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Abstract: Radiation is a process common to classical and quantum systems with very different effects in
each regime. In a quantum system, the interaction of a bound electron with its own radiation field leads
to complex shifts in the energy levels of the electron, with the real part of the shift corresponding to a
shift in the energy level and the imaginary part to the width of the energy level. The most celebrated
radiative shift is the Lamb shift between the 2s1/2 and the 2p1/2 levels of the hydrogen atom. The
measurement of this shift in 1947 by Willis Lamb Jr. proved that the prediction by Dirac theory that
the energy levels were degenerate was incorrect. Hans Bethe’s calculation of the shift showed how to
deal with the divergences plaguing the existing theories and led to the understanding that interactions
with the zero-point vacuum field, the lowest energy state of the quantized electromagnetic field, have
measurable effects, not just resetting the zero of energy. This understanding led to the development
of modern quantum electrodynamics (QED). This historical pedagogic paper explores the history of
Bethe’s calculation and its significance. It explores radiative effects in classical and quantum systems
from different perspectives, with the emphasis on understanding the fundamental physical phenomena.
Illustrations are drawn from systems with central forces, the H atom, and the three-dimensional harmonic
oscillator. A first-order QED calculation of the complex radiative shift for a spinless electron is explored
using the equations of motion and the mass2 operator, describing the fundamental phenomena involved,
and relating the results to Feynman diagrams.

Keywords: Bethe; radiative shift; vacuum fluctuations; vacuum field; mass renormalization; Lamb shift;
QED; radiative reaction; radiative shift harmonic oscillator; zero point fluctuations

1. Introduction

1.1. Background

The shift of atomic energy levels from the levels given by the Dirac or Klein–Gordon equations with
the appropriate potentials results from effects that may be classified into four groups [1–13]: (1) The
interaction of the bound particle with its own radiation field, or equivalently with the zero-point (0 K
temperature) quantized vacuum electromagnetic field; (2) vacuum polarization effects; (3) finite nuclear
mass effects, including recoil corrections; and (4) nuclear structure effects, including finite size and
polarization corrections. The most frequently discussed and measured shift in energy levels is the
celebrated 2s1/2 − 2p1/2 Lamb shift in the hydrogen atom.

Although measurements of the shift were attempted in the 1930s, it was not measured accurately
until 1947 when Lamb and Retherford employed rf spectroscopy and exploited the metastability of the
2s1/2 level and determined the shift was about 1050 MHz, or 1 part in 106 of the 2s1/2 level [14–18]. Shortly
thereafter Bethe [19] published a nonrelativistic quantum theoretical calculation of the shift assuming it
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was due to (1), the interaction of the electron with the vacuum field. This radiative shift accounted for
about 96% of the measured shift.

In this historical pedagogic paper, we discuss aspects of Bethe’s pivotal calculation, including its
history, its significance, and its impact on the development of quantum electrodynamics. We then consider
radiative shifts from different perspectives, classical, and QED, with the objective of highlighting the
connections between different aspects of the Lamb shift, and clarifying the physical processes involved.

As a pedagogic paper, the QED calculations in this paper are limited to the lowest-order shift for
spinless electrons, the same as Bethe’s calculation. To explore the connections between the physical
phenomena and the mathematics, we derive the complex first-order radiative shift in terms of the mass2

operator using the fundamental equations of motion, and then relate the results to Feynman diagrams. This
is a more difficult derivation than simply using second-order perturbation theory or Feynman diagrams.
Generally, textbook derivations only consider the real part of the shift. The radiative shifts are interpreted
as the difference in energy or mass renormalization between a free electron and a bound electron both
in the vacuum field, precisely as Bethe described it. The real part of the shift is the level shift and the
imaginary part the level width, and we derive a dispersion relation between these parts. Atomic level
shifts can be modeled as arising from transitions with the absorption and emission of virtual photons that
are causing the atom to be in different energy states some of the time. To offer two perspectives, we discuss
results for two central forces systems, a H atom and a three-dimensional isotropic simple harmonic oscillator.

The hydrogen atom is the fundamental two-body system and perhaps the most important tool of
atomic physics and the continual challenge is to calculate its properties to the highest accuracy possible.
The current QED theory is the most precise of any physical theory [20]:

The study of the hydrogen atom has been at the heart of the development of modern
physics...theoretical calculations reach precision up to the 12th decimal place...high resolution
laser spectroscopy experiments...reach to the 15th decimal place for the 1S–2S transition...The
Rydberg constant is known to 6 parts in 1012 [20–22]. Today the precision is so great that measurement
of the energy levels in the H atom has been used to determine the radius of the proton.

This remarkable precision began with the measurement and calculation of the first-order radiative
Lamb shift and that is why we are presenting a historical and pedagogic discussion of it. The derivation
of this shift is present, in one form or another, in virtually every book on quantum field theory [23–27]. The
derivation is often based on the Dirac equation for an electron with spin and second-order perturbation theory.

There are many excellent and comprehensive reviews of the Lamb shift and the computation of energy
levels to high precision in hydrogen-like atoms, including all the different effects [1–13]. As noted above,
the purpose of this paper is quite different from those reviews. No new physics is presented. Instead, we
offer some new perspectives on the old physics which began the new age of QED. We hope this exploration
will be of value, particularly to students and non-experts.

1.2. Outline of This Paper

In Section 2 of this historical/pedagogic review, we present a historical account of the Lamb shift,
Bethe’s calculation, and its significance for QED. In Section 3, we discuss radiative effects in classical
physics and quantum physics for central force potentials, and illustrate with two examples, the Coulomb
potential and the three-dimensional isotropic harmonic potential. We try to provide an intuitive sense of
radiative shifts that appear in field theory by considering the effects of the zero point fluctuations of the
electromagnetic field in a semiclassical analysis of the motion of a bound particle. We discuss the general
nature of radiative shifts, for example that the presence of a boundary can lead to a radiative shift.

In Section 4, we consider the radiative shift in the language of field theory: the shift equals the change
in the mass renormalization of the particle that occurs when it becomes bound. The approach reflects
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Bethe’s interpretation of the divergences he encountered. We derive an expression for the complex shift in
terms of matrix elements of the mass2 operator M2, which corresponds to the total self energy squared of
the bound particle. Using the equations of motion for a relativistic scalar particle in a potential, we derive
an expression for M2 to order α in the radiation field, i.e., assuming that only one radiation field photon is
exchanged. We also consider the requirements for gauge invariance in our expressions for a physical shift.

In Section 5, we consider the radiative level shifts in the non-relativistic dipole approximation,
demonstrating that the shift is complex: the imaginary part corresponding to the width for decay by
dipole emission and the real part corresponding to the displacement of the energy level. This result is an
extension of Bethe’s second-order perturbation theory calculation of only the level shift. We show that
the real and imaginary parts satisfy a dispersion relation, which is fundamentally just an expression of
causality [28]. We interpret the radiative shift as due to the virtual transitions induced by the interaction of
the particle with its own radiation field. This interaction means that a given energy level has a finite width
and that the mean energy of the particle, averaged over time, is shifted. After developing the results for an
arbitrary central force potential , we illustrate with two particular cases: the harmonic oscillator potential
and the Coulomb potential.

In Section 6, we apply the methods developed in the calculation of the radiative shift to a
fully relativistic, spinless electron bound in a harmonic potential. In Section 7, we offer a conclusion.
The Appendix A includes brief biographies of Willis Lamb Jr. and Hans Bethe.

2. History and Significance of Bethe’s Calculation

2.1. Brief History before Bethe’s Calculation

Physicists had considered the need to account for an interaction of the electron with the vacuum field
but had no suitable theory. Oppenheimer in 1930 had computed that this interaction would lead to an
infinite shift in energy and therefore he rejected the notion as unphysical and thought major changes in the
theory were needed [29]:

The theory thus leads to the false prediction that spectral lines will be infinitely displaced from
the values predicted by the Bohr frequency condition. . . As it stands the integral over ν diverges
absolutely. We have treated these difficulties in some detail because they show that the present
theory will not be applicable to any problem where relativistic effects are important, where
that is, we cannot be guided by the limiting case c → ∞ [c is the speed of light.] ... It appears
improbable that the difficulties discussed in this work will be soluble without an adequate theory
of the masses of the electron and the proton; nor it is certain that such a theory will be possible
on the basis of the special theory of relativity.

In 1938 Kramers had suggested the idea of renormalization of the mass due to interactions with the
vacuum field and its necessity in classical as well as in quantum theories, but had no clear idea how to do
it in practice [30]. As Bethe said in an interview in 1996 [31,32]:

Kramers had said [at the Shelter Island Conference] that we misunderstood the self energy of the
electron. The divergent self energy of the electron was already included in the physical mass. We
need to consider the difference in the self energy between a free electron and one bound in an atom.

It was believed that the divergence in the self energy of a electron due to its interaction with the
radiation field was linear in the cutoff frequency, until, in 1939, at Fermi’s suggestion, Weisskopf used the
relativistic Dirac theory and showed (after correcting a critical error in sign pointed out by Furry [33]) that
the electron self energy divergence was logarithmic [34]. He computed that the electron charge distribution
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was spread over a Compton wavelength with a shape described by a Hankel function because of its
interaction with the vacuum field, a calculation that remains valid today [23].

The Dirac theory predicted that the 2s1/2 and 2p1/2 levels in the H atom were degenerate.
Measurements of the energy difference had been done but with mixed results. Then, in 1947, Willis Lamb
Jr. applied the expertise in microwave technology that he developed working with Prof. Isador Rabi [35] at
Columbia on radar research during WWII to the precise determination of the 2s1/2 − 2p1/2 energy difference
of 1050 MHz or 0.004 eV. Dyson who, as a graduate student working with Bethe at Cornell, recalled [36]:

And of course the people at Cornell were very closely in touch with the people in Columbia,
and in particular Willis Lamb talked to Hans Bethe who was the professor at Cornell, and Bethe
then sat down and gave the first more or less adequate theory of the Lamb shift, just from a
physical point of view. He understood that the reason why you had the Lamb shift was that
the electron in the hydrogen atom was interacting with the Maxwell electromagnetic field, in
addition to interacting with the proton, so that the effect of the fluctuations in the Maxwell field
were disturbing the electron while it was revolving around the proton, causing a slight change
in the position of the orbits. And so it was the back reaction of the electromagnetic field on
the electron that Lamb had been measuring. And so Bethe understood that from a physical
point of view. The problem was then, could you actually calculate it? And with the quantum
electrodynamics as it was then, it turned out you couldn’t; that if you just applied the rules of the
game as they were then understood and tried to calculate the Lamb shift, the answer came out
infinity, not a number of megacycles but an infinite number of megacycles. So that wasn’t very
useful and so it was clearly a real defect of the theory that it couldn’t grapple with this problem.

Lamb presented his results at the Conference on the Foundations of Quantum Mechanics held at
Shelter island during 1–3 June 1947, and published them 18 June 1947 in a three-page paper in Physical
Review [14]. Dyson later commented on the reaction to Lamb presenting his results at the conference [36]:

The hydrogen atom being the simplest and most deeply explored object in the whole universe,
in a way—I mean if you don’t understand the hydrogen atom, you don’t understand anything,
and to find that things were wrong even with a hydrogen atom was a big shock. So it became
the ambition of every theoretical physicist to understand this.

At the conference, many people, including Schwinger, Weisskopf, and Oppenheimer, suggested that
the deviation resulted from quantum fluctuations acting on the electron in the atom. However, the shift
from this interaction was infinite in all existing theories and therefore had been ignored. The consensus
was that the current theory was fundamentally flawed and that a radically new idea was needed to deal
with this. On the 75-mile train ride home to Schenectady, NY, Bethe did a non-relativistic calculation using
second-order perturbation theory, assuming an interaction with the vacuum field arising from minimal
coupling. The calculation predicted that the interaction of the electron with the vacuum field would lead
to a shift of 1040 MHz [19]. Bethe wrote a paper that was three pages long and sent it to the participants
on 9 June. The paper was received by the Physical Review and published on 15 August. As Bethe later
recalled in an interview [31,32]:

The combination of these two talks of Kramers and Lamb stimulated me greatly and I said to
myself: lets try to calculate that Lamb shift, lets try to calculate the difference between the self
energy of a free electron and that of an electron bound in the hydrogen in the N = 2 state. At the
conference I said to myself: I can do that. And indeed once the conference was over I traveled
to Schenectady to General Electric Research Labs. On the train I figured out how much that
difference might be. I had to remember the interaction of the electromagnetic quanta with the
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electron. I wasn’t sure about a factor of two. So if I remembered correctly, I seem to get just
about the right energy separation of 1000 MHz, but I might be wrong by a factor of two. So the
first thing I did when I came to the library at General Electric was to look up Heitler’s book on
radiation theory. I found that indeed I had remembered the number correctly and that I got
1000 MHz. ...I was helped very much by a previous paper by Weisskopf who had show that
in Dirac pair theory that the energy of an electron only diverged logarithmically when you get
to high energy. So I said to myself once I take the difference between bound electron and free
electron the logarithmic divergence will probably disappear and it will converge. So lets just
calculate the effect of quanta up to the energy of the electron mass times c squared and lets hope
the relativistic correction won’t make any difference.

Dirac has called this result the “most important calculation in physics for decades.” Freeman Dyson
described it as “a turning point in the history of physics. . . It broke through a thicket of skepticism and
opened the way to the modern era of particle physics. It showed us all how to connect QED with the real
world” [36,37]. In his Nobel lecture, Feynman called Bethe’s calculation “the most important discovery in
history of quantum electrodynamics” [38,39]. The importance of this calculation cannot be understated. In
a major 2001 review article, Eides states: “Discovery of the Lamb shift, a subtle discrepancy between the
predictions of the Dirac equation and the experimental data, triggered development of modern relativistic
quantum electrodynamics and subsequently the Standard Model of physics” [7].

