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Abstract: Brain dynamics show a rich spatiotemporal behavior whose stability is neither ordered
nor chaotic, indicating that neural networks operate at intermediate stability regimes including
critical dynamics represented by a negative power-law distribution of avalanche sizes with exponent
α = −1.5. However, it is unknown which stability regimen allows global and local information
transmission with reduced metabolic costs, which are measured in terms of synaptic potentials and
action potentials. In this work, using a hierarchical neuron model with rich-club organization, we
measure the average number of action potentials required to activate n different neurons (avalanche
size). Besides, we develop a mathematical formula to represent the metabolic synaptic potential
cost. We develop simulations variating the synaptic amplitude, synaptic time course (ms), and hub
excitatory/inhibitory ratio. We compare different dynamic regimes in terms of avalanche sizes vs.
metabolic cost. We also implement the dynamic model in a Drosophila and Erdos–Renyi networks
to computer dynamics and metabolic costs. The results show that the synaptic amplitude and time
course play a key role in information propagation. They can drive the system from subcritical to
supercritical regimes. The later result promotes the coexistence of critical regimes with a wide range
of excitation/inhibition hub ratios. Moreover, subcritical or silent regimes minimize metabolic cost for
local avalanche sizes, whereas critical and intermediate stability regimes show the best compromise
between information propagation and reduced metabolic consumption, also minimizing metabolic
cost for a wide range of avalanche sizes.

Keywords: critical dynamics; metabolic cost; complex neural networks

1. Introduction

At present, there is not a consensus opinion about a general neural model that can
explain the emergence of the dynamic richness of neural systems [1] in which a complex
interaction occurs among inhibitory and excitatory neurons. The self-organized critical [2]
(SOC) system hypothesis states that cell systems like the heart and the brain operate at
intermediate stability regimens. Critical regimens are conformed by a high presence of
local activity propagation, moderate probability of medium propagation, and low presence
of global propagation. These properties allow the propagation of information, maximizing
the dynamic pattern repertoire [3,4]. Ordered or subcritical systems are conformed by only
local activation propagation in which the information cannot be transmitted to the entire
system. On the contrary, supercritical or chaotic regimens are very sensitive to activity
propagation promoting high global activation frequencies. Moreover, SOC systems are
strongly related to long-range time correlations (1/ f noise [5]) and fractal fluctuations [6],
indicating dynamic processes with memory, which is found in real neural networks [7].
SOC systems are on edge between order and chaotic regimes; this borderline represents a
stability phase transition, which in statistic physics is represented by a power-law distri-
bution of magnitude events [8]. Healthy neural networks display a negative power-law
distribution of propagation activity or avalanche sizes: p(size) ≈ (size)−1.5 [9–11], where
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the avalanche size is the number of different neurons that fired during the spontaneous
activation and propagation of neuron activity. It is called avalanche activity because of the
reminiscent behavior of an initial snow mechanical failure that leads to subsequent failures
that collect more snow. The power-law distribution of avalanche sizes p(size) ≈ (size)α,
α = −1.5, indicates that as the size/propagation is larger, there is less probability of occur-
rence. If α exponent is more negative, the decay probability is more rapid, indicating a
very low probability of global size avalanches and subcritical dynamics. In contrast, a more
positive exponent indicates a probability function with a slow decay as the size increases
indicating a high presence of global activity or supercritical regimens. A disruption in
excitatory/inhibitory chemical concentrations leads to the loss of the power-law distribu-
tion [9]. Besides, brain activity and SOC models display a strong relation between 1/ f
noise and intermediate synchronization [12–15]. Finally, critical systems are robust against
the interaction with external dynamics and environments [14,16].

On the other hand, the biological evolution provided the brain with a maximal com-
putational power and minimum wiring cost [17], and an economical brain design must
involve a compromise between optimal performance and reduced structural and functional
cost [17,18]. Concerning neural structure, the organization of neural networks possess
clustering and few long-distance links, properties called small-world [19,20], hierarchical
structure involving a dominant small population of neurons that link the rest of neurons at
different modules and scales [21], these highly connected neurons are called hubs, and they
are connected to each other, forming a rich-club [22]. Rich-club property facilitates the
information transmission between brain regions reducing the wiring cost [23,24]. Rich-club
also promotes a wide range of dynamic patterns [25]. Moreover, a scale-free distribution of
connectivity has been found in hippocampus’ cornu Ammonis 3 region [26]. A scale-free
function is defined by the function P(k) ≈ k−γ, where k is the number of links, p(k) is the
probability of having k links, and γ is the scaling exponent. A scale-free function indicates
that the set of k values mathematically does not possess a finite mean when γ ≤ 2, or finite
variance when γ ≤ 3, and their respective mean and variance values are not representative
of the set because of the great influx of high k values. A scale-free distribution is conformed
by most nodes having few links, whereas a tiny population of nodes has many links [27].
In this work, we use the Ravasz-Barabási network that posses hierarchical organization
and scale-free connectivity distribution [28], involving clusters with dominant hubs.

