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Abstract: In this paper, analytical and semi-analytical formulas are presented for the self- and mutual
inductance of thin ordinary disk coils and thin Bitter disk coils. The coils lie concentrically in a plane.
The ordinary coils are coils with constant current density. The current density of a current carrying
Bitter disc is not uniform across its cross-sectional area, but it is a function of the ratio of the inner
diameter of the disk to an arbitrary radius within the disk. In this paper, we show the possibility to
calculate the mutual and self-inductance of thin disk coils from the real coils of the cross-sections
using some valuable conditions. The formulas for the mutual inductance and the self-inductance
were obtained in the semi-analytic form as the combination of the elliptic integral of the second kind
and a simple integral for the ordinary disk coils. The mutual inductance and self-inductance were
obtained in the analytical form as the elliptic integral of the second kind for the Bitter disk coils.
The formula for the self-inductance of the ordinary full disk was obtained in the close form. All
formulas are given in remarkably simple form and give perfectly accurate results with a significantly
small computational time. All cases of either regular or singular (disks in contact or overlapping)
are covered. Many presented examples show the excellent numerical agreement with previously
published methods.

Keywords: ordinary disk coils; Bitter disk coils; mutual inductance; self-inductance

1. Introduction

Several monographs and papers are devoted to calculating the self and the mutual
inductance for ordinary circular coils (massive coils of the rectangular cross-section, thin
wall solenoids, disk coils) with the azimuthal current density [1–13]. The conventional
coils used in many applications, such as all ranges of transformers, generators, motors,
current reactors, magnetic resonance applications, antennas, coil guns, medical electronic
devices, superconducting magnets, tokamaks, electronic and printed circuit board design,
plasma science, etc., are very well-known. Additionally, there are circular coils with a not
uniform current density (massive coils of the rectangular cross-section, disk coils) which are
interesting from an engineering aspect. These coils are the well-known Bitter coils [14–24],
which supply extremely high magnetic fields of up to 45 T. Bitter magnets are constructed
of circular conducting metal plates and insulating spacers stacked in a helical configuration
rather than coils of wire. The current flows in an azimuthal path through the plates and
is not uniform. The current density is the inverse function of its radius, which changes
between the fixed radii of the real coil. In this paper, we provide quite a simple method to
calculate the mutual and self-inductance for these two types of coils under some conditions
when these real coils could be treated as thin disk coils. For this statement, the previous
assumptions must be satisfied.

In Ref. [12], J.T. Conway proposes the analytical solutions for the self- and mutual
inductances of ordinary concentric coplanar disk coils. He gives the excellent solution
as generalized hypergeometric functions which are closely related to elliptic integrals.
The method used is a Legendre polynomial expansion of the inductance integral, which
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renders all integrations straightforward. In this paper, we provide remarkably simple
solutions for calculating the self- and mutual inductance of the ordinary concentric coplanar
and the Bitter disk coils. In the case of the ordinary concentric coplanar disks, the solutions
are obtained in semi-analytical and analytical form. The solutions are obtained over the
elliptic integral of the second kind and one simple integral the kernel of which is integrable
over all intervals of integration. In the case of the concentric coplanar Bitter disk coils, the
solutions are obtained in the analytical form over the elliptic integral of the second kind. All
cases given in Ref. [12] are verified and confirmed by the presented approach. Additionally,
the methods given in Refs. [8–11] are used to confirm all calculations for the ordinary
concentric coplanar disks. The self- and the mutual inductance of the concentric coplanar
disk coils are verified by the methods given in Refs. [17–19]. With obtained amazingly easy
analytical and semi-analytical expressions, we solved many examples which show excellent
agreement with already given results for the real coils of the rectangular cross-section under
some valuable conditions.

