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Abstract: Constructing a freeform surface that accurately satisfies both integrable condition
and Snell’s law under a given invariant source–target map is challenging for freeform
design. Here, we propose a fixed-point iteration method to address this problem. This
process involves solving a set of balanced gradient equations in the form of fixed-point
iterations that are derived from equivalent integrability conditions and Snell’s law. By
using the convergence theorem of fixed-point iteration, a unique solution for the balanced
gradient equations exists, which is determined by the natural geometric properties of
the freeform surface and is independent of the mapping. The gradient operators on the
left-hand side of the equations are converted into a differential matrix form via a finite
difference scheme. In one iteration, differential operations are forward-performed on
the right-hand side of the equations, and the system of linear equations is solved on the
left-hand side of the equation. The constructed freeform surfaces work well in both the
paraxial and nonparaxial regions, and convergence in the nonparaxial region is faster than
that in the paraxial region. The robustness and high efficiency of the proposed method are
demonstrated with several design examples.

Keywords: freeform optical design; balanced gradient equations; implicit fixed point
iteration

1. Introduction
Freeform optics are increasingly being applied in both imaging and nonimaging

optical fields. In nonimaging optics, freeform surfaces are used to collect light energy or
reshape light beams [1]. The design methods of freeform surfaces can be classified into three
main categories [2]: the Monge–Ampère equation method [2–8], the supporting quadric
method [9,10], and the ray mapping method [11–25].

The ray mapping method might be the most popular method for designing freeform
surfaces because of its flexibility and simplicity. These methods are generally implemented
in two steps. First, the coordinate mapping from the source to the target surface is es-
tablished, which is also called the source-to-target map. The source-to-target map can be
obtained from the energy conservation via the optimal transport scheme with a quadric
cost function [12–19]. Secondly, the freeform surface is subsequently constructed according
to the mapping.

For freeform surface construction, several methods have been provoked. A conven-
tional method proposed by Wang et al. [11] first builds a seed curve and then constructs the
other curves in the orthogonal direction. Due to the independence of constructing direction,
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error accumulation occurs in the normal field. To overcome error accumulation, a V1V2
method [19] was proposed to construct a freeform surface by combining two orthogonal
tangent vectors perpendicular to the normal vector. However, these pointwise construction
methods cannot guarantee exact ray tracing to the target map position in nonparaxial
situations because the selection of initial points is arbitrary. To obtain a global solution of a
freeform surface, Feng et al. [16] used the chord between two adjacent points perpendicular
to the average of the two normal vectors at these two points and enforced this relationship
with a least-squares method. However, the approximation of the outgoing vector equal
to the target position vector still causes errors in the nonparaxial region. Bösel et al. [17]
constructed the freeform surface as a linear advection equation derived from substituting
Snell’s law into the integrable condition. Similarly, this advection equation is derived from
paraxial approximation.

The above surface construction methods, due to the introduction of paraxial or far-field
approximations, result in freeform surfaces not meeting integrability conditions [20] in the
nonparaxial region:

→
N· (∇×

→
N ) = 0, (1)

where
→
N denotes the surface normal vector field.

To improve the nonintegrability of the normal vector field in the nonparaxial region,
several schemes were proposed. Fournier et al. [20] computed an integrable ray mapping
via the supporting quadric method with a data-fitting process. Karel et al. [21] proposed
a symplectic flow method to provide intermediate mapping for complex off-axis and
nonparaxial illumination problems. Doskolovich et al. proposed a discrete method to
transform the illumination design problem into a linear assignment problem [22–24]. Wei
et al. [25] proposed a least-squares method to dynamically compute the ray mapping that
satisfies the integrable condition in the surface construction process.

The above improved methods [20–25] “push” the integrable conditions into the con-
struction process of mapping to overcome the weakness of using paraxial or far-field
approximation in freeform surface construction. In other words, these methods focus
on changing the mapping to adapt to surfaces with errors rather than eliminating the
approximation in surface construction. Although integrable ray mapping techniques have
been well addressed, solving a freeform surface without approximation adaptive to a given
invariant mapping remains a challenging problem.