The key to Bethe’s success was in his interpretation of the infinities that arise in the calculation. He saw
that one infinite energy shift was independent of the Coulomb potential, and therefore, he reasoned, should
correspond to a mass renormalization of the free electron. He interpreted the infinity as a renormalization
of a bare electron resulting in an electron with the observed physical mass. This insight allowed him to
continue with the calculation and compute the finite energy shift due to the interaction of the electron with the
vacuum field for a specific atomic state. The resulting frequency integration led to another divergence, but only
logarithmic, thus he used an energy cutoff of mc2 to insure a finite result, reasoning that since the calculation
was non-relativistic a cutoff was justified. His insightful assumptions led to a result of surprising accuracy.

To obtain the final numerical result required a calculation of the so-called Bethe log (which he credited
to GE workers Dr. Stehn and Miss Steward) which can be interpreted as the average excitation energy
for the radiative interaction. It equals the average energy difference between the level whose shift is
being computed and the other levels which are reached by virtual transitions due to interaction with the
quantum vacuum. The calculations showed that the average excitation energy for the N = 2 state was
about 17.8 Rydbergs or 240 eV (1 Rydberg = 13.6 eV, corresponding to the energy of the ground state of the
H atom), which Bethe thought was “an amazingly high value” that indicated scattering states dominated
the Bethe log, but the result was still clearly in the non-relativistic energy range since 240 eV << mc2

= 0.5 MeV. That value of the Bethe log was in error, and the currently accepted value for the 2s state is
16.6392 [7], which changes the calculated 2s1/2 − 2p1/2 shift from 1040 MHz, the value Bethe gave in his
paper, to 1052 MHz, compared to the currently accepted value of about 1057.8 MHz.

Some reflections of Freeman Dyson shed some light on Bethe’s personality and his work style that
may have led to his success [36]:

He had this intense love of doing physics collectively. I mean that it wasn’t really physics if you
did by yourself, it was something you did with a group of people. And so I just loved it from the
beginning and became very much a part of it right away. And then, of course, his way of work
was actually quite unique, I mean if you compare Bethe with anybody else I knew. First of all, he
had total command of the facts, that he absolutely just—you never needed to look up a number
in a table because he knew them all. He knew all the energy levels of hydrogen and he knew the
atomic weights of the different elements and the density of lead and gold and uranium, all these
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just physical quantities, he knew them all. In addition of course, he had an extraordinary ability
to sit down and calculate and just simply go at it...And he was, of course, also just extraordinarily
reliable: if he said something, you could believe it. He was very careful about everything he
said. So just a thoroughly solid person. Very different from Feynman, because Feynman was
far more imaginative. I mean, one thing Bethe did not have was imagination; he never really
invented anything, he just used the theories that were there to explain the facts, and he knew
the facts and he knew the theories, so he just put them together; whereas Feynman was always
inventing things and he didn’t believe the theories that were taught in the textbooks, he had to
make them up for himself, so he had a much harder time; but still, of course, in the end you need
imagination too; I mean, both kinds of physicists are needed.

The lowest-order radiative shift which Bethe computed is of magnitude mα(Zα)2, where α is the
fine-structure constant [40], Z is atomic number (the number of protons), and m is the mass of the electron. The
shift involves the emission and absorption of one virtual photon (so-called one-loop correction, thus α is raised to
the first power) and accounts for about 96 % of the difference in energy between the 2s1/2 and 2p1/2 states.

The other major effect of the same order contributing to the classic Lamb shift is vacuum polarization,
often called the Uehling contribution, which had been computed successfully before the Lamb shift
measurement and gives a shift of about−27 MHz [13,41,42]. Vacuum polarization arises from the presence
of a virtual electron positron cloud, approximately a Compton wavelength in radius, surrounding a charge,
essentially producing a dielectric constant in the vacuum region near a charge. For s states, the electron
goes very close to the proton, penetrating this cloud, and therefore effectively seeing a larger charge and
experiencing a stronger binding force, which lowers the energy level [7,33]. The fact that including the
effect of the vacuum polarization insured greater agreement with the experiment convinced physicists
that the vacuum polarization contribution was real and correct.

2.2. Brief History after Bethe’s Calculation

Bethe commented about his 1947 paper in a videotaped interview in 1998 [31]:

And as far as I know, this paper both disappointed and stimulated other people who were
who were more versed in relativistic theory, namely Schwinger and Feynman. . . and also
Weisskopf. Weisskopf pursued the theory in an old fashioned way and calculated the relativistic
part, together with some of his collaborators. And Schwinger was stimulated to produce a
completely new theory, relativistically invariant theory of quantum electrodynamics. But
essentially extending the old quantum electrodynamics, making it relativistically invariant
and so on. . . Feynman at Cornell used the completely novel and independent way of getting at
the same problem. He had his own way of doing quantum mechanics, his own way of putting
in the electric field. And it turned out that in the end that Feynman’s new way was very much
easier than Schwinger’s way.

Shortly after Bethe’s calculation, Dyson published, as a problem assigned by Bethe, a calculation of
the Lamb shift for a spinless electron [43]. Formal and rigorous relativistic calculations using perturbation
theory and including spin were done in 1949 by J. French and V. Weisskopf [44] and N. Kroll and W. Lamb [45].
Weisskopf later commented about these calculations that they “. . . resulted in good agreement with the experiment.
However, the methods used by those authors of subtracting two infinities were clumsy and unreliable [33].”
However, history has been kinder to these calculations which were not dependent on cutoffs, which were perhaps
clumsy and difficult, but produced excellent results that have stood the test of time [23,25].

Bethe’s breakthrough in understanding the role of the vacuum electromagnetic field and how to deal
with divergences led to intense theoretical work in quantum electrodynamics. It is most remarkable that
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within a year three different approaches to quantum electrodynamics were independently developed that
were relativistic and could deal with divergences with some success. Schwinger, Tomonaga, and Feynman
each had proposed a manifestly covariant method, and shown its capability to address a broader range of
QED problems that just the energy levels of the H atom [38,46]. Although these methods all appeared to
be different, with his characteristic insight Freeman Dyson showed that they had essential similarities and
were mutually consistent [47]. He summarized: “The advantages of the Feynman theory are simplicity
and ease of application, while those of Tomonaga-Schwinger are generality and theoretical completeness.”
These new methods could be used to treat the radiative interaction as a perturbation to any desired order
of approximation. Dyson also compared the results to those from the S matrix theory [48]. Dyson observed
that Oppenheimer was particularly reluctant to accept Feynman’s approach [49].

Welton provided some physical insight into the radiative shift with an approximate calculation
based on a semi-classical model of the vacuum field which caused oscillation of the electron bound in the
Coulomb field, effectively increasing its size [50]. This motion meant that the electron saw a modified
Coulomb potential. Only for s states was the spread of the electron sufficient to modify the energy level, in
rough agreement with Bethe’s result. This calculation is discussed in more detail in Section 3.3.

In their comprehensive 2001 review [7], Eides et al. give a different perspective on the spread of the
electron: “According to QED an electron continuously emits and absorbs virtual photons and as a result its
electric charge is spread over a finite volume instead of being pointlike,” and then they use the expression
for the form factor, F(−k2) = 1− (1/6) < r2 > k2, to obtain the rms radius, obtaining a value of 1330
MHz for the Lamb shift. Their calculation differs from that of most authors [23,27], in that they assume the
bound electron is slightly off mass shell so the cutoff term becomes ln(1/Zα)2 rather than ln(1/Zα).

A period of intense theoretical development followed Bethe’s calculation, characterized by
calculations of the energy levels of the H atom, and QED in general, done with greater and greater
precision and complexity. Some of the key developments from 1950 to about 1970 are in the papers
[12,51–56]; from 1980 to 2000 are in [57–74]; and from 2000 to current are in [75–89]. Theorists applied
themselves to compute the numerous other effects leading to the total shift between the 2s1/2 and 2p1/2
levels, as well as for other levels, including relativistic corrections, center of mass effects, recoil corrections,
radiative recoil corrections, nuclear size and spin effects, and more rigorous, more precise and higher order
calculations of the radiative shifts (for reviews, see [1–10]).

One of the biggest challenges in the computation of the radiative shifts is the necessity to deal
with frequencies from the IR to relativistic values. For the low frequencies, the starting point is the
non-relativistic dipole approximation, and the Coulomb gauge is the most convenient. On the other hand,
for the high frequencies, relativistic dynamics is needed, the binding energy can be neglected, and the most
convenient gauge is the covariant Feynman gauge. Matching the contributions from both regions is a challenging
procedure. Commenting on these perennial matching issues in a 2001 review, Eides et al. observe [7]

It is a strange irony of history that due to these difficulties it became common wisdom in the
sixties that it was better to avoid separation of the contributions coming from different momenta
regions than to try to invent an accurate matching procedure... Bjorken and Drell wrote, having
in mind the separation procedure: ‘The reader may understandably be unhappy with this
procedure. . . we recommend the recent treatment of Erickson and Yennie which avoids the
division into soft and hard photons.’ Schwinger wrote ‘...there is a moral here for us. The artificial
separation of high and low frequencies, which are handled in different ways, must be avoided.’
All this advice was written even though it was understood that the separation of the large and
small distances was physically quite natural and the contributions coming from large and small
distances have a different physical nature.

Davies concluded in a 1982 paper:
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..the explanation of the Lamb shift is a far more orderly affair it is is consistently carried through
within the framework of old-fashioned perturbation theory...the joining up of the low- and high-
energy contributions does not involve any new physics: it is a simple mathematical device to
enable the use of two distince approximation schemes [74].

In actual fact, the attitude has changed over the last decade and theorists have developed more
elaborate methods for dealing with matching contributions from high and low frequency regions, and are
now trying to embrace the split in order to clarify the physical nature of the corrections and to improve the
results of computations [7,87].

In Steven Weinberg’s 1995 classic “The Quantum Theory of Fields,” he uses an elegant method of
computing radiative shifts in which he introduces a photon mass in the photon propagators that ultimately
cancels when the low and high momenta regions are combined. As he says, his result is 1052.19 MHz,
“just the same as the old result of Kroll and Lamb [45] and French and Weisskopf [44] which they obtained
using the techniques of old-fashioned perturbation theory [25].” Lowell Brown in his book “Quantum
Field Theory” advocates using analytical continuation in the spatial dimensionality n of the field [26]. He
notes that in n > 4 dimensions there is no IR divergence and in n < 4 there is no UV divergence, thus, in
limit of n→ 4, one can secure the correct results.

2.3. Current Focus in Precision QED for Light Atoms

New developments in calculations include simplifications to the Bethe–Salpeter equation for a system
with masses that are very different, like the proton and electron [57,65,87–90]. The simplifications are
described as effective potential methods, and the “on the mass shell” approach [5]. Computers are used
heavily for numerical computations. Higher and higher order corrections are being computed [60,65,67,72,
75–80,87–89] , using numerical as well as analytical methods [81–86]. In Lamb shift calculations for the
classic 2s1/2 − 2p1/2 shift, there are hundreds of separate terms that are computed to secure the 1 part in
1012 precision.

The interest in the Lamb Shift in hydrogen has moved to a more general interest in the QED analysis
of two particle bound states in systems generally with low Z and one or two electrons [1–7,46,51–54,57].
This includes bound states of an electron and a positron (positronium) and bounds states of a muon and a
proton (muonium), and even antihydrogen. Systems with high Zα coupling are of interest for the study of
nuclear effects or the study of perturbations as a function of Zα. Precision QED analysis has also been
applied to deuterium and ionized tritium and systems with two electrons, like He. There have been
incredible advances in experimental methods which now include atom interferometry, laser spectroscopy,
and two photon spectroscopy, which can be used to study transitions such as 1s→ 2s and 1s→ 3s that
do not have a change in the angular momentum. The 1s→ 2s transition has a natural line width of only
1.3 Hz, so experimental determinations are a thousand times more accurate that for any other transition
in H, where typical line widths are about 1 MHz or more. For this transition, precision up to 15 decimal
places is possible [20]. This means the determination of the 2s1/2 − 2p1/2 Lamb shift is not limited by the 2s
line which is very broad. Many different transitions in these systems are studied, and the results correlated
to secure more precision and to determine likely values of the fine structure constant and the Rydberg constant,
and hopefully the radius of the proton. The radius obtained from measurements of hydrogen and muonic
hydrogen differ by four standard deviations, a puzzle which is being addressed currently [91,92].

Another topic of significant current interest is the Lamb shift in antihydrogen. The measurements to
date agree with theory at a level of 11% [93]. These results serve as tests for charge-parity-time symmetry
and as a determination of the anti-proton radius.

There are physicists, including notables Dirac, Schrodinger, Einstein, Pauli, Lamb, Bohm, Feynman
and others who are not satisfied with the present version of quantum electrodynamics, in which
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perturbation theory, which should rightfully deal with small perturbations, is dealing with infinite terms.
Three years before he died, Feynman wrote:

The shell game that we play..is technically called renormalization. But no matter how clever
the word is, it is what I would call a dippy process! Having to resort to such hocus-pocus has
prevented us from proving that the theory of quantum electrodynamics is mathematically self
consistent [94].

It is ironic that Bethe’s original calculation appears to have set this direction for the development of
QED. Had he not has such success with his original calculation, perhaps we would have a theory without
infinities today that provided a more satisfying intellectual and philosophical viewpoint. However, it is
hard to argue with success.