In terms of functional cost, neurons used action potentials to transmit information
within the neuron and send neurotransmitters to produce synaptic potentials and commu-
nicate with other neurons [29]. Action potentials and synaptic potentials represent 80% of
the energetic consumption [30].

1.1. Problem Statement

However, neural activity’s metabolic consumption has not been analyzed for the
different propagation dynamic regimes and network structures. This work aims to measure
the metabolic cost of the avalanche sizes, comparing avalanche sizes vs. spikes and
avalanche sizes vs. synaptic cost. Moreover, it is necessary to propose a mathematical
description of the metabolic cost of neural activity. Finally, the majority of neurons, around
85%, are excitatory, and the rest 15 % are inhibitory [31]. This suggests that the majority of
low connectivity nodes are excitatory. However, the most connected nodes that represent a
low percentage of neurons could be either a majority of excitatory or inhibitory neurons.
We try to elucidate this problem by looking for different inhibition/excitation hub ratios
that show intermediate and critical regimens.

1.2. Contributions

In this study, using a high-resolution neuron model, we variate the synaptic time
course and amplitude to look for inhibitory/excitatory hub ratios that exhibit critical
dynamics. We found that intermediate and critical regimens are present for a wide range
of excitatory/inhibitory hub ratios from 25% to 75% of excitatory hub neurons. Next, we
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introduce a mathematical expression to represent the metabolic synaptic cost that depends
on the synaptic amplitude, time course, and connectivity; then, we compare the different
dynamic regimes in terms of avalanche size versus metabolic cost. We found that subcritical
and critical dynamics show a power-law function between avalanche size and metabolic
cost, minimizing its costs. However, subcritical dynamics show only local activity or small
avalanche sizes, whereas critical dynamics show the best compromise between global
communication and a low metabolic cost. In contrast, supercritical dynamics show the
break of power-law function between the avalanche size and the metabolic cost, displaying
the highest metabolic costs. Moreover, reduced connectivity promotes an increase in the
energetic cost of avalanche sizes.

2. Methods
2.1. Izhikevich Neuron Model

The Izhikevich model [32] is used to reproduce the dynamics of neural networks. The
model comprises a two-dimensional system of ordinary differential equations defined by
the following equations:

dv
dt

= h(0.04v2 + 5v + 140− u + I + s), (1)

du
dt

= h(a(bv− u)), (2)

if v ≥ 30 mV, then

{
v = c
u = u + d,

(3)

where v represents the membrane potential of the neuron (Na+ current), t is time, u
represents a membrane recovery variable, which accounts for the repolarization and
activation of K+ current. The parameters a and b represent the time scale and the sensitivity
of the recovery variable u, respectively. The parameters c and d represent the after-spike
reset of v and u respectively. Equation (3) states that if membrane potential v is equal
to or greater than 30 mV, the neuron is spiking, and then the values v and u are reset to
v = c and u = u + d. The value I represents a noisy external input that receives each of
the neurons, which represents a sensory stimulus, and the value s represents the sum of
the incoming potentials of its nearest neighbors when they fired. Finally, h is the size of
the time step in ms. It is considered the original diverse repertory of values [32] that for
excitatory neurons: ai = 0.02, bi = 0.2, Ii = 5ri, ci = −65 + 15ri and di = 8− 6ri, where ri
is a random variable uniformly distributed in the interval [0, 1], and i is the neuron index.
If ri = 0, the neurons exhibit regular spiking, and if ri = 1, the neurons display chattering
behavior. For inhibitory neurons: ai = 0.02 + 0.08ri , bi = 0.25− 0.05ri, Ii = 2ri, ci = −65
and di = 2. Here, if ri = 0, the inhibitory neurons show a slow recovery with low-threshold
spiking, however, if ri = 1, the neurons show fast-spiking. The 2nd-order Runge–Kutta
method with time steps h of 0.1 ms is used to solve the system.

A1 = h (0.04v2 + 5v + 140− u + I + s), (4)

B1 = h a(bv− u), (5)

A2 = h [0.04(v +
A1

2
)2 + 5(v +

A1

2
) + 140− (u +

B1

2
) + I + s], (6)



Physics 2021, 3 45

B2 = h a[b(v +
A1

2
)− (u +

B1

2
)], (7)

dv
dt

= A2, (8)

du
dt

= B2, (9)

where Ai and Bi, i = 1, 2, represent the increments in the Eurler’s method, the A2 and B2
increments evaluate the function in a midpoint between the present value and the next
value, offering a more accurate approximation of the functions in Equations (1) and (2).
This numerical solver has been previously used for the Izikevich model [33]. A high-
resolution Izhikevich model with time step sizes of h = 0.1 ms was implemented in
previous studies [15,34]. However, the amplitude of synaptic potentials used is in the
range of 50 mV or larger, which represents no biological plausibility because real synaptic
amplitudes are in the range of 0.01 < w < 10 mV [35]. The necessity to use these amplitudes
is due to the synaptic transmission occurs only in one time step, namely synaptic time
course, τ, is 0.1 ms. Moreover, synaptic transmission is considered a slow-wave activity in
comparison with the action potential [29]. Real synaptic time courses, τ, are in the range of
0.2 < τ < 1.5 ms [36]. In this study, different τ are considered, from 0.1 ms to 3 ms.

