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Abstract: Galactomannan/organomodified montmoriollonite (G1M/OM-MMT) nanocom-
posites and G2M/OM-MMT nanocomposites were biosynthesized using galactomannan
(GM) and organomodified montmorillonite (OM-MMT) with cetyltrimethylammonium
bromide (CTAB, 10−2 M) designed for antioxidant activities. Furthermore, galactomannan
(GM) was isolated from fruit rind of Punica granatum grown in the Djelfa region, in Algeria,
and the nanoclay used in this work was an Algerian montmorillonite. Two different types
of nanocomposites were synthetized using different amounts of GM and OM-MMT (w/w)
[GM1/OM-MMT (0.5:1) and GM2/OM-MMT (0.5:2)] via a solution interaction method.
FTIR analysis confirmed the intercalation of GM in the interlayer of OM-MMT. Moreover,
X-ray diffraction (XRD) showed that the interlayer space of OM-MMT was increased from
124.6 nm to 209.9 nm, and regarding the intercalation of GM in the OM-MMT interlayers,
scanning electron microscopy (SEM) and energy-dispersive X-ray (DEX) confirmed the
intercalated structure of the nanocomposites, while thermogravimetric analysis (TGA) and
differential scanning calorimetry (DSC) improved the thermal stability of the synthesized
bionanocomposites. The antioxidant activities of the GM1/OM-MMT nanocomposites and
GM2/OM-MMT nanocomposites were evaluated with a spectrophotometer and DPPH (1,1-
diphenyl-2-picrylhydrazine) radical scavenging assay. GM1/OM-MMT nanocomposites
and GM2/OM-MMT nanocomposites gave good antioxidant activity. Indeed, GM1/OM-
MMT had an IC50 of 0.19 mg/mL and GM2/OM-MMT an IC50 of 0.28 mg/mL.

Keywords: nanocomposites; polysaccharide; Punica granatum; montmorillonite; biopoly-
mer

1. Introduction
Bionanocomposites are synthesized from a biopolymer as matrix and an inorganic

material as nanoclay; they have wide applications in different fields due to their biocom-
patibility and biodegradability [1]. Indeed, bionanocomposites are natural products based
on agro-polymers extracted from biomass such as starch, cellulose and biodegradable
polymers such as polylactic acid (PLA), polycaprolactone (PCL), poly(butylene succinate)
(PBS) and polyhydroxybutyrate (PHB) [1]. The reinforcement most used in the synthesis of
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bionanocomposites is montmorillonite since it has a nanometric structure and it has the
power to modify the physico-chemical and mechanical characteristics of matrices based on
polymers and biopolymers [2–4].

The range of applications and uses of bionanocomposites is vast. They are used
in medicine [5] in pharmaceutical products, as they have antioxidant and antibacterial
activity [6], but they are also used in hemodialysis, drug delivery, medical implants,
scaffolding [7], biomedical devices, cosmetics [8] and non-steroidal anti-inflammatory
drugs [9]. Galactomannan is a biodegradable and biocompatible biopolymer [10] ob-
tained from legumes [11] such as Astragalus gombiformis Pomel (Fabaceae) [12], Cassia
fistula [13], Leucaena leucocephala (Lam.) [14], Ceratonia siliqua seeds [15], Cyamop-
sis tetragonoloba [16,17] and fenugreek (Trigonella foenum-graecum) [18]. In addition,
galactomannan is a heteropolysaccharide consisting of mannose and galactose units [19],
and it has excellent antioxidant, immunomodulatory, antitumoral and antimetastatic ac-
tivities [20,21], used in various biomedical applications [22,23]. It is applied in food, in
pharmaceutical, in biomedical and in cosmetic industries due to its biocompatibility, water
solubility and non-ionic properties [24–26], and it also has ionic stability and heat [27].

In this study, our objective is to synthesize a bionanocomposites designed for pharma-
ceutical applications using galactomannan extract from P. granatum as a polymer matrix
and organomodified montmorillonite as a nanoclay. These bionanocomposites are natural,
non-toxic and eco-friendly products.

