated in the focal spot, 
demonstrating the presence of a longitudinal optical spin Hall effect. 

Application areas of the conducted studies are microstructuring of polarization-sen-
sitive materials [20,21], optical micromanipulations [22,23], and materials micromagneti-
zation [24,25]. 
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