In this paper, we propose a novel freeform surface construction method for collimated
beam shaping that works well in nonparaxial situations via implicit fixed-point iteration.
Different from other integrable ray mapping methods, the proposed method dynamically
iterates the freeform surface to adapt to the mapping without the necessity of changing the
mapping during the iteration process. In this method, the differential geometry definition
of the normal vector is used as a condition that is equivalent to the integrable condition and
is substituted into Snell’s law to obtain balanced gradient equations that can be transformed
into an implicit expression of fixed-point iteration (FPI). The existence of the solution for this
system is demonstrated by the convergence theorem of the FPI method. The mathematical
system can be effectively solved via FPI. Interestingly, the farther the deviation of points
from the optical axis, the higher their convergence speed. The simulation results show that
the constructed freeform surface works well in both the paraxial and nonparaxial regions.
We present our freeform optics constructing method detail in Section 2. Several design
examples are presented in Section 3. In Section 4, a brief conclusion is presented.
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2. Freeform Construction Method via Implicit Fixed-Point Iteration
2.1. Formulation of Source-to-Target Map

Assume that the source plane is defined in Cartesian coordinates (x, y) at z = z0, and
let Es be the irradiance in a bounded region S. The target plane is defined in coordinates(
tx, ty

)
at z = tz, and Et is the prescribed irradiance distribution in region T. The inverse

problem is to design a freeform surface Z(x, y) to redirect the rays
→
I (x, y) to the target

plane so that we can obtain a predefined irradiance Et
(
tx, ty

)
. The sketch is presented in

Figure 1. As shown in Figure 1,
→
O and

→
I refer to the unit outgoing and incident light fields,

respectively. θ is the off-axis angle between the outgoing vector
→
O and the z-axis.
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According to energy conservation and optimal transport, a map Φ : S → T redistribut-
ing the energy density Es to Et can be expressed as follows [19]:

Et(Φ(x, y))det(∇Φ) = Es(x, y), (2)

where det(∇Φ) is the determinant of the Jacobian matrix of function Φ.
The transport boundary condition is forced to map the boundary ∂Ωs of S to the

boundary ∂Ωt of T, which can be written as

F(x, y, Φ) = 0 (x, y) ∈ ∂S. (3)

By solving Equations (2) and (3), a source-to-target map Φ can be obtained. For some
efficient numerical solver for Equations (2) and (3), one can refer to [26,27]. After obtaining
the map, the critical problem is to find a freeform surface that can accurately transform the
light rays from the source to the target region. Below, an effective method for constructing
an integrable freeform surface in nonparaxial situations is presented.

2.2. Balanced Gradient Equations for Freeform Surfaces

Assume that G is a point on the freeform surface and that its position vector is
→
G = (x, y, Z(x, y)). The unit normal vector

→
N of the freeform surface at point

→
G for a

collimated beam can be written as

→
N =

∂x
→
G × ∂y

→
G∣∣∣∣∂x

→
G × ∂y

→
G
∣∣∣∣ =

(
−∂xZ,−∂yZ, 1

)√
(∂xZ)2 +

(
∂yZ

)2
+ 1

, (4)
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where ∂x
→
G, ∂y

→
G and ∂xZ, ∂yZ are the first-order partial derivatives of

→
G and Z with respect

to x and y, respectively.
It is easy to prove that Equations (1) and (4) are equivalent in determining whether

a surface is smooth or continuous. Note that although Equation (4) is equivalent to
Equation (1), the advantage of using Equation (4) is that it does not require calculating the
curl of the normal vector during the construction process.

At any point on the surface, Snell’s law should be obeyed:

A
→
N = no

→
O − ni

→
I , (5)

where A = [n2
i + n2

o − 2nino (
→
O·

→
I ) ]1/2,

→
N refers to the unit normal vector field, and for

refractive indices ni of the lens and no of the surrounding medium. Here, the freeform lens
is surrounded in air, so no = 1.

For collimated beams, by substituting Equation (4) into Equation (5), two balanced
gradient equations (BGE) can be obtained:{

∂xZ = Ox
′ + Oz

′∂xZ
∂yZ = Oy

′ + Oz
′∂yZ

, (6)

where
(
Ox

′, Oy
′, Oz

′) =
(
Ox, Oy, Oz

)
/ni, and

(
Ox, Oy, Oz

)
refer to the three components

of the unit outgoing light vector
→
O in the x, y, and z directions. For a detailed derivation of

Equation (6), see Appendix A.

Snell’s law in Equation (5) reveals the relationship between normal vector
→
N, outgoing

light vector
→
O, and incident light vector

→
I at every point on a surface. Equation (6)

is derived from Snell’s law, so it expresses the relationship between the corresponding

physical quantities of surface coordinates Z and outgoing vector
→
O at each point on the

surface. The left-hand side of Equation (6) represents the gradient of freeform surface in
the incident field, while the right-hand side represents the gradient of freeform surface in
the outgoing field, and they are equal to each other. That is why we called Equation (6) as
balanced gradient equations for freeform surface.