3. Radiative Shifts, Classical Physics, and the Zero Point Fluctuations of the Electromagnetic Field

3.1. Background on QED Radiative Shift Calculations

The zero-point vacuum fluctuations have a spectral energy density of ρ(ω) = h̄ω3/2π2c3, where ω is
the frequency of the field and h̄ is the reduced Planck constant h: h̄ = h/2π. In QED, the vacuum field is
typically expressed as a sum over an infinite number of plane waves with all possible momenta h̄k and
directions k/k with the restriction that the energy Ek in each mode is h̄ωk/2 = h̄k/2c. The vector potential
is [23,95]

A(r, t) = ∑
k,λ

√
2πh̄c2

ωkV
(akλei(k·r−ωkt) + a†

kλe−i(k·r−ωkλ)) ek,λ, (1)

where the raising and lowering operators obey the commutation rules

[akλ, a†
k′λ′ ] = δkk′δλλ′ , (2)

and the two polarization vectors (λ = 1, 2) are orthogonal to k, thus k · ek,λ = 0, and

ek,λ · ek,λ′ = δλλ′ . (3)

The electric field is E(r, t) = −∂A(r, t)/∂t and B(r, t) = ∇×A(r, t). The interaction Hamiltonian for
a particle of charge e and mass m in the vacuum field is

HI =
1

2m
(~p− e~A)2, (4)

where ~A is the vector potential for the vacuum field. The radiative shift in energy levels, such as the Lamb
shift, arises from the ~p · ~A term.

To summarize the properties of the vacuum field in QED: no real photons are present, only random
virtual photons of energy h̄ωk/2 and momentum hk/2c, with all possible momenta present consistent
with Equation (1). The expectation values of the electromagnetic fields vanish but the variances do not.
The fields are isotropic (invariant under rotations), invariant under space-time translations (homogeneous),
and under boosts (Lorentz invariant). The energy density spectrum which is proportional to ω3 is also
Lorentz invariant. For temperatures above 0 K, there is an additional black body component to the vacuum
field, which we do not consider here.

In QED, we can model mass or charge renormalization with the process:
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bare point electron + vacuum fluctuations + radiative reaction→
electron with physical mass, charge and effective size of a Compton wavelength.

A similar process occurs for an atom, in which the atom undergoes allowed virtual (energy conserving)
transitions due to radiative reaction or the vacuum field. These transitions can be seen as shifting the
average energy of the atom. This mechanism responsible for the radiative part of the Lamb shift is
discussed in Section 5.2.3 from the QED viewpoint.

In QED, radiative shifts are often calculated using Feynman diagrams, in which the atom is depicted
as propagating in time, and it absorbs or emits a virtual photon changing its state correspondingly, then a
short time later (consistent with the time-energy uncertainty principle) emits or absorbs the same virtual
photon and returns to the initial state. This model in a sense describes the interaction of the electron
with its own radiation field. For QED radiative shifts, this process is equivalent to interacting with the
ubiquitous virtual fluctuating zero-point vacuum field.

3.2. Radiative Effects in Classical Physics

Classically any charge radiates when it is accelerated, and this emission of radiation, which carries
away momentum, angular momentum, and energy, alters the unperturbed motion of the particle.
To account for this radiation classically, we include in the equations of motion a resistive or damping force
proportional to the third derivative with respect to time of the position. For a classical radiating electron in
a Coulomb potential, Newton’s second law becomes the Abraham–Lorentz equation of motion

m
d2r
dt2 = −Ze2r

r3 +
2e2

3c2
d3r
dt3 . (5)

The second term on the right is the Abraham–Lorentz force, the non-relativistic radiative reaction
force for an accelerating charged particle. The radiation field from the particle is essentially exerting a
force on itself, sometimes called a “self-field”, a phenomena which leads to renormalization and radiative
shifts. The classical equations of motion become sufficiently complicated so that they are usually solved
only in an approximation [96]. We illustrate the effects by considering the non-relativistic simple harmonic
oscillator and the non-relativistic classical hydrogen atom.

3.2.1. Radiative Shifts in the Simple Harmonic Oscillator to Lowest Order

The damping shifts the resonant frequency and causes the oscillations to decay in time. Consequently,
the emitted radiation is no longer monochromatic but has a frequency spectrum with a finite width. For
an undamped one-dimensional classical oscillator with charge e, mass m, and resonant frequency ω0, the
displacement from equilibrium is

X(t) = Re(X0e−iω0t). (6)

Including a damping force in the equations of motion produces a complex shift in the resonant
frequency [96]

ω0 → ω0 + ∆ω0 +
i
2

Γ, (7)

where [40]

∆ω0 = − 5
18

(
αh̄

mc2 )
2ω3

0, Γ =
2
3

αh̄
mc2 ω2

0. (8)

We display the factors of c and h̄ for clarity. The term αh̄/mc2 is the time it takes for light to travel a
distance equal to α times the reduced Compton wavelength, which also equals the time it takes for light to
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travel a distance equal to the classical electron radius [97]. Only for accelerations that result in changes in
velocity for times less than αh̄/mc2 are radiative effects important. For the classical harmonic oscillator,
the shift ∆ω0 is a higher order effect than the width Γ.

When we recall that in quantum mechanics the energy is proportional to the frequency E = h̄ω

and that the time dependence of an eigenstate of energy E is e−itE, it is no surprise that in quantum
electrodynamics radiative effects produce a complex shift in the bound state energies of a system, the real part
being the shift in the energy level and the imaginary part being the width of the state that determines its lifetime.

We can verify the Bohr Correspondence Principle for the three-dimensional isotropic harmonic
oscillator. This principle states that in the limit of large quantum numbers the classical power radiated in
the fundamental band is equal to the product of the photon energy and the quantum mechanical transition
probability (or the reciprocal of the lifetime). The power radiated from the classical isotropic oscillator is
all in the fundamental band and has the value

P =
2
3

αω4
0 A2, (9)

where A2 is the mean square amplitude of oscillation. The corresponding transition rate or line width Γ is

Γ =
P

ω0
=

2
3

αω3
0 A2. (10)

For a quantum mechanical three-dimensional oscillator, the energy for a state N is EN = (N + 3
2 )ω0 ≈

mω2
0 A2 and we find

A2 =

(
N +

3
2

)
1

mω0
. (11)

Accordingly in the limit of large quantum numbers, it follows from the Bohr Correspondence Principle that

ΓN =
2
3

( α

m

)
ω2

0 N. (12)

We show in Section 5.2.4 that this width ΓN equals the radiative level width computed in quantum
mechanics. The Correspondence Principle makes no statement about the level shift, the real part of the
radiative shift, and indeed the classical calculation yields a level shift of order (α)2 while the quantum
mechanical result is of order α.

3.2.2. The Classical Hydrogen-like Atom

Without radiative damping, a classical electron in a Coulomb potential would travel in elliptical or
circular orbits in a periodic way. Including the damping means that the orbits decay with the emission of
radiation. As time passes elliptical orbits tend to become circular and the mean radius decreases leading to
collapse of the atom. The electron in a classical H atom, starting at the radius 0.5A (given by quantum
mechanics), would collapse in about 1.3 × 10−11 s [98–100]. Consideration of the rate of decay of the
energy and the angular momentum for an atom with charge Ze leads to the equation for the radius rcl(t)
of a circular orbit for a mass m and charge e as a function of time

r3
c (t) = r3

c (0)−
α(Zα)

m2 t, (13)

with classical orbital frequency

ωcl =

√
Zα

mr3
c

. (14)
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Using the Lamor equation P = (2/3)(αv̇2) for power radiated gives

P(t) =
2
3

α(Zα)2

m2
1
r4

c
. (15)

Applying the Correspondence Principle we obtain the transition probability

Γ =
P(t)
ωcl

=
2
3

m
(Zα)3/2

(mrc)5/2 . (16)

Substituting the quantum mechanical result for the radius for large principal quantum number N

rc =
N2

mZα
, (17)

gives the transition rate or width for state N

ΓN =
2
3

m
α(Zα)4

N5 . (18)

This width is 2π times the energy lost classically by radiation in one revolution (about 2π 48h̄ MHz
assuming N = 2). We show that for large N this width equals the imaginary part of the radiative shift
calculated from quantum field theory.

3.2.3. Comparison of Results for Harmonic Oscillator and Coulomb Potential

The level width (Equation (12)) of the harmonic oscillator increases with principle quantum number
N, whereas for the hydrogen atom, the level width (Equation (18)) decreases with N. There is a similar
inverse relationship with the mass. These results follow because the force on the particle increases with
distance for the harmonic oscillator while it decreases with distance for the H atom. For the harmonic
oscillator the force center is at the center of the ellipse; for the Coulomb potential the force center is at
a focus. The classical radiative damping in the harmonic oscillator gives a complex shift that illustrates
the close relationship between radiative level shifts, as in the Lamb shift, and radiative widths. The level
widths for both systems are related by the Bohr Correspondence Principle to the classical power radiated.

3.3. The Relationship between Radiative Shifts and the Zero Point Field

In classical physics, the electromagnetic field in the vacuum vanishes. However, from quantum
electrodynamics, we know that we must consider the zero point vibrations of the electromagnetic field [101].
For a particle in an electromagnetic field with scalar and vector potentials φ and ~A, the non-relativistic
Hamiltonian is

H =
1

2m
(~p− e~A)2 + eφ, (19)

and the relativistic Klein–Gordon equation is

(~p− e~A)2 − (E− φ)2 + m2 = 0. (20)

The radiative shift for an energy level for a particle interacting with its own radiation field, like the
Lamb shift, is due to the ~p · ~A term [23]. The ~A2 term contributes to the free particle mass renormalization
but does not contribute to the radiative shift of an atomic level since its expectation value does not depend
on the state of the atom.
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To understand the radiative shift on a more intuitive basis, we investigate the link between the zero
point vibrations and the energy or mass shift of free and bound particles following an approach of Welton
and Weiskopf [50,102]. The zero point vibrations are incoherent and the mean field 〈~E〉 vanishes but 〈~E2〉
does not. A free charged point particle is constantly being accelerated in the field, acquiring a mean kinetic
energy that increases its effective mass. Since the particle is oscillating, the effective volume occupied
by the particle increases and it can no longer be usefully regarded as a point particle. It cannot radiate
because the zero point vibrations represent the lowest energy state of the vacuum.

Now, consider the effect of the zero point vibrations on the same particle when bound in an external
central force potential, such as a Coulomb or harmonic potential. The external potential will modify the
motion of the particle in the zero point field. The difference between the effective energy for this particle
when bound and when free constitutes the finite measurable radiative shift. To estimate the radiative shift
from the zero point vibrations we can derive an expression for the real part of the radiative shift in terms of
the Laplacian of the potential and the mean square displacement ~ξ2 of a charged particle in the zero point
field. If~r is the location of the particle when unperturbed by the zero point field, then when perturbed the
particle effectively sees a potential V(~r +~ξ). For weak binding, ξ << r, and we make the expansion [103]

V(~r +~ξ) = V(~r) +~ξ · ~∇V(~r) +
1
2

(
~ξ · ~∇

)2
V(~r). (21)

Since 〈~ξ〉 vanishes, the radiative shift is given approximately by the vacuum expectation value of the
last term:

∆E =
〈~ξ2〉

6

〈
∇2V(~r)

〉
. (22)

where we assume the potential has spherical symmetry, thus 〈ξ2
1〉 = 〈ξ2

2〉 = 〈ξ2
3〉 = 〈~ξ2/3〉. Equation (22)

gives ∆E as the product of two factors, one depending on the nature of the fluctuations of the radiation
field and the other depending on the structure of the system. To estimate 〈~ξ2〉 for the vacuum field we
consider the Hamiltonian for a particle of mass m and charge e in the vacuum using the radiation gauge
(V = 0,∇ · ~A = 0) :

H =
1

2m
(~p− e~A(t, 0))2. (23)

We use the value of the vector potential for the free vacuum field at the origin, which is equivalent to
the dipole approximation. The proton and the electron can be considered to become a point dipole [23].
Hamilton’s equations give the result

m d2~ξ/dt2 = e d~A/dt. (24)

Integrating gives
~ξ(t) =

e
m

∫ t

−∞
dt~A

(
t′, 0
)

. (25)

Squaring this and taking the vacuum expectation value gives:

〈~ξ ·~ξ〉 =
( e

m

)2 ∫ t

−∞
dt′e+εt′

∫ t

−∞
dt′′e+εt′′

〈
(~A
(
t′, 0
)
· ~A
(
t′′, 0

)
)+
〉

, (26)

the sign “+” at the bottom signifies that the operators in parenthesis are time ordered. The vacuum
expectation value on the right side is simply −igijDij, where Dij is the radiation gauge propagator in
configuration space [104]:

Dij
(
t′ − t′′

)
=

1
(2π)4

∫
d4k

(
δij − kik j ·

1
−→
k 2

)
1
k2 e−iω(t′−t′′). (27)
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Accordingly, we find 〈
~ξ2
〉
=

2α

π
(

h̄
mc

)2
∫ ωc

E0

dω

ω
. (28)

where we display the factors of h̄ and c to stress that the term in parenthesis is λc the reduced Compton
wavelength of the particle, which we take to be the electron, thus λ is 3.86× 10−11 cm. We take the upper
limit to correspond to approximately the mass of the particle. For greater frequencies, it is clear that
our semiclassical calculation is invalid because of relativistic kinematical effects and particle–antiparticle
pair creation, which will become possible. (Another justification for taking this limit is given when we
discuss this process from the viewpoint of the uncertainty principle). For the lower limit, we take some
characteristic energy of the bound state system, for example the magnitude of the ground state energy.
The final estimate for the shift in the energy of a particle bound in a potential V(r) is

∆E =
α

3π
(

h̄
mc

)2 ln
(

ωC
E0

)〈
∇2V(~r)

〉
. (29)

If we use a quantum mechanical average for the Laplacian, then this formula is precisely the same as
the first term in the quantum mechanical result for the real part of the radiative shift for a potential V(r)
(see Equation (134)), and gives a shift of 1340 MHz for a H atom with N = 2. However this formula does
not give a complex shift because of simplifications made in the treatment of the zero point vibrations. For
the Coulomb potential the Laplacian is proportional to δ3(r), so classically the shift vanishes since the
classical electron is never at the center, while quantum mechanically the shift is for S states only. For the H
atom, the logarithmic term is about 10.5 if we take E0 as the ground state and mc2 for the upper limit and√
〈ξ2〉 is about 0.22λc. For the three-dimensional harmonic oscillator, the Laplacian is a constant, thus we

get the same constant shift whether we take a classical or a quantum mechanical average. The logarithmic
term is about 12.4 for an oscillator with ground state energy 2 eV.