2. Materials and Methods
2.1. Materials

Galactomannan (GM) was obtained by extraction from fruit rind of punica granatum,
sodium chloride (Sigma-Aldrich company, Darmstadt, Germany), petroleum ether (Honey-
well international Inc., Charlotte, NC, USA), cetyltrimethylammonuim bromide (CTAB)
(Honeywell international Inc., Charlotte, NC, USA), DPPH (Sigma-Aldrich company, Darm-
stadt, Germany), citric acid (Diagonostics Biochem Canada Inc., London, ON, Canada) and
ethanol (Sigma-Aldrich company, Darmstadt, Germany) which were purchased and used as
received, and all chemical reagents were of analytical reagent (AR) grade. Montmorillonite
was obtained from the Bental National Company of Nonferrous Mining Products, Maghnia
Unit, Algeria.

2.2. Isolation and Purification of Biopolymer

GM was extracted from fruit rind of Punica granatum from the Djelfa region located
in central Algeria, following the protocol of Rao, Ghosh and Krishna with slight modifica-
tions [28]. A total of 40 g of P. granatum powder was macerated in 300 mL of petroleum
ether at room temperature for 72 h; then, the extract was subsequently filtered and the solid
part was dried and suspended in 1000 mL of cold water with stirring for the night. Then,
it was filtered and the extract was concentrated to a reduced volume of 450 mL [28] and
purified by dialysis using a 12–14 kD membrane for 24 h, followed by the precipitation
of GM with ethanol dropwise for 3 h. This solution was maintained at 4 ◦C overnight to
obtain a viscous yellow gel in water. This gel was separated by centrifugation at 6000 rpm
for 10 min. The final product was separated using a freeze dryer.

2.3. Synthesis of Galactomannan/Organomodified Montmorillonite Nanocomposites

The montmorillonite used in this study is a 2:1 phyllosilicate composed of an octa-
hedral metal–oxygen sheet sandwiched between two tetrahedral [SiO4] sheets, forming a
sandwich structure with a thickness of 0.9 nm [29] and a cation exchange capacity (CEC) of
90 meq/g [30].
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The organomodified montmorillonite (OM-MMT) was carried out as described by
Loïc Lepluart [31]. A total of 10 g of MMT-Na+ was dispersed in 100 mL of a 10−2 M CTAB
solution (3.64 g of CTAB). The mixture was heated to 80 ◦C with stirring for 3 h. Afterward,
the OM-MMT was filtered, washed five times with double-distilled water, dried at 80 ◦C
for 6 h, crushed and stored.

GM1/OM-MMT nanocomposites and GM2/OM-MMT nanocomposites were synthe-
sized according to the method reported by Ponomarev [32]. For the synthesis of GM1/OM-
MMT (0.5:1)] and GM2/OM-MMT (0.5:2), two GM solutions (A and B) were prepared
using 0.5 g of GM which was dissolved in 50 mL of deionized water and stirred for 30 min
until its total dissolution. On the other hand, two solutions (A’ and B’) of organomodified
montmorillonite were prepared using 1 g and 2 g of organomodified montmorillonite,
respectively, and each amount of OM-MMT was mixed with 50 mL of deionized water and
stirred for 4 h. These two solutions of galactomannan and OM-MMT were mixed (A mixed
with A’) and (B mixed with B’) and left stirring for 24 h at room temperature. The obtained
products were filtered and washed with a large amount of distilled water and ethanol until
the filtrate was neutral. The final product was dried in an oven at 40 ◦C for 48 h and stored
in a desiccator.

2.4. In Vitro Antioxidant Assay

The antioxidant activity of GM1/OM-MMT nanocomposites and GM2/OM-MMT
nanocomposites was determined using DPPH as a source of free radicals following the
protocol described by Brand-Williams et al. [33]. Varying weights (0.03–1.0) mg of the
GM1/OM-MMT nanocomposites and GM2/OM-MMT nanocomposites were mixed with
1 mL of water and dispersed by ultrasound for 30 min. A methanolic solution containing
0.2 mM of DPPH was prepared. A total of 1 mL of methanolic DPPH solution was added
to each tube and left to stand for 30 min in the dark; then, the absorbance was measured
at 517 nm. The following equation was used to calculate the percentage of inhibition of
DDPH radicals [33]:

% inhibition =
AC − AS

AC
× 100 (1)

where Ac is the absorbance of the control; As is the absorbance of the samples, after 30 min
and measured at 517 nm.