Since the BGEs were derived from Equation (4), which is an equivalent integrable
normal field, the solution of the BGEs should naturally satisfy the integrable condition of
Equation (1).

Note that if the paraxial approximation is applied in the right-hand side of BGEs,
Equation (6) will degenerate into a similar linear advection equation as in [17]. However,
the BGEs in this paper do not omit the right-hand side of Equation (6), which is strongly
connected to the nonparaxial outgoing field. Therefore, the freeform surface constructed
by BGEs can accurately transmit rays from the source onto the target position in the
nonparaxial region.

There are two challenging points to solve the BGEs of Equation (6). First, Equation (6)
includes two first-order PDEs. Numerically solving each PDE in Equation (6) may yield

two different groups of data points. Secondly, the outgoing field
→
O on the right-hand

side of Equation (6) is nonlinear and dependent on Z; a suitable algorithm is needed to
handle this problem. We propose an implicit fixed-point iteration (IFPI) process to deal
with these problems.

2.3. Existence of Solution for BGE via FPI Convergence Theorem

Below, we explore whether there is a feasible solution for the BGEs in Equation (6) for
a given source-to-target map Φ∗.
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The distance between the freeform surface and the target plane along the outgoing

vector
→
O is labeled as ρ. The distance functional ρ(x, y, z) can be expressed as follows:

ρ =

√
(tx − x)2 +

(
ty − y

)2
+ (tz − Z)2. (7)

Combining Equation (6) with the differential geometry relationship, the relationship
between the freeform surface coordinates Z and the distance functional ρ can be obtained
as follows (for detailed derivations, see Appendix B):

Z = C − ρ/ni (8)

where C is a constant.
Because Z and ρ are both unknown variables in Equation (7), it is difficult to solve

them using just a single equation. However, Equation (8) has the form Z = φ(Z), which is
usually the standard form of FPI. When a unique convergent solution for Z = φ(Z) can be
obtained by using FPI, the following theorem must be satisfied [28]:

Theorem 1. Let the iterative function φ(Z) be continuous in the range of [a, b], and let it satisfy
the following:

(I) When Z ∈ [a, b], then a ≤ φ(Z) ≤ b;
(II) There is a positive number L, 0 < L < 1, and ∀Z ∈ [a, b], which satisfies |∂z φ| < L.

Then, Z = φ(Z) has a unique solution Z∗ in [a, b], and for any initial value Z0, iteration
Zk+1 = φ(Zk) converges to Z∗.

For Equation (8), let φ(Z) = C − ρ/ni, the lower bound a = 0, and the upper bound
b = tz. Substituting Equation (8) into the two conditions of Theorem 1, we can obtain the
following:

(I) When Z ∈ [0, tz], ρ ≤ niC ≤ ρ + nitz;
(II) |∂Z φ | = OZ/ni < 1.

Equation (8) clearly satisfies the converging theorem of FPI by properly choosing the
constant C. For condition (I), niC should be chosen in a range of ρ ∼ ρ+ nitz. As long as
tz > 0, there must be a suitable C that satisfies this condition. This can be easily achieved
by setting the target surface at a position greater than zero.

For condition (II), ∂φ/∂Z = Oz/ni.Oz is the z component of the unit outgoing vector
→
O and always satisfies Oz ≤ 1; ni is the refractive index of the freeform lens, and ni > 1.
Therefore, Oz/ni < 1 should be satisfied everywhere on the freeform surface. Furthermore,
if Oz is smaller, the converging speed of FPI is higher, which means that, for points that
deviate farther from the optical axis (with a larger off-axis angle θ), the convergence speed
should be higher than that with a smaller off-axis angle (the paraxial region).

It was shown above that Equation (8) has a unique numerical solution Z∗ for any
initial value Z0 via FPI. Since Equation (8) is the integral form of BGEs of Equation (6), the
unique Z∗ is the solution of BGEs as well.

2.4. IFPI Process for BGE

Because the selection of parameter C has certain arbitrariness, it is not convenient
to directly use FPI for Equation (8). Equation (8) shares the same solution of the BGE in
Equation (6). Therefore, we find the solution of Equation (6) via the IFPI process.