3.3.1. Observing Zero Point Vibrations of the Electron

We might ask: Why do not we observe point particles with their unrenormalized masses oscillating

in the zero point field? The answer is that an observation of distances of the order of
√
〈~ξ2〉 ≈

(
α/m2) 1

2

would, by the uncertainty principle, involve momenta of the order of mc/α1/2and energies of the order of
mc2/α, causing violent uncontrollable perturbations in the zero point motion and leading to the creation
of particle–antiparticle pairs in the vicinity of the particle we were attempting to observe.

To illuminate the nature of the free particle renormalization by analogy, consider an impenetrable
massless black box containing a gas. Since E = mc2, the kinetic energy of the gas molecules contributes to
inertial mass, and the observable mass depends not only on the mass of the gas molecules but on their
temperature, which is an index of their mean kinetic energy. The separate contributions to the observable
mass of the box cannot be measured directly, but if we know the temperature, we can compute them. The
analogy of this hypothetical situation is quite close to the free particle renormalization since we can regard the
zero point vibration as causing infinite or very large virtual temperature fluctuations. In renormalization, the
initial mass of the particle is chosen so that the renormalized mass equals the known physical mass.

3.3.2. General Nature of Radiative Shifts

Before ending this section, it seems important conceptually to stress the general nature of radiative
shifts [23,105–108]. First, we note that a shift in the particle mass from the infinite free space (renormalized)
value occurs whenever the particle is not in infinite free space. Not only an external potential but any object
altering the infinite free space zero point field will produce a shift in the energy levels of an atom in the
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field [109]. For example, there is a shift in the mass, charge, and magnetic moment of an electron or a shift
in the Lamb shift of an atom when we put it near a surface or between two surfaces [105,106,110].

A second observation we would like to mention is that radiative shifts can occur whenever we have
an interaction between a particle and a field, not necessarily just the electromagnetic field. For example
there are shifts for the gravitational field or for the meson field of a nucleus [107].

4. The Radiative Shift In Field Theory

There are numerous ways to compute first-order radiative shifts as explained in detail in excellent
texts, to cite a few [23–27]. We do it differently than most, in terms of the mass2 operator, in hopes that
this displays the physical significance of the renormalization and of the shift more clearly than some
other methods, and we give comments from different perspectives [111]. We do not include the effects of
electron spin in our calculations.

4.1. The Mass2 Operator

The radiative shift of a particle can be understood as the difference between the mass renormalization
for a bound particle and the mass renormalization for a free particle, which we consider to be a spinless
electron or meson. Therefore, we briefly review the mass renormalization of a free electron (we assume all other
quantities except the mass have been renormalized). The equation of motion for a free bare meson field is

− ∂ ′2φ0(x′) + m2
0φ0

(
x′
)
= 0, (30)

where m0 is the unrenormalized mass [112]. The propagator for the bare meson G0(x′, x′′) satisfies
the equation (

−∂ ′2 + m2
0

)
G0
(
x′, x′′

)
= δ

(
x′ − x′′

)
. (31)

We can rewrite this equation as

G0
(

x′, x′′
)
=

1
−∂ ′2 + m2

0
δ
(

x′ − x′′
)

, (32)

or in momentum space

G0(p) =
1

p2 + m2
0

. (33)

The meson has a charge distribution and therefore interacts with its own electromagnetic field,
producing a change in the mass. The propagator for a free self-interacting meson becomes

GF(p) =
1

p2 + m2
0 + M2

F(p)
, (34)

where M2
F(p) is the mass2 operator for a free, self-interacting or dressed meson. If m2 is the observed

(renormalized) physical mass, then the propagator GF(p) must have a pole at p2 = −m2. Thus,

m2 = m2
0 + M2

F

(
p2 = −m2

)
. (35)

A discussed in Section 2, the space-time methods of Feynman, which were developed right
after Bethe’s calculation, were helpful to provide a physical picture of the phenomena and facilitated
calculations [38]. In that spirit, we consider the diagrams in Figure 1 that show to the order e2 or α in the
meson’s radiation field (one radiation field photon present) the processes that represent the mass2 operator
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M2
F. By analyzing the mass2 operator in Section 4.3, we show these are indeed the appropriate Feynman

diagrams.

Figure 1. Feynman diagrams for mass renormalization. Time axis is horizontal. The diagram on the left
corresponds to the ~p · ~A term and shows an electron emitting a virtual photon and then at a later time
reabsorbing the photon. The diagram on the right corresponds to the ~A2 term.

In configuration space, the equation of motion for the free self-interacting meson is(
p2 + m2

0

)
GF
(

x′, x′′
)
+
∫

d4x′′′M2
F
(
x′ − x′′′

)
GF
(
x′′′, x′′

)
= δ

(
x′ − x′′

)
. (36)

The presence of the convolution integral indicates we can view the meson as having a finite extent.
The “shape” of the meson “centered” at r′ is proportional the Fourier transform of m2

0 + M2
F(p), namely

δ
(
r′ − r′′

)
+

1
m2

(
M2

F
(
r′ − r′′

)
+ m2

0 −m2
)

. (37)

The effective finite extent of the meson in the vacuum field is central to the interpretation of the Lamb
shift, as discussed in Sections 2 and 3.3. Evidently, we can still say we have a point particle but now it
is in a non-local potential. Although we need never explicitly mention the zero point vibrations in our
field theoretic calculation we could interpret the Feynman diagrams as corresponding to the zero point
fluctuations.

We can estimate the amplitude 〈~ξ 2〉 of the zero point oscillations (or equivalently the emission and
absorption of virtual photons) by applying the uncertainty relations to the process depicted in Figure 1.
When the photon is emitted, the particle receives a momentum ki with uncertainty ∆ki. Accordingly, the
uncertainties in position ~ξ and velocity ~v of the particle satisfy the relations ∆ξ > 1/∆ki and ∆vi ≈ ∆ki/m.
Requiring that ∆vi ≈ 1 implies that ∆ki ≈ m and ∆ξi > 1/m = Compton wavelength. To get the
effective 〈~ξ2〉, we must multiply by the probability that the photon has been emitted. The diagram has two
vertices so the probability is proportional to α, which leads to the result α(∆ξ)2 = 〈~ξ2〉 ≈ 3α/m2 the mean
amplitude squared of the zero point vibrations, which is comparable to the result (Equation (28)) obtained
using the equations of motion for the vector potential.

When we put a bare meson in an external potentia, we assume it forms a bound state. The propagator
and therefore the equations of motion are as before except: (1) the free (mass)2 operator M2

F is replaced
by a bound state mass operator M2; (2) the propagator GF for a free particle with radiative interaction is
replaced by the corresponding propagator for a bound particle G; and (3) pµ is replaced by the four-vector
by Πµ = pµ −Vµ, where Vµ is the external four-potential in accordance with minimal coupling [23]. The
energy of the state is shifted by a mechanism similar to that for a free bare meson. The Feynman diagrams
are shown in Figure 2.

The double line represents a meson propagating in the external potential. The difference between the
diagrams for the bound meson and the free meson is the radiative level shift (Figure 3). In other words,
the radiative shift in a bound state level is the change in the self-energy of a particle that occurs when it
becomes bound. As discussed in Section 2, this is exactly the way Bethe framed the problem of computing
the Lamb shift. The intermediate state of the atom, i.e., while the virtual radiation field photon has been
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exchanged, is unknown. In his historic approach, the cumulative effect of these virtual transitions in given
by the Bethe Log term.

Figure 2. Feynman diagrams for the bound state mass renormalization. The double line represents a meson
bound in an external potential.

Figure 3. Feynman diagrams showing the level shift is the difference between the bound state mass
renormalization and the free particle mass renormalization. The double line represents a meson bound in
an external potential.

To indicate in more detail the process involved in the radiative shift for a Coulomb potential,
we expand the double line representation of the bound meson, indicating separate meson and proton lines
and the photons exchanged that represent the Coulomb force (Figure 4). The graphs giving the radiative
shifts are of the form shown in Figure 5. The lowest-order shift, to order α (first order) in the radiation
field and (Zα)4 (second order) in the Coulomb field, is given simply by the vertex correction (Figure 6).

Rather than consider separately all the various graphs in the Coulomb field and obtain an answer in
a series with powers of Zα or ln(Zα) as is done with higher order calculations [7,51,67,72], we calculate
the radiative correction using the equations of motion for a meson (spinless electron) in a Coulomb field
and then make approximations to first order assuming that the proton or Coulomb source is an infinitely
heavy point charge. We are neglecting recoil effects, center of mass corrections, radiative corrections and
size effects for the proton. To include these effects we would use the Bethe–Salpeter equation [3,13,79]. On
the other hand, Weinberg (in 1995) did not think the Bethe–Salpeter equation was the correct equation for
relativistic interactions (it includes no crossed photon diagrams), and he concluded: "It must be said that
the theory of relativistic effects and radiative corrections in bound states is not yet in entirely satisfactory
shape [25]".

Figure 4. Feynman diagrams for the meson (top line) bound to the Coulomb field of a proton
(bottom line). The dots indicate that all possible configurations of Coulomb photons, including crossed
photon lines, are to be included.

In general, we are concerned with directly measurable quantities, namely the shift in the difference
between two energy levels of a bound meson. For example, we compute the change in the 2s − 2p
separation. Clearly, this shift is given by the difference in renormalization between a meson bound in a 2s
state and one bound in a 2p state. Thus, the renormalization of a free meson is never actually used.
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Figure 5. Feynman diagrams for the meson (top line) bound to the Coulomb field of a proton (bottom line),
with the exchange of Coulomb photons and one radiative photon emitted and reabsorbed by the meson.

Figure 6. Feynman diagram for lowest order radiative correction to the bound meson.

4.2. Expressing the Radiative Shift in Terms of the Matrix Elements of the Mass2 Operator

From the equation for the propagator of a self- interacting meson in a potential Vµ(x), we find the
equation obeyed by the corresponding meson wave functions. Taking mass renormalized wave functions
of the meson in the potential field as our unperturbed states, we apply first-order perturbation theory to
find the expression for the radiative shift in terms of matrix elements of the perturbation M2. The Green’s
function or propagator for a meson field φ(x′) that interacts with its own radiation field and the external
potential Vµ satisfies the equation:(

Π ′2 + m2 + M2
)

G
(
x′, x′′

)
= δ

(
x′ − x′′

)
, (38)

where
Π′µ =

1
i

∂ ′µ −Vµ

(
x′
)

, (39)

∂′µ = ∂/∂x′µ for µ = 0, 1, 2, 3, and m is the physical mass. M2 is the mass2 operator and M2 is the
renormalized mass2 operator both for a meson in a Coulomb potential

M2
= M2 + m2

0 −m2. (40)

In Equation (38), we use a shorthand notation for the integration as in Equation (36). We assume our
4-potential is such that we can work in a gauge with Vi = 0, V0 = V(r). Since we want an energy shift, we
take the Fourier transform of Equation (38) with respect to time(

p ′2 − (Ē−V′)2 + m2 + M2
(Ē)
)

G
(
Ē,~r′,~r′′

)
= δ

(
~r′ −~r′′

)
, (41)

where we define
M2

(Ẽ)G
(

Ẽ,~r ′,~r ′′
)
≡
∫

d3r′′′M2
(

Ẽ,~r ′,~r ′′′
)

G
(

Ẽ,~r ′′′,~r ′′
)

, (42)

and Ẽ is the relativistic total energy. We can convert Equation (41) to an equation for the wave functions by
expressing the Green’s function as the vacuum expectation value of the time ordered product, signified by
a plus sign, of the meson field φ(x′) and its adjoint φ†(x”):
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G
(

x′, x′′
)
= i
〈(

φ
(
x′
)

φ† (x′′))
+

〉
. (43)

If we insert a complete set of eigenstates of the Hamiltonian (particle, antiparticle, bound,
and scattering) in this equation for G and use the equation of motion for φ(x):

φ(~r, t) = eiHtφ(~r, 0)e−iHt, (44)

we find

G
(

Ẽ,~r ′,~r ′′
)
= ∑

m

Φm (~r′)Φm (~r′′)
Ẽ− Ẽm

+ contributions scattering states. (45)

The Φm(~r) are the relativistic bound state particle wave functions 〈0|φ(~r, 0)|Ẽm〉with the renormalized
mass and a relativistic total energy Ẽm. If Equation (41) is to be satisfied when we substitute this form for
G and let m = n, Ẽ = Ẽn, and r′ 6= r′′, then it follows that(

p′2 + m2 −
(
Ẽn −V′

)2
+ M2 (Ẽn

))
Φn
(
~r′
)
= 0. (46)

We now use first order perturbation theory to calculate the radiative shift due to M2
(Ẽn).

