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Abstract: Correlation plenoptic imaging is a procedure to perform light-field imaging without spatial
resolution loss, by measuring the second-order spatiotemporal correlations of light. We investigate
the possibility of using correlation plenoptic imaging to mitigate the effect of a phase disturbance in
the propagation from the object to the main lens. We assume that this detrimental effect, which can
be due to a turbulent medium, is localized at a specific distance from the lens, and is slowly varying
in time. The mitigation of turbulence effects has already fostered the development of both light-field
imaging and correlation imaging procedures. Here, we aim to merge these aspects, proposing a
correlation light-field imaging method to overcome the effects of slowly varying turbulence, without
the loss of lateral resolution, typical of traditional plenoptic imaging devices.
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1. Introduction

The class of plenoptic (or light-field) imaging methods includes protocols and devices
that are aimed to detect the light field, namely the joint information, within the limits of
wave optics, on the light spatial distribution and propagation direction [1–5]. Interestingly,
compared to other three-dimensional imaging techniques that require axial scanning [6–9],
plenoptic imaging allows retrieving three-dimensional information in a single intensity
acquisition; on the other hand, it makes no use of no interferometric/holographic mea-
surement [10]. Considering its relative structural simplicity and cost-effectiveness, this
technique is currently used in diverse scientific and technical application fields, which
include microscopy [11–14], stereoscopy [1,15,16], wavefront sensing [17–21], particle track-
ing and sizing [10], particle image velocimetry [22], and 3D neuronal activity functional
imaging [14,23]. Through the acquired directional information, plenoptic devices open
the possibility to perform viewpoint changes, refocusing at different axial distances and,
consequently, three-dimensional reconstruction of a finite volume [24]. In state-of-art-
devices, the key to achieving plenoptic imaging is to combine the main lens with an array
of micro-lenses [2,25], which encode the detector with composite information of the light
field. However, in all the implementations based on first-order intensity measurement, the
drawback of such a structure is a limitation of the lateral resolution, that becomes inversely
proportional to the gain in directional resolution, making the Rayleigh limit set by the
numerical aperture of the main lens unreachable.

In the context of quantum and quantum-inspired intensity correlation imaging [26–34],
a way to overcome this practical limitation emerged in a technique named correlation
plenoptic imaging (CPI), capable of performing plenoptic imaging without spatial resolu-
tion loss by measuring second-order spatio-temporal correlations of light [35,36]. Thanks to
the correlation between light beams of either chaotic light or entangled photons [35,37–44],
such a measurement encodes information not only on the spatial distribution of light in a
given plane in the scene but also on the direction of light. This method entails a relevant
qualitative and quantitative mitigation of the trade-off between spatial and directional
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resolution, opening the way to a dramatic performance increase in terms of volumetric
resolution, which is especially relevant when correlation measurements are performed
through high-speed spatially resolving detectors [44,45]. These advantages are achieved by
decoupling the spatial and directional detection on two physically separated sensors.

In this article, we investigate the possibility of exploiting CPI to mitigate the effect of
a phase disturbance in the propagation from the object to the main lens. We assume that
this detrimental effect, which can be due to a turbulent medium, is localized at a specific
distance from the lens, and is slowly varying in time. The presence of turbulence is an
outstanding challenge of imaging, that fosters the research for new tools and devices [46].
Interestingly, one of these attempts at mitigating turbulence involves standard light-field
imaging, in view of its possibility to detect the direction of light coming from specific points
of the scene [20,47]. On the other hand, much research has been devoted to determining the
robustness of “ghost” correlation imaging to different kinds of turbulence and in various
settings [48–54]. In this work, we concentrate on the plenoptic properties of intensity
correlations, which remain unexploited in traditional ghost-imaging protocols, to show that
they can be used to overcome the effects of axially localized and slowly varying turbulence.
Using correlations instead of direct intensity measurements allows us to overcome the loss
of lateral and axial resolutions, which in our case remain fixed by the Rayleigh limit on
the focal plane (namely, by the main lens numerical aperture), and still outperforms the
standard light-field imaging methods out of focus [55,56].