The explicit expression of BGEs in Equation (6) calculates the differential of Z, while Z
itself is implicit. Instead of calculating the integrals of ∂x and ∂y in Equation (6), finite dif-
ference schemes are applied to the differential operator on the left-hand side of Equation (6)
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to obtain Z, whereas differential operators ∂x and ∂y are forward-operated to obtain ∂xZ
and ∂yZ on the right-hand side of Equation (6).

For a rectangular grid with m rows and n columns, the values of Z are located in an
m × n matrix ZM. Matrix ZM is cast as vector Zv such that the i + n(j − 1) element of Zv

is equal to (ZM)ij(ZMis enumerated column-wise) [29]. We apply the second-order finite
difference scheme to the differential operator ∂x and ∂y on the left-hand side in Equation (6),
then two differentiation matrices Hx and Hy with the size of mn × mn can be obtained.
For details of differentiation matrices constructing routine, the reader can refer to [30,31].
Because the two BGEs share a common solution of Zv, we combine the two differentiation
matrices Hx and Hy into one matrix as H =

[
Hx; Hy

]
, which is a 2 mn × mn matrix with

Hx above and Hy below.
For the right-hand side of Equation (6), a column vector B with 2 mn elements can be

constructed as follows:

B(i) =

Ox
′+Oz

′∂xZ i ≤ mn

Oy
′+Oz

′∂yZ i > mn
. (9)

After the above discretization processing, the BGEs of Equation (6) are transformed
into a linear equation system as follows:

HZv = B. (10)

Equation (10) is a system containing 2 mn linear equations with mn unknown ele-
ments of Zv. By combining the two coefficient matrices of BGEs into a single matrix H,
Equation (10) utilizes a common set of Zv, thereby resolving the issue of having two dif-
ferent data points as presented in Equation (6). Since the coefficient elements in H are
derived from approximate finite difference schemes of differential operators, they remain
unchanged during the iteration process. Here, a standard central difference scheme of
second order is used for inner points, and a second-order upwind differential scheme is
used for boundary points.

The second problem in solving BGEs is that O’ in B is nonlinear and unknown; here,
we treat vector B as a variable parameter in the IFPI process and rewrite Equation (10) into
a more straightforward IFPI form:

H(Zv)k+1 = (B)k, (11)

where (∗)k represents the kth iteration value of ∗.
Figure 2 illustrates the construction process of freeform surfaces in IFPI. The gradients

∇Z on the left-hand side of Equation (6) are attached on the freeform surface in the incident
light field, as shown in the below region and labeled as blue arrows in Figure 2. The
right-hand side of Equation (6), equaling to Equation (9), is labeled as B with red arrows
attaching on the freeform surface in the outgoing light field.

In the k-th iteration,
(
O′)

k and ∇(Z)k are calculated and substituted into Equation (9)
to form the k-th vector (B)k; then, by solving Equation (11), a new freeform surface
(Zv)k+1 = H−1[(B)k] can be obtained. In the next iteration, the (k + 1)-th value (Zv)k+1 is
substituted into Equation (9) to obtain a new (B)k+1 value; by solving Equation (11) again,
surface (Zv)k+2 can be acquired. If the freeform surface reaches the unique solution, the
gradients the in incident light field should be balanced to the ones in the outgoing light field
with ∇(Z)M = (B)M. For an actual criterion in IFPI, we can use ∥ (Zv)M+1 − (Zv)M ∥ < δ,
where δ is the solution accuracy; then, (Zv)M should be the solution Z∗. The detailed steps
of the IFPI algorithm are shown in Figure 3.



Photonics 2025, 12, 134 7 of 14

Photonics 2025, 12, x FOR PEER REVIEW 6 of 15 
 

 

Equation (6) to obtain Z, whereas differential operators ∂୶ and ∂୷ are forward-operated 
to obtain ∂୶Z and ∂୷Z on the right-hand side of Equation (6). 

For a rectangular grid with m rows and n columns, the values of Z are located in 
an m × n matrix 𝐙. Matrix 𝐙 is cast as vector 𝐙୴ such that the i + nሺj − 1ሻ element of 𝐙୴  is equal to ሺ𝐙ሻ୧୨ ሺ𝐙  is enumerated column-wise) [29]. We apply the second-order 
finite difference scheme to the differential operator ∂୶ and ∂୷ on the left-hand side in 
Equation (6), then two differentiation matrices 𝐇୶ and 𝐇୷ with the size of mn × mn can 
be obtained. For details of differentiation matrices constructing routine, the reader can 
refer to [30,31]. Because the two BGEs share a common solution of 𝐙୴, we combine the 
two differentiation matrices 𝐇୶  and 𝐇୷  into one matrix as 𝐇 = ൣ𝐇୶;𝐇୷൧ , which is a 2mn × mn matrix with 𝐇୶ above and 𝐇୷ below. 