The unperturbed wave functions are the renormalized relativistic wave functions ψ̃n(~r ′) for a meson
which satisfy the equation [

p ′2 − (Ẽ0
n −V′)2 + m2

]
ψ̃n(~r ′) = 0, (47)

where Ẽ0
n is the unperturbed relativistic energy eigenvalue. For our normalization, we choose(

ψ̃n ,
(

Ẽ0
n −V

)
ψ̂n

)
= m, (48)

where the scalar product is defined as follows:

(φ, Aψ) =
∫

d3r ′ φ∗(~r′)(Aψ(~r ′)). (49)

We take the scalar product of Equation (46) with ψ̃n and substitute Equations (48) and (49) to obtain,
in lowest order in the radiation field, the shift for the state N:

∆ẼN ≡ ẼN − Ẽ0
N =

1
2m

(ψ̃N , M2
(ẼN)ψ̃N), (50)

which is shorthand for

∆ẼN =
1

2m

∫
d3r ψ̃∗N(~r

′)
∫

d3r ′ ′M2 (ẼN ,~r ′,~r′′
)

ψ̃N
(
~r′′
)

. (51)

If we define the relativistic state |ñ〉such that ψ̃n(~r ′) ≡ 〈r′|ñ〉 and note that

M2
(

Ẽn,~r′,~r′′
)
=
〈

r′
∣∣∣M2

(Ẽn)
∣∣∣ r′′
〉

, (52)

then we obtain the simple and important result

∆ẼN =
1

2m

〈
Ñ
∣∣∣M2

(ẼN)
∣∣∣ Ñ
〉

. (53)
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The radiative shift of the level ẼN equals 1/2m times the expectation value of the renormalized mass2

operator M2
(ẼN) with respect to the state 〈Ñ| , where Ẽ is the relativistic energy.

In Section 4.3, we derive an expression for M2 to order α in the radiation field by using the equations
of motion for the meson in an external potential, a method we believe is closest to fundamental principles.

S Matrix Approach

As an alternative to our approach, we should mention that it is possible to use the S matrix formalism
to find the radiative shift. As mentioned in Section 2, Dyson showed the equivalence of the formulations
of QED of Schwinger and Feynman with the S matrix formalism [47,48]. For the interaction Lagrangian,
we use

Lint = ejµ Aµ
rad, (54)

where Aµ
rad is the meson’s radiation field and jµ is the meson current in the potential field. We calculate

the S matrix element between pure bound states with the usual harmonic time dependence. Since we have

a perturbation to a bound state the matrix element must be expressible in the form 〈S〉N = e−iT(ẼN−Ẽ0
N)

where T is the interaction time. To obtain the shift we perform the integrations and use the usual trick of
equating T and 2πδ(0).

4.3. Derivation of Mass2 Operator for Relativistic Meson (Spinless Electron) in an External Potential

We now outline the calculation of M2
(Ẽ) in a covariant gauge in which the meson’s radiation field

Aµ
rad and the meson field φ obey the equations:[

Aµ
rad(x′) , Aν

rad(x′′)
]

t′=t′′
= igµνδx′ − x′′,[

A0
rad(~r

′, t) , φ(~r ′′, t)
]
= 0,[

∂0 A0
rad(~r

′, t) , φ(~r ′′, t)
]
= 0.

(55)

Since the results are gauge invariant, we can choose the Feynman gauge in order to simplify
the calculation. In the final answer, we simply replace the Feynman propagator with the radiation
gauge propagator. The derivation proceeds by converting the Klein–Gordon equation for a self-inter-
acting meson in an external potential into an equation for the corresponding Green’s function G(x′, x′′).
An explicit form for M2(Ẽ) is then obtained by comparing this equation to the defining equation for G
which includes M2 (Equation (38)). If desired, one may skip to Section 4.3.2.

4.3.1. Detailed Derivation of Mass2 Operator from Equations of Motion

To take electromagnetic self-interactions into account in the Klein–Gordon equation, we make
the substitution

Π′µ → Π′µ − eAµ,rad(x′). (56)

Π′µ is defined in Equation (39)) with the result

(Π ′ 2 + m2
0)φ(x′) = j(x′), (57)

where
j
(

x′
)
= e

{
Arad

µ

(
x′
)

, Π ′µ
}

φ
(
x′
)
− e2 Aµ

rad

(
x′
)

Aµ,rad
(
x′
)

φ
(
x′
)

. (58)
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The anticommutator insures that the A · p term is Hermitean. To convert Equation (57) into an
equation for G(x′, x′′), we make use of Equation (43). We multiply by φ†(x′′), time order, and take the
vacuum expectation value. We use the equation

∂ ′ 2
(

A
(

x′
)

B
(

x′′
))

+ =
(

∂ ′ 2 A
(
x′
)

B
(
x′′
))

+

+
[
∂0
′A
(
x′
)

, B
(
x′′
)]

δ
(
t′ − t′′

)
+ ∂0

′ [A (x′) , B
(
x′′
)]

δ
(
t′ − t′′

)
+
[
A
(
x′
)

, B
(

x′′
)]

δ′
(
t′ − t′′

)
,

(59)

which follows from the lemma

∂0
′ (A

(
x′
)

B
(

x′′
))

+ =
(
∂0 A

(
x′
)

B
(
x′′
))

+ +
[
A
(
x′
)

, B
(
x′′
)]

δ
(
t′ − t′′

)
, (60)

to obtain the result (
Π ′ 2 + m2

0

)
G
(

x′, x′′
)
= +δ

(
x′ − x′′

)
+ i
〈(

j
(

x′
)

φ† (x′′))
+

〉
. (61)

Since we are calculating M2 to order e2 in the radiation field the term
e2〈(Arad

µ (x′)µ
rad (x′) φ (x′) φ† (x′′))+〉 in 〈(j(x′)φ†(x′′))+〉may be calculated with a free photon field rather

than the radiation field. In essence this follows since the radiation field is equal to the free field plus terms
of higher order. To show the formal justification, consider the matrix element

σ = 〈
(

Aµ
(
ξ ′
)

Aν
(
ξ ′′
)

φ
(
x′
)

φ† (x′′))
+
〉, (62)

where ξ ′ is a four-vector that the vector potential depends on [112]. Recall

∂ 2
ξ ′A

µ
(
ξ ′
)
= ejµ

(
ξ ′
)

, (63)

where thus

∂ξ ′
2σ = e

〈(
jµ
(
ξ ′
)

Aν
(
ξ ′′
)

φ
(
x′
)

φ† (x′′))
+

〉
+igµνδ

(
ξ ′ − ξ ′′

) 〈(
φ
(
x′
)

φ† (x′′))
+

〉
.

(64)

To lowest order, we may drop the first term. Solving for σ gives

σ =

[
gµν 1

∂ ξ ′
2 δ
(
ξ ′ − ξ ′′

)]
G
(
x′, x′′

)
. (65)

Considering the boundary conditions, we realize the term in brackets is just the usual Feynman
propagator. Accordingly, we obtain

σ = −Dµν
(
ξ ′ − ξ ′′

)
G
(
x′, x′′

)
. (66)

This result is to be expected since to lowest order the complete Hilbert space factors into two
independent spaces, one for φ(x′) and one for A(x′). Thus, we show that
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〈(
j
(

x′
)

φ
(

x′′
))

+

〉
= ie2

〈(
Aµ

(
x′
)

Aµ
(
x′
))

+

〉
G
(
x′, x′′

)
+ e

〈((
Arad

µ

(
x′
)

Π′µ + Π′µ Arad
µ

(
x′
))

φ
(
x′
)

φ
(
x′′
))

+

〉
.

(67)

We can rewrite the second term on the right side using the notation

−→
Π ′µ Arad

µ (x′)φ
(

x′
)
≡
(

Arad
µ

(
x′
)

Π′µ + Π′µ Arad
µ

(
x′
))

φ
(
x′
)

=

(
1
i

∂
µ
ξ ′ +

2
i

∂
µ
x′ − 2Vµ

(
x′
))

Arad
µ

(
ξ ′
)

φ(x′)ξ ′=x′ .
(68)

From Equation (61), we have(
Π′2 + m2

0

)
G
(

x′, x′′
)
= δ

(
x′ − x′′

)
+ ie
−→
Π ′µ〈

(
Arad

µ

(
x′
)

φ
(
x′
)

φ† (x′′))
+

〉
− e2

〈(
Aµ

(
x′
)

Aµ
(
x′
))

+

〉
G
(
x′, x′′

)
.

(69)

Using Equations (38) and (40) for the unrenormalized mass2 operator M2 shows the last two terms on
the right side of Equation (69) are equal to

−M2G(x′, x′′) = ie
−→
Π ′µ〈

(
Arad

µ

(
x′
)

φ
(
x′
)

φ† (x′′))
+
〉 − e2

〈(
Aµ

(
x′
)

Aµ
(
x′
))

+

〉
G
(
x′, x′′

)
. (70)

where M2G(x′, x′′) represent a convolution integral as in Equation (42). To order e2, we may replace the
full propagator G by the propagator Gc for a particle in the potential with the physical mass:(

Π′2 + m2
)

GC (x′, x′′
)
= δ

(
x′ − x′′

)
. (71)

Operating on Equation (70) from the right with Π2(x′′) + m2 therefore gives

M2 (x′, x′′
)
= −ie

−→
Π ′µ〈

(
Arad

µ

(
x′
)

φ
(
x′
)

φ† (x′′))
+
〉
(

Π2 (x′′)+ m2
)

+ e2
〈(

Aµ

(
x′
)

Aµ
(
x′
))

+

〉
δ
(
x′ − x′′

)
.

(72)

Following the same procedure as before gives the result

M2 (x′, x′′
)
= −ie2−→Πµ

(
x′
) 〈(

Aµ

(
x′
)

Aν
(

x′′
)

φ
(
x′
)

φ† (x′′))
+

〉
←−
Πν

(
x′′
)

+ e2
〈(

Aµ

(
x′
)

Aµ
(
x′
))

+

〉
δ
(
x′ − x′′

)
,

(73)

which is a shorthand notation for

M2 (x′, x′′
)
= ie2

(
2
i

∂
µ
x′ +

1
i

∂
µ

ξ ′ − 2Vµ
(
x′
))

Dµν

(
ξ ′ − ξ ′′

)
Gc (x′, x′′

)
×(

2
i

∂ν
x′′ +

1
i

∂ν
ξ ′′ − 2Vµ(x′′)

)
|ξ ′′=x′′ , ξ ′=x′ − ie2Dµ

µ(0)δ(x′ − x′′).
(74)

Since our calculation is to order e2, we again substitute Gc for G(x′, x′′). Now that we have derived
the equation for M2(x′, x′′), we return to the radiation gauge.
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4.3.2. The Expression for M2(Ẽ)

For our calculation of the radiative shift, we need the operator corresponding to the time Fourier
transform of M2(x′, x′′). To obtain this result, we use the expression for Gc which follows from Equation (71)
and time translation invariance [113]:

Gc (x′, x′′
)
=
∫ ∞

−∞

dẼ
2π

〈
r′
∣∣∣∣ 1
Π2 + m2 − iε

∣∣∣∣ r′′
〉

e−iẼ(t′−t′′), (75)

where
Πk = pk, Π0 = Ẽ−V(r). (76)

If we substitute Equation (75) and

Dµν

(
ξ ′ − ξ ′′

)
=
∫ d4k

(2π)4 eik(ξ ′−ξ ′′)Dµν(k), (77)

into our expression for M2, Equation (74), and we note the derivative with respect to ξ ′µ brings down a
factor of kµ, we find, after some computation, the important result for the unrenormalized relativistic
mass2 operator

M2(Ẽ) =
ie2

2

∫ d4k
(2π)4 Dµν(k)Tµν, (78)

where
Tµν = (2Πµ − kµ)

1
(Π− k)2 + m2 (2Πν − kν)

+ (2Πν + kν)
1

(Π + k)2 + m2 (2Πµ + kµ)− 2gµν.
(79)

We exploit the symmetry of the photon propagator under k→ −k to write Tµν in a form that manifests
crossing symmetry. From the Feynman rules we see that the diagrams corresponding to the Tµν operator
are as shown in Figure 7.

Figure 7. Feynman diagrams for the Compton scattering amplitude Tµν of a photon by a bound meson
(double line).

The double line in the figure refers to the meson propagating in an external potential. Tµν is the
operator Compton scattering amplitude in the forward direction. The seagull term on the right in Figure 7
must be included to insure gauge invariance. At threshold, it gives the Thomson scattering amplitude. As
Equation (78) indicates, we obtain the diagrams for M2 by contracting the above diagrams for Tµν with
the diagram for the photon propagator Dµν, giving the resulting Feynman diagrams for M2 in Figure 8.
The crossed diagram may be deformed into the uncrossed diagram, therefore both diagrams give equal
contributions to M2. Note that, in a calculation of the shift between two levels, the bubble term gives no
contribution since its matrix elements are independent of the state.
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Figure 8. Feynman diagrams for M2 which give the radiative shift of a bound meson, which arise from the
Compton scattering amplitude (Figure 7) of virtual radiation photons by a bound meson (double line) .

4.3.3. Gauge Invariance of the Shift ∆ẼN for a Relativistic Meson (Spinless Electron)

We must show that the most general gauge transformation [26]

Dµν → Dµν + λ′nµkν + µ′nνkµ + ν ′kµkν, (80)

induces no change in the observed shift. Under a gauge transformation, the radiative shift changes by an
amount

δ
(

∆ẼN

)
=

1
2m

ie2

2

∫ d4k
(2π)4

〈
Ñ
∣∣∣λ′nµkνTµν + µ′nνkµTµν ++ν′kµkνTµνÑ

∣∣∣〉 . (81)

We contract Tµν with kµ and use the identities

k(2Π + k) = (Π + k)2 + m2 −
(
Π2 + m2)

k(2Π− k) = −[(Π− k)2 + m2] + Π2 + m2 , (82)

to obtain
kµTµν = (2Πν + kν)−

(
Π2 + m2

) 1
(Π + k)2 + m2 (2Πν + kν)

− (2Πν − kν) + (2Πν − kν)
1

(Π− k)2 + m2

(
Π2 + m2

)
− 2kν.