2.2. Hierarchical Network and Rich-Club Organization

The neurons are located in a hierarchical scale-free network proposed by Ravasz and
Barabási [28]. The connectivity degree distribution P(k) of the model follows a negative
power-law function P(k) ∼ k−γ, with γ = 2.1, which is concordant with the degree
exponent found for functional neural networks: γ = 2.0–2.2 [21]. The first step consists in
constructing a complete network of five linked nodes; next, four more replicas are created.
Finally, we connect four nodes of each replica cluster to one node in the original cluster (hub
node); this results in a network of 25 nodes, including a hub. The second step consists of
replicating the first step four more times and connecting the resulting 16 peripheral nodes
to the hub node proposed in step one; the output consists of a network with 125 nodes
and five hubs (Figure 1). In this study, eight network replicas, similar to the one created
in step 2, were used to form a network with N = 1000 nodes. We select a network size of
1000 because scale-free networks like Ravasz and Barabási network present autosimilitude,
meaning that we expect the functional properties to be replicated at larger sizes. We also test
a 5000 node network to look for critical dynamics and metabolic costs. The 1000 network
size allows us to probe a wide variety of synaptic amplitudes and synaptic time courses
using a C++ program in a conventional computer. From the hierarchical configuration, we
consider that 25% of all edges comprise reciprocal connections, and 50% are unidirectional.
The rest of the edges of the Ravasz and Barabási model (25%) are no connected to avoid
complete subgraphs and allow common neural motifs [35], which are different directional
connectivity triangles. The selection of the different kinds of connections is taken at random.
This partial connectivity allows the different clusters and hubs not to be fully connected,
promoting independence in the individual activity. Besides, generally, complex dynamics
is reached at intermediate connectivity [19]. Different levels of connectivity are suitable
for simulation. It is also implemented simulations with different reduced connectivity to
observe the consequences in the metabolic cost. Here, the computational cost depends on
the structural cost (number of nodes and connections) and the simulated metabolic cost.
Both kinds of costs involve more computations.

Next, we connect each pair of hubs with probability κ. This configuration allows hubs
to communicate with each other. Two major types of hubs are defined: global hubs that
are the most connected nodes (see Figure 1) and local hubs that are only connected to one
cluster of 25 nodes and the rest of the hubs. The rich-club organization is a main structural
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property of neural network systems where nodes with high connectivity degree tend to
connect each other [22]. In order to detect the rich-club phenomenon in our configuration,
we use the normalized rich-club coefficient Φnorm [37], which is defined as the number of
edges between pairs of hubs normalized by the number of edges between pairs of hubs in a
null model network. The null model comprises the same degree distribution with a random
connectivity between pairs of nodes. Our previous work has shown that for κ > 0.5 this
network shows legitimate rich-club organization [15]. We included the concept of hub index
to describe a structural detail. First, we assign an index i for all neurons: i = 1, ..., 1000. Next,
because each cluster at step 1 comprises 25 nodes with a hub; the hub indexes are spaced
by 25, so each hub index hubi is a multiple of 25: i = 25, 50, 75, ..., 1000, then additionally
to κ probability, all the hub interconnections need to satisfy |(hub)i−(hub)j| < 54, which
accounts biological plausibility promoting the presence of provincial hubs [22]. Finally,
the parameter η is the excitatory hub population. For simplicity, we consider that one
global hub (k = 100 in the Ravasz-Barabási model) is equivalent to 5 local hubs (k = 20).
For example, the proposed network comprises eight replicas (1000 nodes), which include
eight global hubs and 32 local hubs. If η = 0.5, there would be four excitatory global
hubs and 16 excitatory local hubs, or five excitatory global hubs and 11 local hubs, etc.
The selection of the excitatory behavior of each hub is taken at random, meeting the above
condition. For the remaining low degree nodes, we set 85% as excitatory and 15% as
inhibitory following natural neuron populations [31]. For the different combinations of
κ, η, τ, and w, we run 500 time evolutions with independent random noise seeds. Each
time evolution comprises 105 time steps. In total, this represents 5× 107 time steps for
each combination.

Figure 1. Schematic representation of Ravasz-Barabási network at step 2, rich-club organization and
κ = 0.5. Each node represents a neuron. The size of the nodes indicates the degree, the color of
the nodes indicates the five different clusters. The most connected node (global hub) is shown at
the center of the graph. Four local hubs are also shown. Eight network replicas are used to form a
network with 1000 nodes.