The article is organized as follows. In Section 2, we show the detrimental effect of an
axially localized phase disturbance on the first-order image collected by a standard imaging
device. In Section 3, we discuss how to exploit correlation imaging to obtain a collection
of sharp images of an object by CPI, despite the presence of the considered turbulence.
In Section 4, we comment on how to maximize the information extraction from the CPI
measurements, and how the technique can be integrated with innovative sensors and data
analysis protocols.

2. First-Order Imaging with an Axially Localized Turbulence

The optical scheme that we considered in this article, shown in Figure 1, is based on
the paradigm of correlation plenoptic imaging between arbitrary planes (CPI-AP) [40].
It consists of a single lens of focal length f , that collects chaotic light of wavenumber k
emitted by the object, placed at an arbitrary distance z, which undergoes turbulence at a
distance zT on its way to the lens. After the lens, light is split into two paths by a beam
splitter. The two beams impinge on the sensors Da and Db, placed at distances z′a and z′b,
respectively. These two distances define two object planes at distances za and zb in front of
the lens, through the equations

1
zj

+
1
z′j

=
1
f

, with j = a, b. (1)

The results here presented are based on the following assumptions on turbulence:

• Turbulence occurs upstream of the beam splitter, i.e., in the region where the optical
paths are superposed.

• Turbulence is slowly varying in time and can be approximated as quasi-static in the
time required to perform a reasonable reconstruction of the correlation function.

• Turbulence is due to unpredictable perturbations of the refractive index in a region of
space of small longitudinal extension ∆z, such that its effect amounts to multiplying
the field in that region by a phase factor exp(ik∆n(ρT)∆z), with ρT the transverse
coordinate of the turbulence plane and ∆n(ρT) the change in refractive index with
respect to the background. Notice, instead, that turbulence in a thick region should be
described by a convolution of the field [57].
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Figure 1. Optical scheme of the setup described in the article. Light from an object (the red arrow
in figure), treated as a chaotic emitter, encounters turbulence in a thin region of space, at a distance
zT , before impinging on the lens. After the lens, light is split into two optical paths, impinging on
the spatially-resolving sensors Da and Db, respectively. The lens-to-sensor distances z′j, with j = a, b,
define two object planes at the respective conjugate distances zj, satisfying 1/zj + 1/z′j = 1/ f , with f
the focal length of the lens. The signal is collected by measuring pixel-by-pixel correlations between
intensity fluctuations on the two sensors.

To explain the detrimental effect of turbulence, it is instructive to start from the
first-order results, namely the intensity measured at the end of one of the optical paths.
Neglecting, for the sake of simplicity, the finite aperture of the lens, the field propagator
from an object point of coordinate ρo and a point of coordinate ρa on the sensor Dj reads

gj(ρj, ρo) = Cje
ikψ(ρj) exp

(
ikρ2

o
2zT

)
×
∫

d2ρT exp

{
ik

[(
1

zT
− 1

zT + zj − z

)
ρ2

T
2

− ρT
zT

·
(

ρo +
zT

zT + zj − z
ρj

Mj

)
− ϕ(ρT)

]}
, (2)

where ϕ(ρT) = ∆n(ρT)∆z determines the phase change due to turbulence, and Mj = z′j/zj,
with j = a, b, are the absolute magnifications of the images focused by the lens on the two
sensors. The above result is obtained by combining propagation through turbulence in zT
with the transfer function exp(−ikρ2

ℓ/2 f ) of the lens, where ρℓ is the transverse coordinate
on the lens plane, and with free-space propagation exp[ik(δρ)2/2(δz)], where δρ and δz are
the differences between transverse and axial coordinates, respectively [58]. If the object is a
chaotic light emitter with intensity profile A(ρo), the intensity measured on each sensor
Dj reads

Ij(ρj) =
∫

d2ρoA(ρo)
∣∣gj(ρj, ρo)

∣∣2. (3)

In the case in which we are most interested when the object is focused on Dj (namely,
z = zj), the intensity reads, up to irrelevant constants,

Ij(ρj) =
∫

d2ρoA(ρo)

∣∣∣∣∣
∫

d2ρT exp

{
ik

[
ϕ(ρT)−

1
zT

ρT ·
(

ρo +
ρj

Mj

)]}∣∣∣∣∣
2

, (4)

leading to the stigmatic image A(−ρj/Mj), inverted and magnified by Mj, in the case of
no turbulence. When turbulence is present, we can characterize its effect by considering the
limit of geometrical optics k → ∞, and the stationary-phase approximation [58], leading to