2.5. Characterization Methods

Fourier-transform infrared (FT-IR) spectra of the synthetized nanocomposites were
obtained using IRTracer-100 with MIRacle 10 single reflection ATR accessory (Shimadzu
Corporation, Kyoto, Japan). X-ray diffraction (XRD) measurement was carried out using
an X-ray diffractometer (Empyrean PANAlytical, Malvern Panalytical, Twente, The Nether-
lands) at 25 ◦C. Cu anode material: K-Alpha1(1.54060 Å), K-lpha2 (1.54443 Å) and K-Beta
(1.39225 Å), at 40 mA, and 45 kV were recorded in the region of 2θ from 3.0131 to 89.9831.
Scanning electron microscopy (Quattro SEM, Thermo Fisher Scientific, Waltham, MA, USA)
and energy-dispersive X-ray (DEX) analysis were performed using EDAX APEX software
and with an accelerating voltage of 5 kV.

TGA, DSC (SETARAMLabsysEvo-gas, Lyon, France) analysis was performed under
nitrogen gas (40 mL/min) in the temperature range of 28.22–800 ◦C, with a heating rate of
10 ◦C/min. Antioxidant study was conducted with an SP-UV 500DB/VDB Series UV–Vis
spectrophotometer (Spectrum Instruments GmbH, Berlin, Germany).
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3. Results and Discussion
3.1. FT-IR Analysis

The FT-IR analyses of OM-MMT, GM1/OM-MMT nanocomposites and GM2/OM-
MMT nanocomposites are shown in Figure 1. Broadbands in the region from 3623 cm−1

are attributed to the stretching vibrations of the OH function of montmorillonite and
galactomannan. There are bands at 2914 cm−1 and 2859 cm−1 corresponding to the C-H
stretching vibrations (CH and CH2) of GM1/OM-MMT nanocomposites and GM2/OM-
MMT nanocomposites [34]. The bands at 2357 cm−1 and 1639.8 cm−1 indicate absorbed
water in the synthetized nanocomposites [35]. The bands at 1006 and at 917 cm−1 are
attributed to the stretching vibration of Si-O of the MMT and C-O of galactomannan.
Another band is found at 848 cm−1 for Al-OH, 785 cm−1 due to (Al, Mg)-OH vibrations,
and 523 and 436 cm−1 for Si-O.
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Figure 1. FT-IR spectrum of OM-MMT, GM1/OM-MMT nanocomposites and GM2/OM-MMT
nanocomposites.

3.2. X-Ray Diffraction (XRD)

Figure 2a illustrates the DRX of MMT-Na+ and organomodified montmorillonite (OM-
MMT). Figure 2b represents the XRD of GM1/OM-MMT and GM2/OM-MMT nanocom-
posites. In Figure 2a, the peak at 2θ = 7.267◦ (d001 = 12.459 Å) corresponds to MMT-Na+.
Other intense peaks are observed at 2θ = 19.85◦, 27.30◦, 31.77◦, 45.45◦, 56.44◦, 66.75◦, 75.24◦

and 84.04◦. OM-MMT shows a peak at 2θ = 4.20◦ (d001 = 209.9 nm), indicating the interca-
lation of CTAB into the MMT-Na+ interlayer and the interlayer space was increased from
124.6 nm to 209.9 nm. Figure 2b illustrates the DRX of GM1/OM-MMT and GM2/OM-
MMT nanocomposites with different concentrations of GM. In the diffractogram, there
are montmorillonite peaks located at 2θ: 19◦, 26◦ and 64◦. Other peaks with different
intensities observed on the diffractogram are attributed to the OM-MMT and indicate that
the latter is partially or totally intercalated by the GM [36].
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Figure 2. XRD patterns of (a) MMT-Na+ and OM-MMT, (b) GM1/OM-MMT nanocomposites and
GM2/OM-MMT nanocomposites.