2.3. Goodness-of-Fit Test

Given the data sets of avalanche sizes, we want to know whether they are reliable
power-law distributed, namely P(size)≈ c×(size)α, where size is the avalanche size, P(size)
indicates the probability of the avalanche size occurrence and c is a constant. An exponent
value α = −1.5 is found in recordings of rat cortex and neuronal cultures [9,38]. This
exponent indicates critical dynamics that also corresponds to the one found in the critical
branching process [39]. For each combination of parameters of the network, we obtain the
avalanche size distribution of the accumulated data from all independent evolutions. Next,
using the Kolmogorov–Smirnov test [40], we compare segments of 104 sizes with surrogate
data that comprise the same length, scaling exponent α. We used the Kolmogorov–Smirnov
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test because it compares two distributions with no limitation to Gaussian distributions, so
this method is suitable for comparing power-law distributions. It is used 104 segments
because lower length segments may introduce a biased in the p-value [41]. Finally, we
obtain the average p-value from all segments. The Kolmogorov–Smirnov test is very
sensitive to the detection of power-law distributions [40], and a p-value > 0.1 can be used
to detect reliable power-law distributions [41].

3. Results
3.1. Criticality in Rich-Club Neural Networks

First, we set all excitatory and inhibitory synaptic amplitudes w at 5 mV and −5 mV,
respectively. We variate the synaptic time course τ, rich-club connectivity κ, and excitatory
hub population η. In Figure 2, we show the avalanche size distribution for different rich-
club connectivity κ and excitatory hub population η. Figure 2 shows three different synaptic
time courses: τ = 0.5 ms (top), τ = 1.1 ms (middle), and τ = 1.4 ms (down). For τ = 1.1 ms
and η = 0.3, 0.5, we observe distributions near to α = −1.5 for sizes > 10, and we used this
exponent as a guide for the eye. As τ becomes larger, the frequency of large avalanches
increases and the majority of avalanche distributions come from power-law exponents
α < −1.5 (top) to α > −1.5 (down). It is worth noting that for η > 0.5 and κ ≥ 0.5,
the distributions indicate a high frequency of global avalanches. Furthermore, rich-club
connectivity (κ = 0.9) promotes the occurrence of global avalanches for τ = 0.5 ms and
τ = 1.1 ms.

In order to obtain more evidence about the occurrence of critical dynamics for the
different parameters, we analyzed three cases of E/I hub ratios for different combinations
of w and τ. In Figure 3 is shown three heatmaps of avalanche α exponents for a rich-club
configuration κ = 0.9 and three excitation populations: η = 0.25 (left), η = 0.5 (middle),
and η = 0.75 (right). Black grids represent critical α exponents (−1.65 ≤ α ≤ −1.35) whose
avalanche distribution satisfies p-value > 0.1 (see Section 2), strongly suggesting reliable
critical dynamics (see Section 2). Moreover, we also show the distributions with p-value
> 0.005 [42] to demonstrate that power-law functions are scarce. In Figure 3, we also
included critical exponents with 0.005 < p-value < 0.1 (brown grids), indicating suggestive
or near to critical regimes. In the three cases, subcritical regimes (α < −1.35) are observed
for synaptic time courses τ < 1.0 ms with low w. For these values, the synaptic resources
are poor, and the information cannot be propagated to the entire system. On the contrary,
if the synaptic time course is large enough τ > 2.0 ms, the system shows supercritical
regimes (α > −1.65), indicating a high occurrence of large avalanches.

For all the cases, we observe critical regimes (black grids) with different τ and w
depending on the excitatory hub ratio η. It is important to note that for η = 0.25 case
(Figure 3 left), as the synaptic time increases, the system passes through a narrow phase
transition. Conversely, when the majority of hubs are excitatory (η = 0.75), the heatmap
shows a larger region that satisfies −1.65 < α < −1.35 but not a p-value > 0.005 (black
and brown grids). Although the regions in the heatmaps for critical dynamics are small,
the overall results indicate that the system can show reliable critical dynamics for a wide
range of excitatory/inhibitory hub populations depending on the synaptic time course
and the synaptic amplitude. For example, in η = 0.25 case (Figure 3 left), the system
shows critical dynamics at 0.8 < τ < 1.1 ms and 5 < w < 9 mV. Moreover, for an
intermediate excitation ratio (Figure 3 middle), the system shows criticality at τ = 1.4 ms
and 3 < w < 4 mV. Finally, at a high excitation hub ratio (Figure 3 right), it shows criticality
at τ = 1.5, 1.6 ms and 2 < w < 3 mV. It is worth noting that the values of τ and w found for
critical dynamics correspond to real values of synaptic time course 0.2 < τ < 1.5 ms [36]
and synaptic amplitude 0.01 < w < 10 mV [35]. We also observe that there is not a p-value
> 0.1 for α < −1.65 and α > −1.35, indicating that reliable power-law functions occur only
in critical states; this result is concomitant with previous observations [43].
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Figure 2. Probability distribution of avalanche sizes. We variate rich-club connectivity κ, synaptic time course τ, and excita-
tion population η . The synaptic amplitude is w = 5 mV. top row: synaptic time course τ = 0.8 ms, middle row: τ = 1.1 ms,
and down row: τ = 1.4 ms. Left column: κ = 0.1, middle column: κ = 0.5, and right column: κ = 0.9. Each function
represents the result of 500 independent runs. As a guide for the eye, the dotted line indicates a power-law function with
α = −1.5.