For the right-hand side of Equation (6), a column vector 𝐁 with 2mn elements can 
be constructed as follows: Bሺiሻ = ൜O୶ᇱ + Oᇱ ∂୶Z i ≤ mnO୷ᇱ + Oᇱ ∂୷Z i > mn . (9) 

After the above discretization processing, the BGEs of Equation (6) are transformed 
into a linear equation system as follows: 𝐇𝐙୴ = 𝐁. (10) 

Equation (10) is a system containing 2mn  linear equations with mn  unknown 
elements of 𝐙୴. By combining the two coefficient matrices of BGEs into a single matrix 𝐇, 
Equation (10) utilizes a common set of 𝐙୴ , thereby resolving the issue of having two 
different data points as presented in Equation (6). Since the coefficient elements in 𝐇 are 
derived from approximate finite difference schemes of differential operators, they remain 
unchanged during the iteration process. Here, a standard central difference scheme of 
second order is used for inner points, and a second-order upwind differential scheme is 
used for boundary points. 

The second problem in solving BGEs is that 𝐎ᇱ  in 𝐁  is nonlinear and unknown; 
here, we treat vector 𝐁 as a variable parameter in the IFPI process and rewrite Equation 
(10) into a more straightforward IFPI form: 𝐇ሺ𝐙୴ሻ୩ାଵ = ሺ𝐁ሻ୩, (11) 

where ሺ∗ሻ୩ represents the kth iteration value of ∗. 
Figure 2 illustrates the construction process of freeform surfaces in IFPI. The 

gradients ∇𝐙 on the left-hand side of Equation (6) are attached on the freeform surface in 
the incident light field, as shown in the below region and labeled as blue arrows in Figure 
2. The right-hand side of Equation (6), equaling to Equation (9), is labeled as 𝐁 with red 
arrows attaching on the freeform surface in the outgoing light field. 

 

Figure 2. Sketch of IFPI process of Equation (11).

Photonics 2025, 12, x FOR PEER REVIEW 7 of 15 
 

 

Figure 2. Sketch of IFPI process of Equation (11). 

In the k-th iteration, ሺ𝐎ᇱሻ୩ and ∇ሺ𝐙ሻ୩ are calculated and substituted into Equation 
(9) to form the k-th vector ሺ𝐁ሻ୩; then, by solving Equation (11), a new freeform surface ሺ𝐙୴ሻ୩ାଵ = 𝐇ିଵሾሺ𝐁ሻ୩ሿ can be obtained. In the next iteration, the ሺk + 1ሻ-th value ሺ𝐙୴ሻ୩ାଵ is 
substituted into Equation (9) to obtain a new ሺ𝐁ሻ୩ାଵ  value; by solving Equation (11) 
again, surface ሺ𝐙୴ሻ୩ାଶ  can be acquired. If the freeform surface reaches the unique 
solution, the gradients the in incident light field should be balanced to the ones in the 
outgoing light field with ∇ሺ𝐙ሻ = ሺ𝐁ሻ . For an actual criterion in IFPI, we can use ∥∥ሺ𝐙୴ሻାଵ − ሺ𝐙୴ሻ∥∥ < δ , where δ  is the solution accuracy; then, ሺ𝐙୴ሻ  should be the 
solution Z∗. The detailed steps of the IFPI algorithm are shown in Figure 3. 

 

Figure 3. The flow chart of IFPI algorithm. 

3. Design Examples 
3.1. Convergence Characteristics in IFPI Freeform Construction 

The first example explores the feasibility and convergence of the FPI method in 
freeform optical design. In this example, the meshes (a 50 × 50 grid) of the light source 
and the target surface are set to a uniform distribution with the same unit square area of 1 mm × 1 mm , and the distance between the light source and the target plane is 
maintained as 10 mm. The position of the light source grid is fixed at the origin, the center 
position of the target surface is moved from the origin along the Y-axis to increase the off-
axis angle θ, and the corresponding freeform surfaces with an increasing off-axis angle 
are calculated via iterations (8) and (10). The final solution tolerance is set to δ = 10ି, the 
convergence steps of iterations (8) and (10) are marked for different off-axis angles θ, and 
the trend of change is shown in Figure 4. 