2. Basic Expressions
2.1. Ordinary Concentric Coplanar Disks

The ordinary coils of the rectangular cross-section are coils with constant azimuthal
current densities. The mutual inductance between ordinary concentric circular coils of the
rectangular cross-section is given by [8]:

M = µ0

∫ R2

R1

∫ R4

R3

∫ z2

z1

∫ z4

z3

∫ π/2

0

JI JI I cos(θ)r1dr1r2dr2zIdzIzI IdzI Idθ

r
, (1)

where
r =

√
r2

1 − 2r1r2 cos(θ) + r2
2 + (zI I − zI)

2,

JI =
N1

(R2 − R1)(z2 − z1)
= const.,

JI I =
N1

(R4 − R3)(z4 − z3)
= const.,

and

• N1 and N2 are equally spaced turns of coils,
• R1 and R2 are radii (m) of the first coil with the axial height (z2 − z1) (in m),
• R3 and R4 are radii (m) of the second coil with the axial height (z4 − z3) (in m),
• JI is the azimuthal current density in the first coil (in A/m2),
• JI I is the azimuthal current density in the second coil (in A/m2),
• µ0 = 4π·10−7 H/m,
• θ is the angle in cylindrical coordinates.

Here and further on, the cylindrical coordinates are used.
The difference between the real coil circular plate (which can be considered as the

coil of the rectangular cross-section) and the thin circular disk is in the dependence on the
relation of thickness b to diameter D. There is a rule of thumb like the empirical formulae:

(A) if D/b ≤ 10, then it is a plate;
(B) if D/b > 10, then it is a disk.
If (z2 − z1) = b1, (z4 − z3) = b2, and D1 = 2R1 , D2 = 2R2 , D3 = 2R3 and D4 = 2 R4

satisfy the condition (B), then Equation (1) becomes the mutual inductance between two
ordinary coplanar disks [10,11]. In Figure 1, the constant azimuthal current is shown for
one thin disk coil. Then:

M =
µ0N1N2

(R2 − R1)(R4 − R3)

∫ π

0

∫ R2

R1

∫ R4

R3

r1r2 cos(θ)dr1dr2dθ√
r2

1 − 2r1r2 cos(θ) + r2
2

, (2)

where
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• N1 and N2 are equally spaced turns of disks,
• R1 and R3 are inner radii of disks (in m),
• R2 and R4 are outer radii of disks (in m).

Physics 2021, 3 FOR PEER REVIEW  3 
 

 

 

Figure 1. Thin disk coil carrying the constant azimuthal current density, J. 
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the greater is the value of the magnetic field intensity inside the Bitter plate. However, the 
upper value of the total current is strongly limited by different factors. The most important 
factors are the conductive heating of the coil and the stresses in the coil due to the Lorenz 
pressure of the magnetic field. The analytical approach can only be applied to the coil 

Figure 1. Thin disk coil carrying the constant azimuthal current density, J.

The self-inductance of a disk coil with equally spaced turns N and R1 and R2 as inner
and outer radii, respectively, is given by [10]:

L =
µ0N2

(R2 − R1)
2

∫ π

0

∫ R2

R1

∫ R2

R1

r1r2 cos(θ)dr1dr2dθ√
r2

1 − 2r1r2 cos(θ) + r2
2

, (3)

This formula can be obtained directly from Equation (2) with R1 = R3, R2 = R4,
N1 = N2 = N.

2.2. Concentric Coplanar Bitter Disks

The Bitter coils of the rectangular cross-section are coils, where the azimuthal current
densities in the coils conductor are inversely proportional to their radii. The mutual
inductance between two concentric Bitter circular coils of the rectangular cross-section is
given by [17–19]:

M = µ0

∫ R2

R1

∫ R4

R3

∫ z2

z1

∫ z4

z3

∫ π/2

0

JI JI I cos(θ)r1dr1r2dr2zIdzIzI IdzI Idθ

r
, (4)

where
r =

√
r2

1 − 2r1r2 cos(θ) + r2
2 + (zI I − zI)

2

and JI , JI I are the current densities, which are not constant [13].
The total current through one Bitter coil [13] is:

I =
∫ R2

R1

h(r) j(r)dr, (5)

where j(r) is the current density pro-unit area, and h(r) is the thickness of the coil.
The value of the total current could be arbitrary. Obviously, the higher this value is,

the greater is the value of the magnetic field intensity inside the Bitter plate. However, the
upper value of the total current is strongly limited by different factors. The most important
factors are the conductive heating of the coil and the stresses in the coil due to the Lorenz
pressure of the magnetic field. The analytical approach can only be applied to the coil
having cylindrical symmetry, which means that there is no change in geometry when
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rotating about one axis and when magnetoresistance phenomenon, eddy currents, plastic
deformations, and thermal stresses are neglected [13,14].

The current density distribution (Figure 2) that guarantees the constant electric poten-
tial over all contours with different radii is [13]:

j(r) =
C
r

, (6)

where C is the constant which depends on the thickness function h(r).

Physics 2021, 3 FOR PEER REVIEW  4 
 

 

having cylindrical symmetry, which means that there is no change in geometry when ro-
tating about one axis and when magnetoresistance phenomenon, eddy currents, plastic 
deformations, and thermal stresses are neglected [13,14]. 

The current density distribution (Figure 2) that guarantees the constant electric po-
tential over all contours with different radii is [13]: ݆(ݎ) = ஼௥ , (6)

where, C is the constant which depends on the thickness function ℎ(ݎ). 

 
Figure 2. (a) The non-constant current density in the Bitter coil. (b) Dependence of the azimuthal 
current density of the angle θ. 

If the thicknesses of the first and second Bitter coil of the rectangular cross-section 
are constants from [17–19], we obtain the current densities in them: ܬூ = ேభ(௭మି௭భ)୪୬ೃమೃభ ∙ ଵ௥భ = ஼భ௥భ, (7)ܬூூ = ேమ(௭రି௭య)୪୬ೃరೃయ ∙ ଵ௥మ = ஼మ௥మ, (8)

where, ܥଵ = ଵܰ(ݖଶ − ଵ)lnݖ ܴଶܴଵ =  const.,    ܥଶ = ଶܰ(ݖସ − ଷ)lnݖ ܴସܴଷ =  const. 
and 
• ଵܰ and ଶܰ are equally spaced turns of coils, 
• ܴଵ and ܴଶ are radii (in m) of the first coil with the axial height (ݖଶ −  ,ଵ)  (in m)ݖ
• ܴଷ and ܴସ are radii (in m) of the second coil with the axial height (ݖସ −  ,ଷ)  (in m)ݖ
 ,ூ is the non-constant current density in the first coil (in A/m2)ܬ •
 ,ூூ is the non-constant current density in the second coil (in A/m2)ܬ •

If (ݖଶ − (ଵݖ = ܾଵ ସݖ) , − (ଷݖ =  ܾଶ , and ܦଵ = 2ܴଵ , ଶܦ  = 2ܴଶ , ଷܦ  = 2ܴଷ and ܦସ = 2 ܴସ 
satisfy the condition (B), Equation (4) becomes the mutual inductance between two copla-
nar Bitter disks [22]. In Figure 3, the non-uniform azimuthal current is shown for one thin 
disk coil. Then, 

Figure 2. (a) The non-constant current density in the Bitter coil. (b) Dependence of the azimuthal
current density of the angle θ.