Figure 3. Heatmaps of power-law α exponents. Three excitation populations are considered: (left) η = 0.25, (middle)
η = 0.5 and (right) η = 0.75. Black grids correspond to critical exponents, −1.35 < α < −1.65, that satisfy p-value > 0.1.
Brown grids correspond to 0.005 < p-value < 0.1 that indicate near to critical regimes.
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3.2. Metabolic Cost of Dynamic Regimes

In the previous section, we observe that both supercritical and critical dynamics can
show a wide range of avalanche sizes. However, we want to know if both dynamics
involve the same metabolic cost for specific avalanche sizes. We evaluate the two principal
metabolic expenditures: action potentials and synaptic potentials [20,44]. The action
potentials are represented by the number of times neurons are activated, where each
neuron activation represents a spike. The synaptic cost of a single neuron activation is the
sum of the outgoing synaptic potentials that depend on the number of outgoing links kout,
synaptic time course τ, and synaptic amplitude w (see Figure 4). As a result, the synaptic
cost of a single neuron per spike is:

Si = |w|
τ

h
kout, (10)

where the absolute value of w is taken due to the negative synaptic potentials of inhibitory
neurons. In this way, hub neurons (high kout) are high metabolic cost units. Next, we define
the synaptic cost (SC) of a given avalanche as:

SC =

t f

∑
ti

(
N

∑
i=1

Si(t)), (11)

where the first sum represents all the time steps that comprise the avalanche and the
second sum represents all the neurons in the network. Besides, since the sum of incoming
links is equal to the sum of outgoing links, the SC also can be represented as the sum of
incoming synaptic potentials si. An ideal metabolic cost comprises no redundancy. As a
result, the minimum cost configuration is an avalanche size equal to the number of spikes.
Moreover, if the successive activation of neurons does not strongly depend on the kout,
the minimum synaptic cost could be approximated as:

SCmin(size) ≈ kout|w|
τ

h
× (spikes)β, (12)

where kout is the mean value of kout and β = 1. The minimum expect cost is an avalanche
size equal to the number of spikes and a linear relation between avalanche size and SC.
A value β >> 1 would indicate high redundancy and overactivation.

Figure 4. Schematic representation of metabolic costs. We show two main costs: action potentials and
synaptic potentials. The action potential propagates along the axon. When the action potential arrives
at the presynaptic cell or terminal, it delivers neurotransmitter that is received for the postsynaptic.
The neurotransmitters activate receptors that allow the influx of ions and promote the depolarization
(activation) of the postsynaptic cell. Depending on the quantity of neurotransmitters and the number
of postsynaptic receptors, the postsynaptic cell can depolarize and generate the electrical signals
called synaptic potentials. The synaptic potential cost depends on their time-course τ, amplitude w,
and the number of outgoing links kout (presynaptic terminals). Adapted from [29].
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We compare the size of the avalanche versus the average amount of synaptic cost that
the network needs. The top of Figure 5 shows the synaptic metabolic cost for subcritical,
critical and supercritical configurations. We also consider three cases: left, η = 0.25; middle
η = 0.5 and right η = 0.75. Insets show a magnification of the largest avalanche sizes for
critical dynamics in each case. For η = 0.25: critical (w = 5.0 mV, τ = 1.1 ms), subcritical
(w = 4.0 mV, τ = 0.8 ms), supercritical (w = 7.0 mV, τ = 1.6 ms). For η = 0.5: critical
(w = 3.5 mV, τ = 1.3 ms), subcritical (w = 2.5 mV, τ = 0.8 ms), supercritical (w = 5.5 mV,
τ = 1.8 ms). For η = 0.75: critical (w = 2.5 mV, τ = 1.5 ms), subcritical (w = 2.0 mV,
τ = 0.8 ms), supercritical (w = 3.0 mV, τ = 2.4 ms).

In the three η cases, we observe that critical states show a power-law relation between
the synaptic cost and the avalanche size: SC(size) ≈ kout|w| τh × (spikes)β, where β ≈ 1.2,
indicating low activation redundancy (Equation (12)). This result is reminiscent of the
real allometric metabolic consumption of the brain [20]. Moreover, subcritical regimes are
unable to show large avalanches despite the excitatory hub population. On the contrary,
supercritical regimes show large avalanche sizes in the three cases. This is attributed to the
high amount of synaptic resources that lead to spontaneous activation and propagation.
However, supercritical states show the highest metabolic costs: β ≈ 8.0 for sizes > 700,
and they also lose the linear relation for large sizes. For critical regimes, we observed differ-
ent maximum avalanche sizes depending on the excitatory hub population. For η = 0.25,
we observe that the maximum avalanche size is 300, this is due to 75% of hubs are inhibitory,
so a majority of inhibitory hubs cannot propagate the information to the entire system.
However, for η = 0.75 (75% of excitatory hubs), the maximum size is around 600 because
excitatory rich-club can propagate information to the majority of the neurons.