 

Figure 3. The flow chart of IFPI algorithm.

3. Design Examples
3.1. Convergence Characteristics in IFPI Freeform Construction

The first example explores the feasibility and convergence of the FPI method in
freeform optical design. In this example, the meshes (a 50 × 50 grid) of the light source
and the target surface are set to a uniform distribution with the same unit square area of
1 mm× 1 mm, and the distance between the light source and the target plane is maintained
as 10 mm. The position of the light source grid is fixed at the origin, the center position of
the target surface is moved from the origin along the Y-axis to increase the off-axis angle θ,
and the corresponding freeform surfaces with an increasing off-axis angle are calculated
via iterations (8) and (10). The final solution tolerance is set to δ = 10−6, the convergence
steps of iterations (8) and (10) are marked for different off-axis angles θ, and the trend of
change is shown in Figure 4.

Figure 4a illustrates the variation in the tolerance to convergence steps for IFPI with
different off-axis angles. The maximum convergence time of five different θ is 8.9 s.
Figure 4a shows that a greater off-axis angle results in a larger initial tolerance, implying a
more challenging precision requirement for surface construction. However, as the number
of iterations increases, the tolerances of various angles decrease, and all the tolerances
approach 10−2 after 12 steps. For the iterations for larger off-axis angles, the slopes of the
convergence curves are steeper, indicating faster convergence. For example, at the 2nd step,
the convergence rate for the off-axis angle θ = 42.59◦ is significantly greater than that for
θ = 19.47◦, approaching the solution at a higher speed. Figure 4b presents the relationship
between the off-axis angles and total convergence steps for the same final tolerance of
10−6. The maximum convergence time of 12 samples is 21.7 s. The diagram indicates a
downward trend in the convergence steps as the off-axis angle increases. Specifically, when
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the off-axis angle is small, such as 10◦, the number of convergence steps is relatively large,
implying that more iterations are necessary to achieve design accuracy. As the off-axis
angle increases, the number of convergence steps decreases, with a notable reduction at 40◦.
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Figure 4 confirms that for points that deviate farther from the optical axis, the con-
vergence speed is higher than for those with a smaller off-axis angle (the paraxial region).
This is determined by the convergence characteristics of FPI. Because the off-axis angle θ is
larger, Oz = cosθ is smaller, resulting in faster convergence. This means that the algorithm
is suitable for freeform surface construction, especially for nonparaxial regions.

The root-mean-square (RMS) value is used to evaluate the deviation between the
precise ray tracing map Φs of the constructed surface and the preset target map Φ∗:

RMS =

√
1

mn

(
∑i ∑j|Φs(i, j)− Φ∗(i, j)|2

)
, (12)

where m and n denote the grid number in the tx and ty direction.
To test the robustness of the algorithm, we introduced 50 sets of random jitters to the

target grid. One set of random grids is shown in Figure 5a. As the number of iterations
increases, the RMS quickly decreases. Additionally, different random grids show almost
the same convergence trend, as illustrated in Figure 5b. After 50 sets of random grids
reached the RMS threshold, the final RMS values were distributed within a stable range, as
illustrated in Figure 5c.
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3.2. Comparison with Other Freeform Surface Construction Methods

To evaluate the efficiency of the IFPI method in constructing freeform surfaces under
an unchanged ray mapping, the constructing methods of freeform surface mentioned in
the Introduction are recalled for comparative analysis. The aperture of lens in this example
is a square with a size of 1 mm × 1 mm, the target distribution is set to be uniform with
a size of 50 mm × 50 mm, and the distance between the freeform surface and the target
plane is 25 mm. The maximum off-axis angle is about 45◦ at the four corners of the square.