3.3. Morphological Investigation of Bionanocomposites and EDX Analysis

Figure 3 shows the morphology and EDX of OM-MMT, the synthesized GM1/OM-
MMT and GM2/OM-MMT nanocomposites investigated by SEM and EDX. The SEM
images of OM-MMT are shown in Figure 3a,b, those of GM1/OM-MMT nanocomposites
are shown in Figure 3d,e and those of GM2/OM-MMT nanocomposites are presented in
Figure 3g,h. All the images clearly reveal that the surface morphology of the samples fea-
tures both rough and smooth areas, organized in sheet-like structures. These areas display
large cavities and a compacted surface, resulting from the dispersion of galactomannan
within the intercalated montmorillonite.
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Figure 3c,f,i show the EDX spectra for the OM-MMT, GM1/OM-MMT nanocomposites
and GM2/OM-MMT nanocomposites, respectively. The peaks detected between 0 and 1 keV
of the GM1/OM-MMT nanocomposites (Figure 3f) and GM2/OM-MMT nanocomposites
(Figure 3i) represent the binding energies of OM-MMT (Al, Si, Mg and GM (C and O)).

In addition, the peaks found between 1 and 2 keV of OM-MMT (Figure 3c), of
GM1/OM-MMT (Figure 3f), of GM2/OM-MMT (Figure 3i) correspond to the binding
energies of MMT–Mg, Al, Si and Br. The quantitative calculation obtained by EDX is
presented in the Table 1a for OM-MMT, in Table 1b for GM1/OM-MMT nanocomposites
and in Table 1c for GM2/OM-MMT nanocomposites, and these results confirm the presence
of elemental compounds of the OM-MM and GM. The percentage weights obtained for
GM1/OM−MMT nanocomposites and for GM2/OM−MMT nanocomposites are similar.

3.4. Thermal Stability

The TGA analyses of OM-MMT, GM1/OM-MMT nanocomposites and GM2/OM-
MMT nanocomposites are shown in Figure 4a, 4b and 4c, respectively. A total of 14.51 mg,
10.16 mg and 15.24 mg of each sample of OM-MMT, GM1/OM-MMT nanocomposites
and GM2/OM-MMT nanocomposites, respectively, were analyzed. For the OM-MMT, a
thermal decomposition in three steps is seen. In addition, an initial weight loss of 0.4 mg
(2.5%) was observed between 28.3 and 159.0 ◦C, which can be attributed to the loss of
adsorbed water. A total of 2.6 mg (17.9%) was lost between 159.0 and 350.7 ◦C, which
may be due to CTAB degradation. Finally, in the temperature range of 349.5–795.9 ◦C,
a mass of 1.98 mg (13.6%) was lost and it was attributed to the mineral composition of
montmorillonite.
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Table 1. Percentage of chemical elements obtained by EDX analysis of (a) OM-MMT, (b) GM1/OM-
MMT nanocomposites and (c) GM2/OM-MMT nanocomposites.

(a) OM-MMT

Element CK OK MgK AlK SiK ClK KK Br
L

Weight(%) 19.9 51.8 2.9 4.6 15.7 0.4 0.1 4.5

Atomic(%) 28.8 55.8 1.5 2.9 9.6 0.2 0.4 0.9

(b) GM1/OM-MMT nanocomposite

Element CK OK MgK AlK SiK Br L

Weight(%) 29.2 48.4 2.8 3.2 12.8 4.1

Atomic(%) 39.4 49.0 1.4 1.9 7.4 0.8

(c) GM2/OM-MMT nanocomposite

Element CK OK MgK AlK SiK KK Br
L

Weight(%) 25.9 56.2 1.5 3.5 10.3 0.6 1.9

Atomic(%) 34.5 55.9 0.9 2.1 5.8 0.2 0.4
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Figure 4. Thermogravimetric analysis (TGA) of (a) OM-MMT, (b) GM1/OM-MMT nanocomposites
and (c) GM2/OM-MMT nanocomposites.