Next, we evaluate the number of spikes (representing action potentials) involved in
the avalanche occurrence (see Figure 5 down). We observed that for subcritical and critical
regimes, the spike cost also follows a power-law and linear relation with the avalanche size.
Besides, supercritical regimes lose this linear relationship for large avalanches. As a guide
for the eye, an ideal association: the number of spikes equal to avalanche size is represented
by a solid line. This configuration involves no redundancy, namely, all the neurons spike
only once during the avalanche occurrence. The results suggest that subcritical and critical
regimes display a behavior near to a minimum redundancy. Moreover, critical regimes
avoid high metabolic expenditures and exhibit the best compromise between network
communication and low metabolic cost.

We also obtained the avalanche size, synaptic cost, and number of spikes for a system
with N = 5000 to probe that critical dynamics remains for larger sizes. In Figure 6a we
show avalanche size distribution for a system with η = 0.5, w = 4.0 mV and τ = 1.3 ms.
The dash line represents a power-law function with α = −1.56. This combination of η and
w values also corresponds to critical dynamics with N = 1000 (see Figure 3). We observe that
the power-law distribution of avalanche sizes extends to size = 1250. This value represents
three times higher sizes in comparison with N = 1000 case (see Figure 5b,e). In Figure 6b,c
we show the synaptic cost and number of spikes, respectively, of the critical configuration.
We note that the synaptic cost and number of spikes follow power-law relations with the
avalanche size. The dash line in Figure 6b represents a β = 1.2 in correspondence with
N = 1000 case. The dash line in Figure 6c represents an ideal relation with a number of
spikes equal avalanche size. Synaptic cost and number of spikes indicate that critical
dynamics in a larger system outperform supercritical dynamics (see Figure 5) using a much
lower metabolic cost.
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Figure 5. Metabolic cost of dynamic regimes. Top: synaptic cost, down: number of spikes. We show
three excitation populations: η = 0.25 (a,d), η = 0.5 (b,e), and η = 0.75 (c,f). For synaptic cost (a–c),
a power-law function with exponent β = 1.2 is shown. For number of spikes (d–f), a linear relation is
shown as a solid line: number of spikes equal to avalanche size.

Figure 6. Critical dynamics in a N = 5000 system. (a) Avalanche distribution using η = 0.5,
w = 4.0 mV, τ = 1.3 ms. The dash line represents a power-law function with α = −1.56. (b) Synaptic
cost vs. size. The synaptic cost follows the power-law relation (β = 1.2 dash line) previously seen in
N = 1000 systems. (c) Number of spikes vs. size. The spikes also follow the linear relation (dash line).

3.3. Drosophila Network

Next, in order to compare the behavior found in our model with a real neural structure,
we implement the Izikevich neural model in a mesoscale connectome of the Drosophila
medulla. Data was extracted from the Network Data Repository [45]. The Drosophila
network shows hierarchical organization, small world, and rich-club properties [46]. These
properties are also found in the hierarchical model. In Figure 7a we show the conectivity
matrix of the Drosophila network. The network comprises 1472 nodes/neurons. Figure 7b
shows the indegree and outdegree distribution of the network, we observed that both
distributions follow a power-law function: γ = 1.4 for indegree and γ = 1.7 for outdegree
distribution. In the simulation, we set a balanced excitation/inhibition ratio η = 0.5 for
the 4% most connected population (rich-club). For the rest of the neurons, we set 85 % as
excitatory and 15% as inhibitory. Figure 7c shows the heatmap of scaling exponents α. We
observe that reliable critical dynamics is reached at 0.9 < τ < 1.1 ms and 4.0 < w < 6.7 mV.
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These values are similar to those found in critical dynamics in our model. Figure 7d
shows avalanche size distributions for critical (w = 4.3 mV and τ = 1.1 ms), subcritical
(w = 3.6 mV and τ = 0.7 ms), and supercritical dynamics (w = 7.8 mV and τ = 1.5 ms),
solid line represents a power-law function with α = 1.56. Figure 7e and f show the synaptic
cost and number of spikes for three dynamics. We observe that in accordance with the
Rabasz-Barabási model, critical dynamics keep power-law relations, β ≈ 1.2, in synaptic
cost vs. size (Figure 7e), and number of spikes similar to size (Figure 7f), indicating that the
Drosophila network shows an economic metabolic design, together with a wide range of
dynamic patterns.