Figure 6a–d illustrate the accurate ray mapping on the target plane, corresponding
to the results of the freeform surface obtained through the V1–V2 [19], linear advection
equation [17], conventional surface construction [11], and Feng’s methods [16], respectively.
Figure 6i corresponds to the result of the freeform surface obtained via the IFPI method.
The precise mapping is calculated through our self-written ray mapping program. A
comparison of Figure 6a–d,i demonstrates that the surface constructed using IFPI can
accurately direct light to the predetermined target grid. In contrast, the surfaces created
by the four other methods emit light that deviates from the intended target position,
particularly in the nonparaxial region. This deviation becomes more pronounced as the
off-axis angle increases, as illustrated by the four edges in Figure 6a–d.
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Figure 6. Comparison of the effects of the freeform surfaces constructed via the IFPI and other
four methods. (a) Precise mapping grid on the target surface generated via the V1–V2 method; a
30 × 30 grid is shown. (b) Precise mapping grid produced via the linear advection equation method.
(c) Precise mapping grid produced via the conventional surface construction method. (d) Precise
mapping grid produced via Feng’s method. (e) Corresponding irradiance distribution by the V1–V2
method; a 200 × 200 grid is used. (f) Corresponding irradiance distribution by the linear advection
equation method. (g) Corresponding irradiance distribution by the conventional surface construction
method. (h) Corresponding irradiance distribution by Feng’s method. (i) Precise mapping grid on
the target surface generated via the IFPI method. (j) Corresponding irradiance distribution by the
IFPI method.
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Figure 6e–h,j show the illumination effects of the freeform surface obtained via the
five methods above, respectively. Figure 6j shows that the freeform surface obtained via
the IFPI method can effectively achieve a uniform illuminating distribution of the desired
result in the nonparaxial region. The illuminating distributions produced by the other four
methods are nonuniform and distorted as the off-axis angle increases; see the four edges
in Figure 6e–h. The results indicate that the IFPI method shows significant improvements
compared with the other four methods, particularly in the off-axis region under constant
ray mapping.

3.3. Complex Image Reproduction via IFPI

The last example involves reproducing an image with intricate details via the IFPI
method. The original image is shown in Figure 7a, which is a tree pattern with a square
resolution set to 200 × 200 pixels. The light source is set as a Gaussian density distribution,
and the target is set as the density distribution of Figure 7a. The source-to-target map is
solved on the basis of the L2-optimal transport in Equations (2) and (3) via the numerical
iteration method in [27], as shown in Figure 7d, which remains unchanged during the
iteration. The aperture of the freeform lens is set as a square with a size of 2 × 2 mm, the
size of the target plane is set as 100 mm × 100 mm, and the distance between the lens and
the target plane is set as 50 mm for nonparaxial situation and 570 mm for paraxial situation,
with the off-axis angle of 45◦ for the nonparaxial situation and 5◦ for the paraxial situation.
The freeform lens is constructed by IFPI with 53 steps converging to a tolerance of 10−6 in
less than 180 s.
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Figure 7. The image sample utilizes a tree pattern generated by the FPI method. (a) Original image of
a tree; (b) freeform surface profile built by IFPI for nonparaxial region; (c) freeform surface profile
built by IFPI for paraxial region; (d) preset target map, remained unchanged during the iteration;
(e) simulation of the illumination distribution in nonparaxial case; (f) simulation of the illumination
distribution in paraxial case.
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Figure 7b,e show the freeform surface profile and the simulated illuminance for
the nonparaxial situation, with an RMS of 0.046 mm. On the other hand, Figure 7c,f
show the freeform surface profile and simulated illuminance for the paraxial situation,
with an RMS of 0.042 mm. It is evident that the achieved results are highly consistent
with the preset source-to-target map and illuminance distribution, both in paraxial and
nonparaxial regions.

3.4. Discussion

Comparison results from Section 3.2 indicate that freeform surface construction meth-
ods using paraxial or far-field approximations are usually unable to produce integrable
ray mapping outcomes in nonparaxial situations. If these methods are used to construct
freeform surfaces, it is essential to implement processes that adjust the ray mapping to meet
the integrability condition. The IFPI method continuously iterates the BGE equation to
achieve the target mapping without altering the mapping itself. This process involves the
surface adapting to the integrable mapping rather than the mapping adapting to the surface.

For the complex image reproduction shown in Figure 7, even though the design
methods that enhance ray mapping can be effectively implemented, the complexity of
mapping calculations may nonlinearly increase as the grid becomes more complex. In
contrast, the IFPI method requires calculating the mapping only once, making the surface
iteration process linear. Additionally, as demonstrated in the results of Section 3.1, its
convergence speed is both fast and stable. This marks a significant difference between the
IFPI method and other integrable design methods.

The current IFPI method proposed in this paper is implemented using Cartesian
coordinates (x, y) with a collimated beam. This method can also be extended to other
orthogonal coordinate systems, such as polar coordinates (r, φ), to accommodate the
domain of point light sources. The relevant mathematical treatment can be found in [15].
We will address this point in our future work.