Ij(ρj) ∼
∫

d2ρTA
(
−

ρj

Mj
+ zT∇ϕ(ρT)

)
. (5)

Therefore, in the presence of turbulence, rays passing from a point ρT on the turbulence
plane are deviated by an amount proportional to the gradient of the phase disturbance ϕ,
leading to the superposition of sub-images characterized by different shifts. The disturbance
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is not directly determined by the phase perturbation, but rather by its gradient on the plane.
This situation closely resembles the case of an out-of-focus object, which is commonly
tackled by plenoptic imaging, with the relevant difference that, in the case of turbulence,
the image shifts are unpredictable a priori. Notice that the effect of turbulence is less and
less relevant as it occurs closer to the sample (zT → 0) since the spread due to turbulence
at some point becomes less important than the natural point spread due to the finite lens
aperture [55].

3. CPI for Turbulence Mitigation

Intuitively, as it occurs in CPI to reconstruct out-of-focus images, the detrimental effect
of the superposition of shifted images in Equation (5) can be avoided if correlation mea-
surement is able to detect each single sub-image with a well-defined shift, corresponding
to a particular ρT . Therefore, let us consider the correlation function Γ(ρa, ρb) between
intensity fluctuations in a couple of points ρa on the sensor Da and ρb on Db. Treating the
object as a chaotic light emitter, as in Equation (3), one obtains

Γ(ρa, ρb) =

∣∣∣∣∫ d2ρoA(ρo)ga(ρa, ρo)g∗b (ρb, ρo)

∣∣∣∣2. (6)

Before treating the CPI-based reconstruction of the image, it is worth observing that the
autocorrelation of intensity fluctuations

Γ(ρa, ρb) = I2
a (ρa) (7)

coincides with the squared first-order intensity. This result could entail an apparent
mitigation of turbulence in second-order measurement. However, the average result
of the autocorrelation measurement is indistinguishable from measuring the intensity and
squaring the result; therefore, effective mitigation occurs only if noise affecting Γ(ρa, ρb) is
lower than the one affecting I2

a (ρa). This will be the object of future research.
Going back to the general form of Γ, the result for the setup in Figure 1 can be evaluated

by inserting the propagators defined in Equation (2), yielding, up to irrelevant constants,

Γ(ρa, ρb) =

∣∣∣∣∫ d2ρo

∫
d2ρT

∫
d2ρ′

TA(ρo) exp
[
ikΨ(ρa, ρb; ρo, ρT , ρ′

T)
]∣∣∣∣2, (8)

where

Ψ(ρa, ρb; ρo, ρT , ρ′
T) =

(
1

zT
− 1

zT + za − z

)
ρ2

T
2

−
(

1
zT

− 1
zT + zb − z

)
ρ′

T
2

2

− 1
zT

ρo · (ρT − ρ′
T)−

1
zT + za − z

ρT · ρa

Ma
+

1
zT + zb − z

ρ′
T · ρb

Mb
+ ϕ(ρT)− ϕ(ρ′

T). (9)

The stationary-phase conditions

∇ρ0 Ψ =− 1
zT

(ρT − ρ′
T) = 0, (10)

∇ρT Ψ =

(
1

zT
− 1

zT + za − z

)
ρT − 1

zT
ρo −

1
zT + za − z

ρa

Ma
+∇ϕ(ρT) = 0, (11)

∇ρ′
T

Ψ =−
(

1
zT

− 1
zT + zb − z

)
ρ′

T +
1

zT
ρo +

1
zT + zb − z

ρb
Mb

−∇ϕ(ρ′
T) = 0, (12)

that determine the point(s) (ρ̄o, ρ̄T , ρ̄′
T) providing dominant contribution in the geometrical-

optics limit k → ∞, do not form a linear system in the integration variables, as would occur
in the absence of turbulence, due to the presence of ∇ϕ. However, the system is solvable
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anyway, as the equation that determines the stationary values of ρT and ρ′
T is linear and

independent of both ρo and the phase variation gradient, leading to the solution

ρ̄T = ρ̄′
T =

1
za − zb

[
(zT + zb − z)