Figure 7. Critical dynamics and metabolic cost in a Drosophila connectome. (a) Matrix connectivity.
(b) Indegree and outdegree distributions follow power-law functions: γ = 1.4 and γ = 1.7, respec-
tively. (c) Heatmap of scaling exponents α. (d) Critical dynamics at w = 4.3 mV and τ = 1.1 ms.
Subcritical dynamics: w = 3.6 mV and τ = 0.7 ms, supercritical dynamics: w = 7.8 mV and
τ = 1.5 ms. (e) Synaptic cost vs. size. (f) Spikes vs. size.

3.4. Erdos–Renyi Network

To test that critical behavior is due to structural connectivity, i.e., hierarchical organi-
zation, scale-free, and rich-club connectivity, we probe the Erdos–Renyi network [47] in the
Izhikevich model. For comparison, we set the same number of nodes and connections as in
the Drosophila network. Figure 8a shows the Erdos–Renyi connectivity matrix. This struc-
ture, unlike that of Drosophila, shows no clustering. Figure 8b shows the indegree and out-
degree connectivity. Figure 8c shows the heatmap of scaling exponents α. We observe that
there are not α exponents that meet p-value > 0.1. Besides, the region of α > 1.5 is reached
for lower values of τ and w in comparison with Drosophila and Hierarchical networks. This
behavior may be attributed to the lack of clustering. The internal structure cannot stop the
spread of activity; rather, the interconnected network promotes global activity. Figure 8d
show the avalanche distributions for the w and τ pairs found in Drosophila network for crit-
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ical (w = 4.3 mV and τ = 1.1 ms), subcritical (w = 3.6 mV and τ = 0.7 ms) and supercritical
dynamics (w = 7.8 mV and τ = 1.5 ms). We observe that the distributions do not follow
power-law relations. For supercritical configuration (w = 7.8 mV and τ = 1.5 ms combi-
nation) the avalanche sizes show either small size < 50 or global avalanches size > 1000.
Figure 8e,f show the metabolic cost and number of spikes, respectively. An intermediate
stability configuration also shows the best compromise between information propagation,
dynamic repertoire, and economic metabolic cost.

Figure 8. Metabolic costs in Erdos–Renyi network. (a) The connectivity matrix shows no clustering.
(b) Indegree and outdegree conectivity. (c) Heatmap of α exponents reveals no reliable critical
dynamics. (d) Avalanche distributions for: w = 4.3 mV and τ = 1.1 ms; w = 3.6 mV and τ = 0.7 ms;
w = 7.8 mV and τ = 1.5 ms. Distributions do not follow power-law scaling. The solid line represents
α = −1.56. (e) Synaptic cost vs. size. (f) Number of spikes. For w = 3.6 mV and τ = 0.7 ms pair,
the system shows only local activation, for high values w = 7.8 mV and τ = 1.5 ms, the system
shows a poor range of avalanche sizes, either small or global avalanches. For intermediate values,
w = 4.3 mV, and τ = 1.1 ms, the system shows a wide range of avalanche sizes with reduced
synaptic cost.

3.5. Disconnected Network

We analyze the effects of high disconnection in the power-law scaling of metabolic
costs. We disconnect the network for both low degree connectivity and rich-club connec-
tivity κ. The synaptic cost and number of spikes for disconnected networks with 1/4 and
1/16 of the total links are shown in Figure 9. We set η = 0.5 and τ = 1.3 ms. Since the dis-
connection configuration displays only small avalanches for w < 7 mV (results not shown),
we set w = 10 mV for 1/4 case, and w = 50 mV for 1/16 case to retrieve global avalanches.
We observe that in both cases, the power-law relation is broken at a certain avalanche
size depending on the disconnection degree. The larger the disconnection, the lower the
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cross-over size where the power-law relation brakes. These results are in accordance with
previous experiments about the sensitivity of energetic cost in edge deletion [48]. We also
observe that for small avalanche sizes, the synaptic cost and number of spikes are smaller
than the critical case (represented by a solid line). However, global avalanches are much
more expensive, with a higher exponent β and a higher number of spikes. Although this
configuration does not represent a minimum cost for global avalanches, and the disconnec-
tion promoted the break of the power-law, the metabolic costs follow Equation (12) where
kout is smaller, but the redundancy β is higher.

Figure 9. Metabolic cost of disconnected networks. (a) Synaptic cost. (b) Number of spikes. We set
η = 0.5 and τ = 1.3 ms. Two cases of disconnection are shown: 1/4 of the total links with w = 10 mV,
and 1/16 of the total links with w = 50 mV.