(83)

For our unperturbed basis states, we have(
Π2 + m2

)
|Ñ〉 = 0. (84)

Consequently, 〈Ñ
∣∣kµTµν

∣∣ Ñ〉 = 0 and since Tµν(k) = Tνµ(−k) it follows that 〈Ñ |kνTµν| Ñ〉 = 0.
Accordingly, we see that Tµν is gauge invariant between physical states and that δ(∆ẼN) vanishes.

5. Calculation of the Radiative Shifts in the Nonrelativistic Approximation

5.1. Relationship to the Dipole Approximation

The dipole approximation and the nonrelativistic approximation are often considered as two separate
approximations. In radiative shift calculations, the dipole approximation is often given by the prescription:
in the radiation gauge, compute the shift ignoring the dependence of Tµν on the photon three-momentum
~k. As a consequence, we find that the term T00g00 corresponding to the static Coulomb or longitudinal
photon interaction gives a vanishing contribution to the shift. Seen in this way the dipole approximation
breaks gauge invariance which is why we must specify the gauge.

Another form of the dipole approximation is to let ~A(~r) be independent of ~r. To understand
the properties of this form of the dipole approximation under gauge transformations consider the
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nonrelativistic interaction Hamiltonian for radiation with a four-potential (φ(~r), ~A(~r)) and a scalar particle
of charge e and mass m:

HI = −
e
m
(~p · ~A) + eφ. (85)

Under a gauge transformation ~A→ ~A + ~∇λ, φ→ φ− ∂tλ, and HI transforms into HI + Λ, where

Λ = − e
m
~p · ~∇λ− e∂tλ. (86)

To obtain gauge invariance, the matrix elements of between the initial and final states must vanish:
〈 f |Λ|i〉 = 0. If we let λ = ei~k·~r−iωt, then gauge invariance requires that

〈 f | 1
m
~p ·~k ei~k·~r −ω ei~k·~r|i〉 = 0. (87)

Following the customary prescription for the dipole approximation, we set exp(i~k ·~r) equal to unity,
then, since 〈 f |i〉 = 0, we conclude that the matrix element 〈 f |~p ·~k|i〉 must vanish if we are to obtain gauge
invariance. Clearly, this is not generally the case and gauge invariance is violated. The difficulty lies in the
fact that setting the exponential equal to one resulted in approximating the change in the vector potential
to first order in k and the change in the scalar potential to zero order in k. If we approximate the change in
the scalar potential to one order higher, then we find that gauge invariance requires

〈 f | 1
m
~p ·~k− iω~k ·~r|i〉 = 0. (88)

This quantity does indeed vanish since〈
f
∣∣∣∣ ~pm
∣∣∣∣ i
〉

= i〈 f |[H,~r]〉i〉 = i
(

E f − Ei

)
〈 f |~r|i〉

= iω〈 f |~r|i〉.
(89)

In the radiation gauge, the scalar potential vanishes, thus we circumvent these difficulties.
Alternatively, we may obtain the unrenormalized M2 operator in the nonrelativistic approximation

from a different perspective, by noting that the pole in the photon propagator in Equation (78) insures
that the integration over k0 leads to the result |~k| = k0 but since |~k| is a momentum it equals a frequency
over the speed of light |~k| = ω/c. As c increases the magnitude of the spatial momentum vanishes and
we obtain the dipole approximation. Seen in this way, the dipole approximation is not gauge dependent
but simply part of the nonrelativistic approximation. If we work in the radiation gauge, then this method
gives the result obtained from the usual proscription.

From dynamical considerations we can show that in a bound system characterized by a small
coupling constant the motion is nonrelativistic and |~k|, the approximate change in momentum for radiative
transitions between states, may be neglected with respect to the momentum p of the bound particle.

Consider a potential of the form

V(r) =
1
n

mgn+2(mr)n, n > −2. (90)

The exponent of the mass m is chosen so that the coupling constant g is dimensionless; the exponent
of g and the overall coefficient are chosen so that V agrees with the conventional expressions for the
simple harmonic oscillator (n = 2, g =

√
ω0/m and the Coulomb potential (n = −1, g = Zα). The
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total nonrelativistic energy of the atom is E = T + V. Employing the virial theorem for our potential
T̄ = −(n/2)V̄ and the uncertainty principle gives the results

p ≈ 1
r
≈ gmc, E ≈ n + 2

2n
g2mc2, (91)

where c is the speed of light. These results justify the use of nonrelativistic dynamics for small g.
The contribution to the shift of a bound state energy level will be greatest for resonant virtual transitions,
that is, when the photon energy equals the difference between two energy levels. For these resonant
transitions E ≈ |~k|c and ∣∣∣∣∣~kp

∣∣∣∣∣ ∼
∣∣∣∣n + 2

2n

∣∣∣∣ g << 1, (92)

for weak coupling. To insure that the nonrelativistic approximations remain valid during the integration
over frequency, it may be necessary to use a cut off which is proportional to the mass. The shift for greater
(and therefore nonresonant) frequencies for physically realistic situations can be calculated by neglecting
the bound state energy and keeping only the lowest order terms in the coupling constant.

To understand the physical meaning of the dipole approximation more clearly, we employ the
translation operator in momentum space ei~k·~r to show that for a function f (p) we have the identity

〈N|(2−→p −
−→
k ) f (−→p −

−→
k )(2−→p −

−→
k )|N〉 = (〈N|ei

−→
k ·~r)(2−→p +

−→
k ) f (−→p )(2−→p +

−→
k )(e−i

−→
k ·−→r |N〉). (93)

Applying this result to the expressions for M2(E)and Tµν (Equations (78) and (79)), we see that

the matrix elements for the shift are between translated atomic states (e−i
−→
k ·−→r |N〉) that have a center

of mass momentum −~k in order to conserve momentum when the virtual photon of momentum +~k is
emitted. In addition, from the Feynman rules for spinless mesons, we know that the~k present in 2~p +~k
insures momentum conservation at the vertex. Accordingly dropping the~k dependence means that we
are violating momentum conservation and neglecting the recoil of the particle, which is a reasonable
approximation since we are dealing with long wavelength photons whose momentum is much less than
the particle’s momentum. In more accurate calculations, we need to maintain center of mass momentum
conservation and include the corresponding recoil terms [3,7,51,67,72,87].

5.2. M2 in the Nonrelativistic Dipole Approximation

We first take the nonrelativistic limit of our expression for Tµν (Equation (79)). We obtain the crossing
symmetric, gauge invariant Compton scattering amplitude operator in the forward direction for a meson
or a spinless Schrodinger electron in a potential V:

Tij = (2pi − ki)
1

(−→p −
−→
k )2 + 2mV − (E− k0) 2m

(
2pj − k j

)
+
(
2pj + k j

) 1

(−→p +
−→
k )2 + 2mV − (E + k0) 2m

(2pi + ki)− 2gij,
(94)

T00 = 4m2 1

(−→p −
−→
k )2 + 2mV − (E− k0) 2m

+ 4m2 1

(−→p +
−→
k )2 + 2mV − (E + k0) 2m

− 2g00,
(95)
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Ti0 = 2m (2pi − ki)
1

(−→p −
−→
k )2 + 2mV − (E− k0) 2m

+ 2m
1

(−→p +
−→
k )2 + 2mV − (E + k0) 2m

(2pi + ki) ,
(96)

where E is the nonrelativistic energy E = Ẽ−m (which is negative for the hydrogen atom). As a check on
the nonrelativistic limit, we can prove gauge invariance by noting

~k · (2~p +~k) = (~p +~k)2 − ~p2

~k · (2~p−~k) = −(~p−~k)2 + ~p2 , (97)

and remembering that for matrix elements between physical states we can use the Schrodinger equation

(H − E)|N〉 = 0, (98)

where

H =
p2

2m
−V. (99)

The expression for the (mass)2 operator in the non-relativistic limit is given by

M2(E) =
ie2

2

∫ d4k
(2π)4 Dµν(k)Tµν, (100)

where Tµν is given by the nonrelativistic form in Equations (94)–(96). We use the photon propagator in the
radiation gauge:

D00 =
g00

k2 Dij =
Pij

k2 , (101)

where

Pij = (δij −
kik j

~k2
). (102)

We perform the k0 integration first. There are poles in the complex k0 plane at k0 = E−V− (~p−~k)2

2m + iε
and ±(ω/c− iε) where ω = c|~k| and we display the speed of light c. Closing the contour in the lower half
plane enclosing the single pole at k0 = ω/c− iε gives the result

M2 = − αc
2mπ

∫
ωdω

∫ dΩk
4π
×{

Pij
[
(2pi − n̂i

ω
c )

1(
~p− n̂

ω

c
)2

2m
+ V − (E−ω)

(2pj − n̂j
ω

c
)− 2mgij

]

+4m2c2 1

(~p− n̂
ω

c
)2

2m
+ V − (E−ω)

− 2mg00

}
,

(103)

where n̂ =~k/|~k| and we have combined cross terms since they give equal contributions to M2. As we let
c→ ∞, the terms in n̂ω/c vanish leaving us with the expression for M2 obtained by making the dipole
approximation in the usual manner (|~k| → 0).

The angular integration for the gijTij term is
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∫ dΩk
4π

=
2
3

δij, (104)

corresponding to the two transverse polarization states of a photon. Using the identity,

ω

H − (E−ω)
= 1− H − E

H − (E−ω)
, (105)

we find

M2 = −αc
π

∫
dω

[
8
3

p2

2m
− 3ω + 2mc2 − 4

3m
pi

H − E
H − (E−ω)

pi − 2mc2 H − E
H − (E−ω)

]
. (106)

The expectation value of the last term, which comes from g00T00, vanishes for physical states. The first
term can be interpreted as the change in the kinetic energy due to the mass renormalization in the
nonrelativistic limit [23]. The second and third terms compose the free particle mass renormalization. The
next to the last term is the only term that depends on the potential V, and gives a vanishing shift in the free
particle limit V → 0. Thus, the renormalized mass2 operator in the nonrelativistic limit is

M2
(E) =

4αc
3πm

∫
dωpi

H − E
H − (E−ω)− iε

pi. (107)

5.2.1. Calculation of the Radiative Shift in the Nonrelativistic Limit

The shift is given by matrix elements of M2 between nonrelativistic meson states. To find the
nonrelativistic limit of the normalization in Equation (48) of our relativistic meson wave functions 〈r′|ñ〉,
we use our definition of the nonrelativistic energy E = Ē−m to write the normalization in the form∫

d3r′|〈r′|ñ〉|2
(
1 +

En

mc2 −
V

mc2

)
= 1, (108)

where we make the factors of c explicit. Clearly, in the nonrelativistic limit, we obtain the usual Schrodinger
wave functions 〈r′|n〉 with the normalization∫

d3r′|〈r′|n〉|2 = 1, (109)

or

〈nlm|n′l′m′〉 = δnn′δll′δmm′ , (110)

where n, l, m are the usual quantum numbers. The effective shift in the unperturbed level E0
N due to the

radiative interaction is the matrix element of the renormalized (mass)2 operator with respect to |N >:

∆EN = EN − E0
N =

1
2m
〈N|M2

(EN)|N〉. (111)

Substituting the expression for M2 (Equation (107)) and inserting a complete set of intermediate states
gives the result

∆EN =
2α

3πm2

s

∑
n

∫ ωc

0
dω

[ (En − EN) 〈N |pi| n〉 〈n |pi|N〉]
En − EN + ω− iε

, (112)
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where the s on the summation indicates we also include scattering states [114]. This is the same result as in
Bethe’s original paper and his book [13,19].