ρa

Ma
− (zT + za − z)

ρb
Mb

]
. (13)

This enables to determine the stationary value of ρo through the remaining independent
condition, leading to

ρ̄o = − 1
za − zb

[
(z − zb)

ρa

Ma
+ (za − z)

ρb
Mb

]
+ zT∇ϕ(ρ̄T). (14)

Therefore, despite the turbulence, the dominant contribution to the correlation function
comes from a single object point,

Γ(ρa, ρb) ∼ A2

(
− 1

za − zb

[
(z − zb)

ρa

Ma
+ (za − z)

ρb
Mb

]

+ zT∇ϕ

(
1

za − zb

[
(zT + zb − z)

ρa

Ma
− (zT + za − z)

ρb
Mb

]))
, (15)

providing a single shifted image for each pair of points (ρa, ρb). Clearly, this image is
detectable only provided the time scale of turbulence is slow enough to permit the recon-
struction of the correlation function with a reasonable signal-to-noise ratio. Specializing
the result to the case of reference, in which the object is focused on Da (for definiteness),
with z = za, the correlation function takes the interesting form

Γ(ρa, ρb) ∼ A2
(
− ρa

Ma
+ zT∇ϕ

(
1

za − zb

[
(zT + zb − za)

ρa

Ma
− zT

ρb
Mb

]))
. (16)

A comparison with Equation (5) clarifies the potential of measuring pixel-by-pixel correla-
tions across the two detectors instead of intensity: the choice of the pair (ρa, ρb) addresses
a particular point ρ̄T [see Equation (13)] on the turbulence plane, while intensity measure-
ment erases such an information. At a fixed ρb, the image of the object is both shifted and
distorted, due to the dependence on ρa of the phase gradient. Incidentally, notice that the
dependence of Γ on ρb at a fixed ρa can be used as an indicator to detect the presence of
turbulence with a transverse gradient.

The correlation function in Equation (16) becomes particularly simple (and intuitive)
when the turbulence plane is focused on Db, namely when zb = za − zT , where it reads

Γ(ρa, ρb) ∼ A2
(
− ρa

Ma
+ zT∇ϕ

(
− ρb

Mb

))
. (17)

By varying ρb, one obtains a collection of images of the object, which are similar to each
other up to a shift, as shown in Figure 2, where a comparison with first-order images is made.
Once they are collected, one can evaluate their relative alignment (e.g., by computing the
point-to-point correlation between them) and follow two strategies to obtain an integrated
image, exploiting as much as possible the information contained in Γ(ρa, ρb) and increasing
the signal-to-noise ratio:

• sum only those sub-images characterized by the dominant alignment;
• realign all the sub-images with an alignment tool, and sum over them.
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(a) Color scale (b) First-order, no disturbance (c) First-order, disturbance

(d) CPI, zT = za − zb, xb = − Mbd
5 (e) CPI, zT = za − zb, xb = 0 (f) CPI, zT = za − zb, xb = Mbd

5

(g) CPI, zT
za−zb

= 1.1, xb = − Mbd
5.5 (h) CPI, zT

za−zb
= 1.1, xb = 0 (i) CPI, zT

za−zb
= 1.1, xb = Mbd

5.5

Figure 2. Imaging of two parallel slits, at a relative distance 2d, through a static phase disturbance,
axially localized in zT , and varying only along the direction (x) orthogonal to the slits, with profile
ϕ(xT) = (d/zT) cos2(5xT/a). Panel (a) shows the common color scale of the reported image signals
(either intensity or correlation). Panels (b,c) contain first-order images, obtained without and with
phase disturbance, respectively, [see Equation (5)]. Panels (d–f) illustrate the correlation function
Γ(ρa, ρb) taken at different fixed values of xb (while yb = 0 in all cases), when the turbulence plane is
focused on the sensor Db; the cases in panels (d,f) are among the most affected by turbulence-related
shift [see Equation (17)]. Panels (g–i) illustrate the correlation function Γ(ρa, ρb) taken at different
fixed values of xb (while yb = 0 in all cases), when the turbulence plane is not focused on the sensor
Db; besides being shifted, all the images are also affected by distortion, as in the general case of
Equation (16), and require the reparametrization in Equations (18) and (19) to reconstruct faithful
images. The slits have a Gaussian intensity transmission profile of width d/sqrt8, while the finite size
of the lens is assumed to be negligible for simplicity.