4. Conclusions
We propose an efficient IFPI method to address the integrability problem in the ray

mapping method for freeform lens design. An equivalent form of the integrable condition is
substituted into Snell’s law to form a balanced expression of the freeform surface of the FPI
type. We prove that such FPI equations have a unique solution, which is determined by the
geometric properties of the freeform surface and is independent of the source–target map.
Benefiting from heuristic processes, the method can calculate a superior freeform surface
in the nonparaxial region using a fixed source–target map based on optimal transport.
The iterative feature results in a higher convergence speed in the off-axis region. We
demonstrated the efficiency and robustness of the proposed method by designing freeform
lenses to generate complex illuminated images.
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The following abbreviations are used in this manuscript:
FPI Fixed-point iteration
IFPI Implicit fixed-point iteration
BGE Balanced gradient equation
RMS Root mean square
PDE Partial differential equation

Appendix A. Derivation of BGE
Notes: Subscripts below the symbol ∂ mean partial derivative; subscripts below a

vector mean components along the coordinate axis.
Expanding Equation (5) in scalar form and using the first and second formula to divide

the third one, we can obtain
ANx = noOx − niIx

ANy = noOy − niIy

ANz = noOz − niIz

⇒
{

Nx
Nz

= noOx−niIx
noOz−niIz

Ny
Nz

=
noOy−niIy
noOz−niIz

. (A1)

For the collimated beam, the unit vector of incident light is I = (0, 0, 1). Substi-
tuting the expression of Nx, Ny, and Nz in Equation (4) into Equation (A1), and letting
Ix = 0, Iy = 0, Iz = 1, and n0 = 1, Equation (A1) can be converted into the following form:{

ni·∂xZ = Ox + Oz·∂xZ
ni·∂yZ = Oy + Oz·∂yZ

. (A2)

A reduction vector O′ is introduced with the following form:(
Ox

′, Oy
′, Oz

′) = (
Ox, Oy, Oz

)
/ni.

By dividing both sides of Equation (A2) by n and substituting the reduced vector O′

in it, then Equation (6) can be obtained:{
∂xZ = Ox

′ + Oz
′·∂xZ

∂yZ = Oy
′ + Oz

′·∂yZ
.

Appendix B. Derivation of Equation (8)

The distance ρ from points on the freeform surface
→
G = (x, y, z) to the target surface

→
T =

(
tx, ty, tz

)
is

ρ =

∣∣∣∣→T −
→
G
∣∣∣∣ = √

(tx − x)2 +
(
ty − y

)2
+ (tz − z)2.

According to the geometric relationship, the unit outgoing vector
→
O has the form

→
O =

→
T −

→
G

ρ
⇒


Ox = tx−x

ρ

Oy =
ty−y
ρ

Oz = tz−z
ρ

.
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From the above relationship, it is easy to find that the gradient of ρ is equal to −
→
O:

∇ρ =
(
∂xρ, ∂yρ, ∂zρ

)
=

(
−Ox,−Oy,−Oz

)
. (A3)

The total differential of ρ is given as follows:

dρ = ∂xρdx + ∂yρdy + ∂zρdz.

Integrating both sides of the above equation, we can obtain another expression of ρ:

ρ =
∫

∂xρdx +
∫

∂yρdy +
∫

∂zρdz = −
[∫

Oxdx +
∫

Oydy +
∫

Ozdz
]
+ C1, (A4)

where C1 is a constant.
The total differential of Z is as follows:

dZ = ∂xZdx + ∂yZdy.

Integrating both sides of the above equation,

Z =
∫

∂xZdx +
∫

∂yZdy + C2, (A5)

where C2 is a constant.
Substituting Equations (6) and (A4) into the right-hand side of Equation (A5), we have

the following:

Z =
∫ (

Ox
′ + Oz

′∂xZ
)
dx +

∫ (
Oy

′ + Oz
′∂yZ

)
dy + C2

=
∫

Ox
′dx +

∫
Oy

′dy +
[∫

O′
z∂xZdx +

∫
O′

z∂yZdy
]
+ C2

=
∫

Ox
′dx +

∫
Oy

′dy +
∫

Oz
′dz + C2

=
(∫

Oxdx +
∫

Oydy +
∫

Ozdz
)
/ni + C2

= −ρ/ni + C,

where C = C1/ni + C2 is a constant, and
∫

Oz
′dz =

∫
Oz

′∂xZdx +
∫

Oz
′∂yZdy.
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