Equation (112) can be easily derived from second-order perturbation theory, as Bethe did, in which the
complete set of states |n〉 represent intermediate states [23] and this is often the approach in calculations of
the radiative Lamb shift in textbooks. We derive this equation for the shift using the fundamental equations
of motion. We now show that the term in brackets in this equation is proportional to the probability for a
transition between state N and state n by the emission or the absorption of dipole radiation, which leads
to a model for the radiative shift. The interaction Hamiltonian is

Hint (t) =
e
m
~p(t) · ~Arad(~r(t), t), (113)

where ~Arad is the vector potential for the spinless electron’s or meson’s radiation field. The S matrix
operator is

S =

(
ei
∫ ∞
−∞ :dtHint(t):

)
+

, (114)

where the double dots mean the Hamiltonian is normally ordered, with creation operators to the left of the
annihilation operators. We want the matrix element ρ for a transition n→ n′, n′ < n by the emission of a
photon of momentum~k and polarization~ε:

ρ = 〈kεn′|S− 1|n〉. (115)

To lowest order, the Hilbert spaces are separable and ~Arad equals the free field vector potential ~A. The
matrix element of ~A is the photon wave function:

〈kε|~A(~r(t), t)|0〉 = ~ε e−i~k·~r+iωt. (116)

In the interaction representation,

~p(t) = e+iHt~p(0) e−iHt. (117)

Accordingly, we find

ρ = −2πi
e
m

δ (En′ + ω− En) 〈n′|~ε · ~p|n〉, (118)

where we use the dipole approximation~k ·~r ≈ 1. The decay rate for n→ n′ by dipole emission is

Γe
n′ ,n =

total probability
interaction time

. (119)

In the usual way, we take 2πδ(0) as the interaction time, giving

Γe
n′ ,n = ∑

pol

∫ d3k
(2π)3

1
2ω

|ρ|2
2πrδ(0)

. (120)

Recalling

∑
µ

εµiεµj = δij −
kik j

k2 , (121)



Physics 2020, 2 134

we obtain
Γe

n′ ,n =
4α

3m2 (En − En′)〈n′|pi|n〉〈n|pi|n′〉 > 0, n′ < n, (122)

for the decay rate from n → n′ by dipole emission where En − E′n = ωnn′ . Similarly, the rate for the
transition n→ n′ for n′ > n, by absorption of dipole radiation, is

Γa
n′ ,n =

4α

3m2 (En′ − En)
〈
n′ |pi| n

〉 〈
n |pi| n′

〉
> 0, n′ > n. (123)

In accordance with the principle of detailed balance, we see

Γa
n′ ,n = Γe

n,n′ . (124)

From our definition, Γe
n,n′ is defined only for n′ > n and then is always positive or zero. We see

formally that Γe
n,n′ = −Γe

n′ ,n . Accordingly, if n > n′, we interpret Γe
n,n′ as −Γe

n′ ,n. Using this convention
with our expression for Γe

n,n′ , we find that, after changing variables, the expression in Equation (112) for
the shift may be written in the simpler form:

∆EN =
1
π

s

∑
n

∫ En+ωc

En
dω

− 1
2 Γe

n,N

ω− EN − iε
. (125)

From Equations (94)–(96) for Tµν, it is clear that ∆EN is an analytic function f (N, EN) of the energy
EN , which is in the denominator. We define

∆EN = f (N; EN) =
s

∑
n

fn (N; EN) . (126)

The partial shift fn(N; EN) represents the contribution to the shift in level N from virtual transitions
from level N to level n. We replace EN by the complex variable z and investigate the structure of the partial
shift as a function of z:

fn(N; z) =
1
π

∫ En+ωc

En
dω
− 1

2 Γe
n,N

ω− z− iε
. (127)

We extend the lower limit of integration to E1 and the upper limit to ∞ and multiply by the appropriate
theta functions (θ(t) = 0 if t < 0,= 1 if t > 0) so that the value of the integral is unchanged. After
summing over all states, we find that the complex radiative shift obeys the dispersion relation [28]

f (N; z) =
1
π

∫ ∞

E1

dω
Im f (N; ω)

ω− z− iε
, (128)

where

Im f (N; z) =
s

∑
n
−1

2
Γe

n,Nθ(ω− En)θ(ωc + En −ω). (129)

We can separate the integral into its real and imaginary parts

f (N; z) =
1
π

P
∫ ∞

E1

dω
Im f (N; ω)

ω− z
+ i Im f (N; z). (130)

Figure 9 shows the cut structure for f (N; ω) in the complex ω plane.
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Figure 9. Cut Structure of f (N; ω) in the complex ω plane. At each value of En which is less than EN , there
is a cut with a discontinuity of − 1

2 Γe
n,N ; at EN , there is no cut. At each value of En which is greater than EN ,

there is a cut with a discontinuity of 1
2 Γe

N,n.

5.2.2. Radiative Shift for Physical Energy Levels

The function f (N; z)|z=EN gives the radiative shift for the energy level EN . The imaginary part of the
shift is

Im∆EN = Im f (N; EN)

= −1
2 ∑

n<N
Γe

n,N ≡ −
1
2

ΓN ,
(131)

where ΓN is the total width for decay of state N by dipole radiation. The imaginary part of the shift
equals the half-width in magnitude and is always negative as it must be to insure that the probability

density decreases exponentially:|e−it(E0
N+∆EN)|2 = e−ΓN t . Only states to which the state N can decay by

the emission of real radiation contribute to the width of the level EN .
The real part of the shift Re f (N; EN) is given by the principal part of the integral. Since we integrate

from E1 to ∞, skipping the infinitesimal portion |ω− EN | < ε , all cuts (or equivalently all intermediate
states) contribute to the real part of the radiative shift. Integrating over ω we obtain an expression for the
real part of the partial shift fn(N; EN):

Re fn(N; EN) =

{
−Γe

n,N n < N
Γe

N,n n > N
× 1

2π
ln

ωc − EN + En

|En − EN |
. (132)

We can approximate Re fn(N; EN) by neglecting En − EN in the numerator of the log. With this
approximation, and writing the log of the ratio as a difference in logs, we can sum Re fn(N; EN) over all
states using the dipole sum rule:

3m2

2α

s

∑
n

Γe
N,n = 2

s

∑
n
(En − EN) 〈N |pi|n〉 〈n |pi|N〉 = −〈N|∇2V|N〉. (133)

This gives the result

Re ∆EN =
2α

3πm2

{
1
2
〈N|∇2V|N〉 ln

ωc

E0

+∑
n
(En − EN) 〈N |pi| n〉 〈n |pi|N〉 ln

E0

|En − EN |

}
,

(134)
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where E0 is an arbitrary energy parameter, which we shall take to be some characteristic energy of the
bound system, for example, the ground state energy. The first term is the same expression for the shift that
we obtained by considering the motion of the particle in the zero-point field (Equation (29)). Note that we
only assume the spinless electron is in a central force potential V(r).

5.2.3. A Model to Interpret the Results

We can construct a simple model (Figure 10) to interpret the salient features of the partial radiative
shifts fm(N; EN), which give the shift in the energy EN due to virtual transitions to level m. The features
are expressed in the following relations, which hold for any positive integer m < N:

(1) Re fm(N; EN) + Re fN(m; Em) = 0.
(2) Re fm(N; EN) < 0.
(3) Im fm(N; EN) = Re fm(N; EN)[

1
π ln ωc

EN−Em
]−1 .

The first relation shows that the average energy of two levels that shift each other is unchanged.
Together, the first two relations show that virtual transitions to lower states cause downward shifts and
transitions to upper states cause upward shifts. The third statement shows that a lower level’s contribution
to the width is less than its contribution to the shift by the factor 1

π ln( ωc
EN−Em

). We can deduce relations (1)
and (2) for the level shifts exactly and relation (3) for the level width in an approximation by assuming that
the observed energy corresponds to a time-weighted average of the original energy and the energy of the
state to which the system made a virtual transition. To make this interpretation quantitative, we consider a
state N with a partial width Γ = Γe

N,m = Γa
m,N for m < N. The system makes Γ transitions from N to m in

one second and remains in the state m for a time allowed by the time-energy uncertainty principle [115]

δt ≈ 1
EN − Em

. (135)

Therefore, for a system in which Γ << EN − Em (e.g., atomic systems), the average energy ENave of
level N is shifted and is approximately

ENave =
Γ

EN − Em
Em +

(
1− Γ

EN − Em

)
EN = EN − Γ. (136)

The level shift for state N due to a transition from a state N to a lower state m is ENave − EN or
Re fm(N; EN) = −Γe

m,N . Similarly we find that for a transition from a state m to a higher state N the level
shift is Re fN(m, EN) = Γa

N,m which is positive. From these two expressions, relations (1) and (2) follow.
Corresponding to the third relation we find using Equation (129) and the results directly above that the
model predicts a level width

Im fm(N; EN) = −
1
2

Γ =
1
2

Re fm(N; EN), (137)

This result agrees with relation (3) only if we replace 1
π ln ωc

EN−Em
by unity [116]. If we use the dipole

sum rule, then in our model we find that the total level shift is 4/3 of the result obtained in the discussion
after Equation (37) where we obtained the shift by applying the uncertainty principle to determine the
effects of the zero point field on a bound particle.
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Figure 10. The energy level E0
N is shifted to EN by intermediate virtual transitions to E0

m, which also
increases the width of the level to Γ. The level E0

m is shifted to Em by virtual transitions to E0
N . The latter

transition does not increase the width of the level for Em.

5.2.4. Two Examples: The Harmonic Oscillator and the Coulomb Potential

In our discussion thus far we only assume we have a spinless particle of mass m and charge e in a
central force potential V(r) interacting with its own radiation field. Now, we can apply the results to these
two specific potentials.

(1) The Isotropic 3-D Harmonic Oscillator

Consider a simple isotropic harmonic oscillator in three dimensions for which

V(r) =
1
2

mω2
0r2, (138)

with energy levels

EN = (N +
3
2
)ω0, N = n1 + n2 + n3 . (139)

The fact that V(r) increases formally with r without bound does not introduce difficulties since
transitions are possible only between adjacent energy levels. Employing the matrix elements of the
momentum operator

〈
n′i
∣∣pj
∣∣ ni
〉
=

√
mω0

2

(√
ni + 1δn′ini+1 −

√
niδn′ini−1

)
, (140)

we can easily compute the real and imaginary parts of the radiative shift using Equations (122), (123), (131)
and (132). For the complex radiative shift of level EN , we find

∆EN =
α

3πm
ω2

0

(
3 ln

ωC
ω0
− i2πN

)
, (141)

giving a corresponding width

ΓN =
2
3

α

m
ω2

0 N. (142)

In the dipole approximation, the shift is the same for all levels: no degeneracy is split. On the other
hand, the radiative width ΓN increases with N and agrees with the width Equation (12) obtained by
applying the Bohr Correspondence Principle to the classical expression for the radiated power. The ratio of
ΓN/EN is constant and equals (2/3)αh̄ω0/mc2. In Section 6, we compute the radiative shift for a relativistic
spinless electron and show that for some levels the degeneracy is lifted.
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(2) The Coulomb Potential

We have
V(r) = −Zα

r
, (143)

and therefore
∇2V(r) = 4πZαδ(r). (144)

Since the matrix elements vanish except for S states, we may isolate the L dependence of the shift
by defining the Bethe log γ(N, L) for a state characterized by principal quantum number N and angular
momentum L [13]:

γ(N, L)∑s
n (En − EN) 〈N 0 |pi| n〉 〈n |pi|N 0〉

= ∑s
n (En − EN) 〈NL |pi| n〉 〈n |pi|NL〉 ln |En−EN |

1
2 m(Zα)2

. (145)

Using Equation (134), setting the frequency cutoff to ωc = m, and substituting the Schrodinger wave
function

|ψN(0)|2 =
1
π

(
Zαm

N

)3
δL0, (146)

where the Kronecker delta function δL0 vanishes if L 6= 0. We find for the shift for level NL

Re ∆ENL =

[
4m
3π

α(Zα)4
]

1
N3

{
δL0 ln

2
(Zα)2 − γ(N, L)

}
. (147)

where γ(N, L) must still be numerically evaluated [117]. The result is the same result Bethe obtained in his
original calculation. The Bethe log is tabulated for a few energy levels in the original work in which it is was
introduced [13] and in various articles for additional levels and at a higher precision, for example [7,83].

To provide a scale of magnitude for the shift, we note that the term in square brackets is the energy
radiated in one revolution of the electron in the ground state according to the laws of classical physics and
equals Planck’s constant times 1090 MHz. For N = 2, the 2s shift is 1051.84 MHz. The currently accepted
value for the Lamb shift is about 1057.87 MHz. We can estimate

∆EN/EN ≈ α
(Zα)2

N
, (148)

which is about 1 part in 1.3 × 106 for N = 2. The width for low-lying states may be obtained by computing
the sum in Equation (129) explicitly.

In the limit of very large quantum numbers for any central force field for circular orbits, we can
simplify the expression for the width ΓN by assuming that the most important transitions are those for
which ∆n << N. The strongest transitions in the classical limit are between wave packets corresponding
to the circular orbits n = N, l = N − 1 and n = N − 1, l = N − 2. This is equivalent to saying that the
classical radiation is primarily in the fundamental band. Accordingly, our sum collapses to

ΓN = ωcl 〈N |pi|N − 1〉 〈N − 1 |pi|N〉
4α

3m2 , (149)

where ωcl is the classical frequency of rotation. This matrix element can be obtained without direct
computation by noting that〈

N|p2|N
〉
∼= 〈N |pi|N + 1〉 〈N + 1 |pi|N〉+ 〈N |pi|N − 1〉 〈N − 1 |pi|N〉 , (150)
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which follows from our assumption that the only significant transitions are those for which ∆N = ±1 and
from the fact that 〈N|pi|N〉 = 0 for a bound state. We assume that the matrix elements do not change
rapidly with N, thus

〈N |pi|N − 1〉 〈N − 1 |pi|N〉 ∼= 〈N |pi|N + 1〉 〈N + 1 |pi|N〉 . (151)

Therefore, our final expression for ΓN is

ΓN =
2α

3m2 ωcl

〈
N
∣∣∣p2
∣∣∣N
〉

. (152)

For the Coulomb potential ωcl = m(Zα)2/N3 (see Equations (14) and (17)), we find

ΓN =
2
3

mα
(Zα)4

N5 , (153)

which is in accordance with the result obtained through the correspondence principle Equation (18).
Note that nowhere in our derivation of Equation (152) do we specify the detailed nature of the

central force. We only assume that the radiation was in the fundamental band, which is always true for
classical circular orbits. Indeed, this equation agrees with the expression for Γ obtained by applying the
correspondence principle to the classical expression for the radiated power Pc for any circular orbit of a
charged particle

Pc =
2
3

α

m2 p2ω2
cl, (154)

namely

Γ =
2
3

α

m2 p2ωcl. (155)

For both examples, the relative shifts go approximately as α(Bound State Energy Level)/(Rest Mass
Energy), reflecting the fundamental nature of radiative shifts (and that we are considering radiative shifts
in lowest order).