If the thicknesses of the first and second Bitter coil of the rectangular cross-section are
constants from [17–19], we obtain the current densities in them:

JI =
N1

(z2 − z1) ln R2
R1

· 1
r1

=
C1

r1
, (7)

JI I =
N2

(z4 − z3) ln R4
R3

· 1
r2

=
C2

r2
, (8)

where
C1 =

N1

(z2 − z1) ln R2
R1

= const., C2 =
N2

(z4 − z3) ln R4
R3

= const.

and

• N1 and N2 are equally spaced turns of coils,
• R1 and R2 are radii (in m) of the first coil with the axial height (z2 − z1) (in m),
• R3 and R4 are radii (in m) of the second coil with the axial height (z4 − z3) (in m),
• JI is the non-constant current density in the first coil (in A/m2),
• JI I is the non-constant current density in the second coil (in A/m2),

If (z2 − z1) = b1, (z4 − z3) = b2, and D1 = 2R1 , D2 = 2R2 , D3 = 2R3 and D4 = 2 R4
satisfy the condition (B), Equation (4) becomes the mutual inductance between two copla-
nar Bitter disks [22]. In Figure 3, the non-uniform azimuthal current is shown for one thin
disk coil. Then,

MB =
µ0N1N2

ln R2
R1

ln R4
R3

∫ π

0

∫ R2

R1

∫ R4

R3

cos(θ)dr1dr2dθ√
r2

1 − 2r1r2 cos(θ) + r2
2

, (9)
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and the self-inductance of the Bitter disk coil is given by [19]:

LB =
µ0N2[
ln R2

R1

]2

∫ π

0

∫ R2

R1

∫ R2

R1

cos(θ)dr1dr2dθ√
r2

1 − 2r1r2 cos(θ) + r2
2

. (10)Physics 2021, 3 FOR PEER REVIEW  5 
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Figure 3. Thin disk Bitter coil carrying the azimuthal current density J and which has a variation
according to the radius r, R1 ≤ r ≤ R2 which is different.

This formula can be obtained directly from Equation (9), putting R1 = R3, R2 = R4,
N1 = N2.

3. Analytical Calculations
3.1. Ordinary Concentric Coplanar Disks

Before the first integration, let us make the following substitution θ = π − 2β, so that
Equation (2) reads:

M =
−2µ0N1N2

(R2 − R1)(R4 − R3)

∫ π/2

0

∫ R2

R1

∫ R4

R3

r1r2 cos(2β)dr1dr2dβ√
r2

1 + 2r1r2 cos(2β) + r2
2

. (11)

The integration over r1 in Equation (11) [24,25] gives:

Ir1 =
∫ R2

R1

r1dr1√
r2

1 + 2r1r2 cos(2β) + r2
2

=

[√
r2

1 + 2r1r2 cos(2β) + r2
2 − r2 cos(2β)arsinh

r1 + r2 cos(2β)

r2 sin(2β)

] R2
|

R1

.

The integration over r2 in Equation (11) gives [24,25]:

Ir2 =
R4∫

R3

r2 Ir1 dr2 = 1
3

4
∑

n=1
(−1)n−1

[(
l2
n + ρ2

n
)√

l2
n + 2lnρn cos(2β) + ρ2

n − l3
n cos(2β)arsinh ρn+ln cos(2β)

ln sin(2β)

−ρ3
n cos(2β)arsinh ln+ρn cos(2β)

ρn sin(2β)

]
,

where ρ1 = ρ2 = R1, ρ3 = ρ4 = R2, l1 = l4 = R3, l2 = l3 = R4 .
The left integration in Equation (11) gives [24,25]:

I3 =

π/2∫
0

cos(2β)Ir2 dθ =
1
6

4

∑
n=1

(−1)n−1[lnρn (ln + ρn)E(kn)
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−

π
2∫

0

l3
narsinh

ρn + ln cos(2β)

ln sin(2β)
dβ−

π/2∫
0

ρ3
narsinh

ln + ρn cos(2β)

ρn sin(2β)
dβ]

Finally, the mutual inductance between two coplanar ordinary disks is:

M =
µ0N1N2

3(R2 − R1)(R4 − R3)

4

∑
n=1

(−1)n[lnρn(ln + ρn)E(kn)− In] , (12)

where

In =
∫ π/2

0

[
l3
narsinh

ρn + ln cos(2β)

ln sin(2β)
+ ρ3

narsinh
ln + ρn cos(2β)

ρn sin(2β)

]
dβ,

k2
n =

4ρnln
(ρn + ln)

2 ,

ρ1 = ρ2 = R1, ρ3 = ρ4 = R2, l1 = l4 = R3, l2 = l3 = R4

and E(k) is the elliptic integral of the second kind [25,26].
The mutual inductance is obtained in a remarkably simple form over the elliptic inte-

gral of the second kind and one simple integral whose kernel function is the continuation
and integrability over the domain of the integration, so that Equation (6) is applicable in
the regular or the singular cases (disks are in the contact or overlap).