However, identifying the axial position of the turbulence plane can be challenging,
and focusing the wrong plane on Db can leave heavy distortion effects, as one can see in the



Photonics 2024, 11, 733 7 of 10

bottom panels of Figure 2. Nonetheless, it is still possible to limit the effect of turbulence to
a mere shift, by parametrizing the correlation function as

Γ
(

ρa, ρ̃b(ρa, ρ̄T)
)
∼ A2

(
− ρa

Ma
+ zT∇ϕ(ρ̄T)

)
, (18)

with

ρ̃b(ρa, ρ̄T) = −Mb
zT

[
ρ̄T +

(
1 − zT

za − zb

)
ρa

Ma

]
. (19)

If zT is unknown, it can be treated as a variational parameter, whose best estimate is the
one that guarantees that all the images obtained at each fixed ρb are similar up to a shift, as
in Equation (18). Once it is determined, realignment of images can be made in the same
way as in the case of Equation (17).

It is worth remembering that, due to the plenoptic properties of the correlation func-
tion, the advantage is not limited to the case of a focused object. However, though one can
in principle reconstruct images of objects placed out of focus, wave-optics computation
shows that the resolution of the correlation images is maximal in focus [36]. Here, resolu-
tion is determined by the Rayleigh limit, which is unattainable by traditional light-field
techniques [36,42,43,59,60].

4. Discussion and Outlook

The results outlined in the previous section show that the light-field capability of CPI
can be used to trace back the image of an object through phase disturbance by using intensity
correlations to isolate the contribution of a limited area of the turbulence plane. Compared
to analogous applications of standard light-field imaging to turbulence mitigation [20,47],
CPI potentially provides diffraction-limited resolution on the focused plane and a much
wider variety of independent viewpoints on a 3D sample [35]. Even though our analysis is
limited to a focused object and to the geometrical-optics regime, recent wave-optics results
demonstrated that the out-of-focus imaging properties of CPI entail a better volumetric
resolution than any non-scanning first-order method [55].

One of the possible limitations of the method is related to the intrinsic need of CPI for
collecting a large number of frames to provide a stable statistical reconstruction of the corre-
lation function. Actually, the signal-to-noise ratio in correlation imaging is proportional to
the square root of the number of collected frames, provided they are statistically indepen-
dent of each other [31], as also confirmed by a recent experimental demonstration [44]. At
the same time, increasing the duration of each frame beyond the coherence time of collected
light tends to erase the signal [61]. To minimize the acquisition time while still achieving a
satisfying signal-to-noise ratio, the duration of each frame must be as close as possible to
the coherence time of collected light, while the dead time between two subsequent frames
should be as small as possible. Moreover, if the phase disturbance is not constant, the total
acquisition time must not exceed the typical variation time of the perturbation, to prevent
frames corresponding to different phase gradients from contributing to the evaluation of
the same correlation evaluation [see Equations (16) and (17)]. Therefore, the technique
can largely benefit from new sensors that combine high-resolution with low noise (i.e.,
statistically reliable frames) and gating times close to the nanosecond [45,62–64], already
applied to a CPI-AP experiment in a non-turbulent environment [44]. Moreover, especially
in cases where time variation of turbulence does not allow achieving high signal-to-noise
ratios, interesting developments can come from integrating the described methods with
tools to maximize information extraction from data, like compressive sensing [65] and
artificial intelligence [66], which can specifically help to realign noisy sub-images, even
taken at different times.

The results presented in this article are relevant for cases in which the phase distur-
bance is concentrated in a small axial range compared to the optical baseline, and either
static, such as irregular transparent surfaces, or varying at a rate that allows the capture
of a CPI image (see [44]), such as localized heated air. Future research will be devoted to
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the analysis of phase disturbance effects on different methods of plenoptic imaging with
intensity correlations, such as light-field ghost imaging [67]), and to extend the results
to different models of turbulence. Specifically, we will consider the case in which phase
disturbance is not static, and its effects pile up on a region of finite axial width, thus re-
quiring more elaborated models of propagation through turbulence and the definition of
time-averaged phase disturbance statistics [57].
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