The nanocomposites show thermal decomposition in different steps, the first one being
close to 150.0 ◦C, which is attributed to the loss of adsorbed water in the GMx/OM-MMT
nanocomposites. A weight loss of 0.269 mg (2.6%) was observed for GM1/OM-MMT and a
weight loss of 0.3 mg (2.3%) was obtained for GM2/OM-MMT.

The second weight loss was found between 155.1 ◦C and 346.7 ◦C of 1.6 mg (15.7%)
for GM1/OM-MMT and is attributed to galactomannan degradation. In addition, a weight
loss of 0.3 mg (1.9%) was observed for GM2/OM-MMT between 142.2 and 208.8 ◦C due to
CTAB decomposition. The thirst mass loss is observed between 345.2 and 795.5 ◦C of 1.8 mg
(17.4%) for GM1/OM-MMT, and is attributed to the decomposition of the mineral composi-
tion of montmorillonite. For GM2/OM-MMT, a weight loss is observed between 208.2 ◦C
and 335.1 ◦C of 2.1 mg (13.9%), which is attributed to the galactomannan decomposition,
and a fourth weight loss was observed between 334.9 ◦C and 523.3 ◦C of 2.3 mg (15.1%) for
GM2/OM-MMT, which is attributed to the decomposition of the mineral composition of
montmorillonite.

3.5. DSC Analysis

The DSC analyses of OM-MMT, GM1/OM-MMT nanocomposites and GM2/OM-
MMT nanocomposites are shown in Figure 5a, 5b and 5c, respectively. A total of 14.5 mg,
10.7 mg and 15.2 mg of each sample of OM-MMT, GM1/OM-MMT nanocomposites and
GM2/OM-MMT nanocomposites, respectively, were analyzed and heated from 28.6 to
800 ◦C at a scan rate of 10 ◦C/min.

DSC curves of organomodified montmorillonite (OM-MMT) have endothermic peaks
at 39.56, 291.0 and at 434.5 ◦C, with the first of the glass transition (Tg) with enthalpy of
566.1 J/g (29.7–124.5 ◦C). The second peak is the first melting temperature (Tm1 = 291.0 ◦C)
with melting enthalpy, ∆Hm1 = 44.8 J/g, and the third peak is the second melting tempera-
ture (Tm2 = 334.5 ◦C) with second melting enthalpy (∆Hm2 = 84.1 J/g).

DSC curves of GM1/OM-MMT nanocomposites have endothermic peaks at 41.2, at
261.2, at 322.5 and at 427.4 ◦C, the first of the glass transition Tg = 28.8 ◦C and an enthalpy
of 377.9 J/g (Onset: 28.8 ◦C, Offset: 139.3 ◦C). The second, third and fourth peaks represent
the melting temperatures (261.2 ◦C, 322.5 ◦C and 427.4 ◦C), and melting enthalpies of 9.9,
0.6 and 46.3 J/g. On the other hand, the DSC curves of GM2/OM-MMT nanocomposites
also have four endothermic peaks at 40.2, 277.3, 330.8 and at 444.2 ◦C, and the first of the
glass transition with an enthalpy of 323.7 J/g. The second, third and fourth peaks represent
the melting temperatures of 277.4, 330.8 and 444.2 ◦C, with melting enthalpies of 323.7,
12.7, 1.6 and 42.7 J/g, respectively.
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Figure 5. DSC thermograms of (a) OM-MMT, (b) GM1/OM-MMT nanocomposites and (c) GM2/OM-
MMT nanocomposites.