3.6. Critical Neural Networks Minimize Metabolic Cost

Finally, to test if critical dynamics show the lowest synaptic cost and number of spikes
for global avalanche sizes, sizes > 125, we compare the synaptic cost (Figure 10a–c) and
number of spikes (Figure 10d–f) of avalanche sizes among all pairs of w and τ with N = 1000.
We plot the combination of w and τ that minimizes either the synaptic cost (Figure 10a–c)
or number of spikes (Figure 10d–f) for a given avalanche size. We also consider three
excitatory populations. As an additional criterion, we do not include avalanche size sets
whose synaptic costs > 106 mV or number of spikes > 1200. These values correspond
to cross-over points found for supercritical regimes at intermediate excitatory/inhibitory
ratio: η = 0.5 (Figure 5). Cross-over points were found using the method in [49]. White
grids represent critical and near to critical exponents. For the three cases, we observe that
the synaptic cost and number of spikes are minimized for intermediate values of τ and w,
i.e., intermediate stability regimes, including critical and near to critical regimes. Similar
avalanche sizes are minimized for different τ and w combinations, where the increment
in the other replaces a decrease in one parameter. Both slightly subcritical (lower w and
τ) and slightly supercritical regimes (higher w and τ) also minimize metabolic cost for
different avalanche sizes. For a balanced hub excitation ratio, η = 0.5, we observe that
critical regimes represent the only region that minimizes both SC (Figure 10b) and number
of spikes at the same time (Figure 10e).
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Figure 10. Location of minimum synaptic cost for different avalanche sizes: (a) η = 0.25, (b) η = 0.5,
and (c) η = 0.75. Location of minimum number of spikes: (d) η = 0.25, (e) η = 0.5, and (f) η = 0.75.

4. Discussion

Neural networks need both excitatory and inhibitory hub neurons. Inhibitory hubs
control the occurrence of overactivation that can promote neuropathologies like seizures
or excitotoxicity. Moreover, inhibitory hubs have been found in the hippocampus of the
rat [26] and in the connectome of the C. Elegans [50]. On the other hand, excitatory hubs
not only facilitate the integration of local information but also send this information to
other brain areas. In addition, the rich-club organization mainly supports the information
processing in the brain [51]. In this work, we look for an excitatory/inhibitory hub ratio that
can display critical dynamics variating the synaptic time course and synaptic amplitude.
The neuronal model is used for three different network structures: a scale-free hierarchi-
cal network, Ravasz-Barabási; a random configuration, Erdos–Renyi; and a Drosophila
network. It is important to mention the Izhikevich model’s limitations, such as no direct
measure of conductance and no high-shaped fidelity of the action potential [52]. Besides,
the model is susceptible to the integration time step. A reduction in the time step h requires
adjusting the synaptic time course or amplitude [15]. However, the Izhikevich model
allows for the simulation of a large number of time steps with reduced computational cost.

Rich-club configuration with clustering promotes a wide-range of avalanche sizes.
In contrast, a random configuration exhibits either local or global propagation, representing
a clear disadvantage in the dynamic repertoire. Moreover, connectivity is tightly related to
metabolic cost: Equation (10), for example, the propagation activity of a neuron with high
outdegree connectivity involves the release of neurotransmitters at multiple presynaptic
terminals (Figure 4) but guarantees the spread of information. Previous studies showed
that hub neurons/regions are related to high activity and metabolism, suggesting that con-
nectivity k is an indicator of metabolism [53,54]. Besides, the quantity of neurotransmitters
or the number of molecules released reflects a principal metabolic cost [44], which in our
model is regulated by the amplitude of synaptic potentials w and synaptic time course τ.
In contrast, high levels of disconnection (Figure 9) promotes a supralinear expenditure of
metabolic costs because the network cannot communicate and needs over-activity to reach
partial global communication.

The results show that depending on the synaptic amplitude and synaptic time course,
critical dynamics can coexist with a wide range of excitatory/inhibitory hub ratios. It is
possible to find either a minority or majority of excitatory hubs in a rich-club configuration
showing critical dynamics. Furthermore, this work found that critical dynamics and
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intermediate stability regimes are associated with a reduced and minimum metabolic cost,
which suggests that criticality optimizes the metabolic sources to achieve global information
transmission. In this way, critical dynamics could serve as a dynamic attractor because
of its compromise between global communication and low metabolic cost. These results
may explain previous results that neural networks are most of the time in a critical regime.
In contrast, subcritical and supercritical regimes are present during a reduced time [11].
The results are consistent with the free energy brain hypothesis [55], which establishes
that the brain operates under a low energy consumption, minimizes error prediction,
and avoids disorder (supercritical states). Moreover, the results are also concordant with
previous observations about the fact that fractal fluctuations related to critical states support
information propagation in the body [56], and excitation/inhibition balance maximizes
energy efficiency [57] and leads to criticality [58]. The results also indicate that critical
networks arise from a balance between synaptic amplitude and synaptic time course.
Finally, critical dynamics has been related to a maximum dynamic repertoire [3,4], high
information storage [59,60], parametric dimension reduction [61], robustness [14,16,62],
and computational efficiency [63]. These properties joined to a reduced and minimum
metabolic cost suggest that criticality in biology systems might be shaped by the evolution
to exhibit a common trade-off among all these advantages.

Code Availability

The source code of the neural network evolution (in C++), and the number of spikes vs.
avalanche size and synaptic cost analysis (in python) is published at https://github.com/
danielvelaguil/metabolic-consume-of-neural-networks (accessed on 5 February 2021).
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