For calculating the self-inductance of the ordinary disk coil, one can use Equation (2)
or directly put R1 = R3, R2 = R4 and N1 = N2 = N into Equation (8), which leads to:

L =
2µ0N2

3(R2 − R1)
2

{(
R3

1 + R3
2

)
(2G− 1) + R2R1(R2 + R1)E(k)− I0

}
, (13)

where

I0 =
∫ π/2

0

[
R3

1arsinh
R2 + R1 cos(2β)

R1 sin(2β)
+ R3

2arsinh
R1 + R2 cos(2β)

R2 sin(2β)

]
dβ,

k2 =
4R1R2

(R1 + R2)
2 ,

and G = 0.91596559417721901505460351493238411 . . . is the Catalan′s constant.
We put R2 = αR1 (α > 1) and Equation (13) reads:

L =
2µ0N2R1

3(α− 1)2

{(
α3 + 1

)
(2G− 1) + α(α + 1)E(k)− I0(α)

}
, (14)

where

I0 =
∫ π/2

0

[
R3

1arsinh
R2 + R1 cos(2β)

R1 sin(2β)
+ R3

2arsinh
R1 + R2 cos(2β)

R2 sin(2β)

]
dβ,

k2 =
4α

(α + 1)2 .

From Equation (13) or Equation (14) it is possible to obtain the self-inductance of the
full disk (R1 = 0 and R2 = R):

L =
2µ0N2R

3
(2G− 1). (15)
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3.2. Concentric Coplanar Bitter Disks

Before the integration, let us make the substitution, θ = π− 2β, so that Equation (9) reads:

MB =
−2µ0N1N2

ln R2
R1

ln R4
R3

∫ π

0

∫ R2

R1

∫ R4

R3

cos(2β)dr1dr2dβ√
r2

1 + 2r1r2 cos(2β) + r2
2

. (16)

The integration over r1 in Equation (16) gives [24,25]:

Ir1 =
∫ R2

R1

dr1√
r2

1 + 2r1r2 cos(2β) + r2
2

=

[
arsinh

r1 + r2 cos(2β)

r2 sin(2β)

] R2
|

R1

.

The integration over r2 in Equation (16) gives [24,25]:

Ir2 =
∫ R4

R3

Ir1 dr2 =
n=4

∑
n=1

(−1)n−1
[

ρnarsinh
ln + ρn cos(2β)

ρn sin(2β)
+ lnarsinh

ρn + ln cos(2β)

ln sin(2β)

]
,

where ρ1 = ρ2 = R1, ρ3 = ρ4 = R2, l1 = l4 = R3, and l2 = l3 = R4 .
The integration over β in Equation (16) gives [24,25]:

I3 =
∫ R4

R3

cos(2β)Ir2 dθ =
4

∑
n=1

(−1)n−1 (ln + ρn)E(kn).

Finally, the mutual inductance between two coplanar Bitter disks is:

MB =
2µ0N1N2

ln R2
R1

ln R4
R3

4

∑
n=1

(−1)n [ln + ρn]E(kn), (17)

where
k2

n =
4ρnln

(ρn + ln)
2

with ρ1 = ρ2 = R1, ρ3 = ρ4 = R2, l1 = l4 = R3, l2 = l3 = R4.
The mutual inductance is obtained in an amazingly simple form over the elliptic

integral of the second kind. It is applicable in the regular or the singular cases (disks are in
contact or overlap).