The compositions of the GM1/OM-MMT and GM2/OM-MMT nanocomposites influ-
enced the thermal behavior of the nanocomposites. The TGA and DSC thermograms of the
nanocomposites are different from those of OM-MMT.
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3.6. In Vitro Antioxidant Discussion

The antioxidant activities of GM1/OM-MMT and GM2/OM-MMT nanocomposites
were tested through the diphenyl-2-picryhydrazyl (DPPH) assay. The DPPH free radi-
cals were confined in the interlayers of the nanocomposites and then trapped, and could
subsequently be neutralized. In this study, the in vitro antioxidant potential of GM1/OM-
MMT nanocomposites and GM2/OM-MMT nanocomposites was evaluated against DPPH
(Figure 6). It was observed that the percentage (Figure 7) of DPPH scavenging activ-
ity of GM1/OM-MMT nanocomposites was 62.3%, higher than that of GM2/OM-MMT
nanocomposites, which was of 61.8% at different concentrations (0.033 to 1.0 mg/mL).
Comparatively, GM1/OM-MMT nanocomposites exhibit higher free radical scavenging
activity than GM2/OM-MMT nanocomposites, and this is perhaps reflected in the concen-
tration of the biopolymers used in the synthesis of the nanocomposites. The obtained IC50

values for GM1/OM-MMT nanocomposites and GM2/OM-MMT nanocomposites were
0.19 mg/mL and 0.28 mg/mL, respectively.
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Figure 6. Comparison of DPPH radical scavenging activity between GM1/OM-MMT nanocomposites
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Figure 7. DPPH radical scavenging activity of (a) GM1/OM-MMT nanocomposites and (b) GM2/OM-
MMT nanocomposites.

3.7. DPPH Radical Scavenging Mechanism

GM1/OM-MMT and GM2/OM-MMT nanocomposites are rich in hydroxyl groups
(-OH) due to the presence of galactomannan [37]. They can release hydrogen radicals
followed by rapid transfer of liberated hydrogen protons and DPPH free radicals to scav-
enge free radicals (Figure 8). Compounds that have hydroxyl groups in them are good
antioxidants. Furthermore, ascorbic acid is a very good antioxidant; it is able to release two
hydrogen radicals per molecule from its hydroxyl groups [38,39]. Phenolic compounds
also have antioxidant properties by releasing hydrogen radicals from hydroxyl groups and
can subsequently scavenge free radicals [40].
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4. Conclusions
In this study, GM1/OM-MMT and GM2/OM-MMT nanocomposites were prepared

using organomodified montmorillonite (OM-MMT) and galactomannan (GM) as natural
and eco-friendly products. In addition, OM-MMT was obtained by chemically modifying
crude montmorillonite with cetyltrimethylammonium bromide (CTAB). The gallery spacing
of organomodified montmorillonite was increased from 124.6 to 209.9 nm, and this increase
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allowed the biopolymer to intercalate into the galleries of OM-MM. Furthermore, GM
was extracted from fruit rind of punicagranatum and was a water-soluble, biodegradable,
biocompatible and non-toxic biopolymer. The synthesis of nanocomposites was carried out
by solution intercalation using the deionized water as a solvent. The FT-IR analysis clearly
confirms the intercalation of GM in the gallery of montmorillonite by the presence of C-H
and C-O vibration bands of the GM at 2900–2800 cm−1 and at 1006.5 cm−1, respectively. The
disappearance or reduction in the montmorillonite peaks at 35◦, 55◦ and 74◦ indicates the
intercalation of the biopolymer into the interlayers of OM-MMT. Moreover, the SEM-EDX
analyses are in agreement with the results of the XRD analysis. Analysis by TGA shows
that the OM-MMT and synthesized nanocomposites are very thermally stable. During
the heating of OM-MMT, GM1/OM-MMT and GM2/OM-MMT nanocomposites, which
took place between room temperature and 800 ◦C, several mass losses were observed
for OM-MMT and for nanocomposites with different percentages, confirming that the
materials have different compositions. At 795.5 ◦C and 523.2 ◦C, respectively, GM1/OM-
MMT nanocomposites and GM2/OM-MMT nanocomposites lost all chemical and mineral
composition. The inhibition percentages of DPPH radicals by the GM1/OM-MMT and
GM2/OM-MMT nanocomposites are of 62.3% and 61.8% and the graphically calculated
IC50 values are of 0.19 mg/mL and 0.28 mg/mL, respectively. The process of DPPH free
radical inhibition is based on the confinement and inhibition of DPPH radicals within the
nanocomposite galleries.
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GM Galactomannan
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