For exact nonrelativistic calculations, the sum over states for the real part of the energy shift was
trivial to compute for the oscillator since only two intermediate states contribute. Alternatively, if we
compute the shift from Equation (107) without inserting intermediate states, then from the equations of
motion we can easily compute the contraction over pi. We will follow this procedure in our calculations of
the level shift for the relativistic harmonic oscillator in Section 6. Unfortunately, to secure exact results for
the Coulomb potential is more difficult. If we use Equation (112), we must include an infinite number of
intermediate states in our sum. If we do not use intermediate states but use Equation (107) directly, then
we find that the equations of motion are intractable unless we use group theoretical techniques, which we
will publish elsewhere [118].

6. Radiative Shift of a Relativistic Meson (Spinless Electron) with a Harmonic Interaction Lagrangian

6.1. Introduction

We compute the radiative shift for a spinless, relativistic meson with a charge e with a harmonic
interaction Lagrangian Lint = Vψ2 where ψ is the meson field and V = C2r2, and C is a real constant.
From consideration of the equations of motion, we compute the the radiative shift of the energy levels that
corresponds to the difference of the contribution to the mass renormalization from a mass m bound by
the harmonic interaction and a free meson [119,120]. We derive an integral expression for the complex
radiative shift to order α in the radiation field and to all orders in the binding field. In Section 6.2, we
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perform the computations after making the simplifying assumption that the virtual photon is spinless. In
Section 6.3 we include the effects of spin.

We assume the unperturbed meson state |N〉 obeys the Klein–Gordon equation with the interaction
term

(p2 − p2
0 + C2r2 + m2)|N〉 = 0. (156)

The equations of motion can be written in the form

(H − E0
N)|N〉 = 0, (157)

where

H =
p2

2m
+

m
2
(

C
m
)2r2, (158)

and

E0
N =

p2
0 −m2

2m
. (159)

This form shows that the equations of motion are the same as those of a simple harmonic oscillator
with frequency

ω = C/m. (160)

Accordingly, we know the unperturbed energy levels are

E0
N = (N +

3
2
)ω, (161)

and
p2

0 = 2(N +
3
2
)C + m2. (162)

6.2. Relativistic Radiative Shift for a Scalar Photon Interaction

The shift is given by the equation

∆EN = EN − E0
N = ig

∫ d4k
(2π)4

1
k2

〈
N

∣∣∣∣∣ 1

D(~k)− iε′

∣∣∣∣∣N

〉
, (163)

where g = 2me2 and D(~k) is the inverse momentum space propagator for the bound meson:

D
(
~k, k0

)
= D(k) = (~p−~k)2 − (p0 − k0)

2 + C2r2 + m2. (164)

We employ the integral representations

1
k2 − iε

= i
∫ ∞

0
dλe−iλk2−ελ,

1
D(k)− iε′

= i
∫ ∞

0
dte−itD(k)−ε′t. (165)

By employing the translation operator in momentum space, we see that

e−itD(k) = ei~k·~re−itD(~0, k0)e−i~k·~r, (166)

where
D
(
~0, k0

)
= 2mH + m2 − (p0 − k0)

2 . (167)
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By applying the equations of motion for the canonical variables for an elapsed time equal to mt,

e−itmHrieitmH = ri cos(Ct)− pi sin(Ct),
e−itmH pieitmH = pi cos(Ct) + ri sin(Ct).

(168)

we can compute the translations in Equation (166) explicitly with the result

1
D(k)−iε′ = i

∫ ∞
0 dte−itmHei2~k·~pνe+itmH

×e−iµk2
e−it(m2−(p0−k0)

2)e−ε′t,
(169)

where
µ = sin(Ct) cos(Ct)

C ,
ν = sin(Ct)

C .
(170)

The integration over the scalar photon momentum can be performed by completing the square, and
employing the general formula ∫ ∞

−∞
dxe±(iax2−2ibx) =

π

a
e∓

b2
a e±i π

4 . (171)

After taking matrix elements, we find that the shift is

∆EN1 N2 N3 =
∫ ∞

0
dt
∫ ∞

0
dλσNΩN1 N2 N3 , (172)

where we have used the product representation for the three-dimensional harmonic oscillator states
|N1N2N3〉 = |N1〉|N2〉|N3〉 and N = N1 + N2 + N3. The quantities σN and Ω are

σN = − g
16π2 (λ + t)−

1
2 e−ip2

0

(
t2

t+λ

)
, (173)

ΩN1 N2 N3 = (λ + µ)−
3
2

〈
N1N2N3

∣∣∣∣ei~p2( ν2
λ+µ )

∣∣∣∣N1N2N3

〉
. (174)

We can calculate the matrix elements directly and express the results in terms of the quantity

Ω(j) =
(
iν2C

)j

(λ + µ− iν2C)j+ 3
2

. (175)

We find
Ω000 = Ω(0),
Ω100 = Ω(0) + Ω(1),
Ω200 = Ω(0) + 2Ω(1) + 3

2 Ω(2),
Ω110 = Ω(0) + 2Ω(1) + Ω(2).

(176)

The radiative shifts lift the degeneracy for some levels and this parameterization simplifies the
calculation of shifts between degenerate levels. The free particle mass shift is contained in Ω(0) to all
orders. This follows by noting that, for j > 0, as C → 0

lim
C→0

Ω(j)→ 0. (177)
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For calculations of the shift between the nondegenerate energy levels, we would use a different
formulation, subtracting the free particle shift in the beginning. To check our equations, we consider the
limit C → 0, which should yield the free particle renormalization. In this limit we have µ→ t and ν→ t
so the only nonvanishing Ω is

Ω(0)→ (λ + t)−
3
2 . (178)

Substituting these quantities into the expression for the shift, we find

∆Efree = − g
16π2

∫ 1

0
dy
∫ ∞

0

dt
t

e−im2yt, (179)

where we have made the substitution
y =

t
t + λ

. (180)

To avoid having a spurious imaginary term, we do not include the contribution from the pole at t = 0,
but start our integration at t = ε. Using the formula

∫ ∞

ε
dt

e−iat

t
= − ln(εa)− γ, (181)

we find
∆E f ree =

g
16π2 ln

(
εm2

)
+ γ− 1, (182)

where ε in the infinitesimal cutoff for the t integration and γ is Euler’ constant. This result has the same
structure as the conventional result with respect to the divergences. The finite parts depend on the values
of the cutoffs and on the particular procedures used to evaluate the integrals. The infinite terms cancel in
the calculation of measurable shifts and consequently have no direct physical significance.

The expression for the bound state shifts can be rewritten in terms of y and τ = 2Ct:

λ + µ− iν2C = τ
2Cy

[
1− y

iτ
(
e−iτ + iτ − 1

)]
,

iν2C = 1
4iC
(
eiτ + e−iτ − 2

)
,

µ = 1
4iC
(
eiτ − e−iτ). (183)

The integral used to calculate the shifts is

∆EN(j) ≡
∫ 1

0
dy
∫ ∞

0
dtσNΩ(j), (184)

which equals

∆EN(j) = − g
16π2

1
(2i)j

∫ 1

0
dy
∫ ∞

2Cε

dτ

τ j+1

yj (eiτ + e−iτ − 2
)j e−iyητ[

1− y
iτ
(
e−iτ + iτ − 1

)]j+ 3
2

, (185)

where the degree of coupling to the harmonic oscillator is given by the dimensionless parameter

η =
p2

0
2C

. (186)

The shift can be expressed as a single integral of a confluent hypergeometric function with two
arguments. The structure is similar to that for H atom where the shift can also be expressed in terms of an
integral over a confluent hypergeometric function [11].
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6.3. Relativistic Radiative Shift for a Spin 1 Photon Interaction

The expression for the shift is

∆EN = EN − E0
N = ig

∫ d4k
(2π)4

1
k2 − iε

〈
N
∣∣∣Tµ

µ

∣∣∣N
〉

, (187)

where

Tµ
µ = (2p− k)µ

1
D(k)− iε

(2p− k)µ. (188)

Executing the trace gives

Tµ
µ = 4

[
pi

1
D(k) pi − p2

0
1

D(k)

]
−2
{−→p · −→k , 1

D(k)

}
− 4p0k0

1
D(k)−

(−→
k 2 − k2

0

)
1

D(k) . (189)

We can derive expressions for each of these quantities in terms of our previous results by employing
the Heisenberg equations of motion for pi and qi (Equation (168)) and also our form of the Klein–Gordon
equation (Equation (156)). Our final result is

∆EN1 N2 N3 = 4
∫ ∞

0
dλ
∫ ∞

0
dt
[
−p2

0 − C2ν22C
(

N +
3
2

)
− 3iµC2

− p2
0

t
t + λ

+

(
2µνC2 +

λ

ν

)
1
2i

∂

∂ν

+C2ν2
(

2C2ν2 − 1
) 1
−i

∂

∂(λ + µ)

]
σNΩN1 N2 N3

+
1
i

∫
dtσNΩN1 N2 N3 |λ=0 ,

(190)

where σN and ΩN1 N2 N3 have the same meaning as before (Equations (173) and (174)).

7. Conclusions

We discuss the history of Lamb shift and Bethe’s pivotal calculation, and how it influenced the
direction of theoretical physics for over half a century.

We discuss the general nature of radiative shifts of bound state energy levels, from the classical and
the quantum perspectives, examining in some detail results for the harmonic oscillator and the hydrogen
atom. The radiative shifts are complex, the real part being the level shift and the imaginary part being
the level width. The shifts arise because of the emission and absorption of virtual photons which occurs
due to interaction of the charged particle with its own radiation field, or, equivalently, with the vacuum
zero-point fluctuations. We know vacuum fluctuations are affected by geometry and therefore radiative
shifts differ from free space values for atoms in a cavity, for example, or near a surface [105–108,110,121].
Lamb shifts have even been used to model gravitational energy in black holes [122].

Today, the computation of radiative shifts and atomic energy levels can be done very precisely, from 1
part in 1012 to 1 part in 1015 for certain energy levels, the most precise computations for any physical system
[20]. Today, the corresponding experiments demonstrate comparable precision. Some see the opportunity
for developing metrology [123–127]. This favorable situation allows atomic systems to be a platform for
the discovery of new physics beyond the standard model. Theoreticians are already calculating the effect
on energy levels due to the quantization of space, the non-commutativity of space-time coordinates and
space-time fluctuations for H atoms, muonic atoms and Rydberg states [128–135]. Measurements are being
done on collaborative Lamb shifts for mesoscopic arrays [136,137].
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Because of this high precision, measurements of radiative shifts and atomic energy levels reveal
detailed information about phenomena causing shifts aside from radiative effects. This precision has
led to a new understanding low Z two body systems, including muonium, positronium, and tritium,
revealing nuclear structure effects and other higher order effects. We can expect that atomic energy level
measurements and computations will continue to contribute significantly to the development of quantum
physics in the future.
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Appendix

We thought a few selected comments about the lives of Lamb and Bethe might help frame their
activities during the years in which they played such key roles in the development of QED.

Appendix A.1. Brief Biography of Willis Lamb Jr.

Willis Eugene Lamb Jr. was an American physicist, born in Los Angeles in 1913, who won the Nobel
Prize in Physics in 1955 “for his discoveries concerning the fine structure of the hydrogen spectrum.” He
went to the University of California at Berkeley where received an undergraduate degree in chemistry, and
then a PhD in theoretical physics in 1938, working with J. Robert Oppenheimer as his advisor. David Bohm
received his PhD with Oppenheimer a few years later. At one point as a young man, Lamb considered
becoming a professional chess player instead of a physicist [138]! After receiving his PhD, he then joined
the faculty at Columbia University, where he did research at the Columbia Radiation Laboratory from
1943 to 1951 with Prof. Isador Rabi [35]. He taught at Stanford, Oxford, Columbia, Yale, and University of
Arizona. Norman Kroll was one of his students. For the last three decades of his life, he was critical of the
standard interpretation of quantum mechanics, particularly the quantum theory of measurement and did
not believe in the idea of a photon [139]. He died in 2008 at age 94.

Appendix A.2. Brief Biography of Hans Bethe

Hans Bethe was born in Germany in 1906. As a child, his father, a physician, told of Hans at age four
sitting on the stoop of their house, a piece of chalk in each hand, taking square roots of numbers. By the
age of five, he had fully understood fractions and could add, subtract, multiply, and divide any two of
them. At age seven, he was finding ever-larger prime numbers and had made a table of the powers of two
and three, up to 214 and 310, and had memorized them [140]. After two years at Frankfort University, he
transferred to Munich in 1926, joining Arnold Sommefeld’s group, where he learned the need to work hard
and built his confidence. He received his doctorate summa cum laude a few years later. On a fellowship, he
went to Rome and worked with Fermi. From Fermi, Bethe learned to reason qualitatively, to obtain insights
from back-of-envelope calculations, and to think of physics as easy and fun, as challenging problems to be
solved. Bethe’s craftsmanship was an amalgam of what he learned from Fermi and Sommerfeld, two great
physicists and teachers, and combined the best of both: the thoroughness and rigor of Sommerfeld with
the clarity and simplicity of Fermi. This craftsmanship is displayed in full force in the many reviews that
Bethe wrote [13], which remains a classic even today. In 1932, Bethe began an appointment at Tubingen,
but Hitler’s rise to power and the enactment of racial laws in 1933 prohibiting any Jew from state of
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federal position forced Bethe to leave. In 1935, he joined the physics faculty at Cornell, and enjoyed the
atmosphere very much, and remained there for most of his career. During WWII, he served as head of the
Theoretical Division at Los Alamos, under Oppenheimer. Bethe won the Nobel Prize in physics in 1967 for
“for his contributions to the theory of nuclear reactions, especially his discoveries concerning the energy
production in stars.” He explained why the sun keeps shining, and did not win it for his contributions to
QED. In later years, he advocated for peaceful use of nuclear energy and nuclear disarmament. He died in
2005 at age 98.
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