For calculating the self-inductance of the Bitter disk coil, one can use Equation (10) or
directly put R1 = R3, R2 = R4 and N1 = N2 = N into Equation (17), which leads to:

LB =
4µ0N2(R1 + R2)[

ln R2
R1

]2 [E(k)− 1], (18)

where
k2 =

4R1R2

(R1 + R2)
2 .

Thus, either the mutual inductance or the self-inductance for the Bitter disks are
obtained in the close form over the elliptic integral of the second kind.

4. Numerical Validation

In this work, all calculations were made in Mathematica programming [27].

Example 1

Calculate the self-inductance of the ordinary real coils with the real thickness d = 0.02 m,
and the radii, R1 = 1 m, R2 = 3 m, and N1 = 1000.
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From [9,11,23], the self-induction of the real coil of the rectangular cross section is:

M = 4.094233684833548 H.

Obviously, b � Di, i = 1, 2 , and the condition (B) is satisfied, so that the real coil
can be practically considered as the concentric coplanar thin disk coil, for which applying
Equation (13), the self-inductance is:

M = 4.120247770949786 H.

The discrepancy between these two calculations is 0.6314%. The results are in particu-
larly good agreement. We conformed the validity of our approach.

Example 2

Calculate the mutual inductance between two ordinary real coils with the real thick-
ness d = 0.001 (m), with the radii R1 = 1 m, R2 = 2 m, R3 = 3 m, R4 = 4 m, and
N1 = N2 = 1000.

From [8,10], the mutual induction of two ordinary real coils of the rectangular cross-
section is:

M = 1.459023283104694534983992 H.

Obviously, for bi � Di, i = 1, 2, 3, and 4, the two real coils can be considered as the
two concentric coplanar thin disk coils for which, applying Equation (12),

M = 1.459023375744836092948731 H.

These results are in excellent agreement.

Example 3

Calculate the self-inductance of the real ordinary coil [9,11] and the self-inductance of
the thin disk coil (14). The coil dimensions and the number of turns are as follows:

R1 = 0.1 m, R2 = 0.4 m, N = 100 .

The self-inductances as the thickness b of the real coil is changing are given in Table 1
compared with the earlier calculations [9,11].

Table 1. The self-inductance when b is extremely decrasing.

b Lcoli (mH) [9,11] Lthin−disk (mH), Equations (13) or (14) (This Work)

10−3 4.642676770970589 4.653592975459863
10−4 4.652496987024428 4.653592975459863
10−5 4.653483320871182 4.653592975459863
10−6 4.653582009322975 4.653592975459863
10−7 4.653591878838192 4.653592975459863
10−8 4.653592865797608 4.653592975459863
10−9 4.6535929644936402 4.653592975459863
10−10 4.653592974363245 4.653592975459863
10−11 4.653592975350210 4.653592975459863
10−12 4.653592975449353 4.653592975459863

Equations (13) or (14) give the self-inductance of the ordinary concentric coplanar thin
disk coil (Table 1),

Lthin−disk = 4.653592975459863 mH.

All results are in exceptionally good agreement with the result obtained in the semi-
analytical form (14). Thus, the ordinary real coils with the thicknesses which are remarkably
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smaller than their radii can be considered as the thin concentric coplanar disk coils. Again,
our assumption is proven.

Example 4

In Ref. [12], Conway gives the calculation of normalized self-inductance in terms of
the shape factor R2 = αR1 as LN = L/N2/R1 (Table 2).

Table 2. Self-inductance given as LN = L/N2/R1 in µH/m.

α [4] [12], Equation (58) Equation (14), This Work

1.5 3.9375 3.937556957309482 3.937556957309482
3 4.1202 4.120247770949786 4.120247770949786
4 4.6535 4.653592975459867 4.653592975459867
7 6.5440 6.544182694169381 6.544182694169381
9 7.8795 7.879438694940537 7.879438694940537
19 14.740 14.73964824153050 14.73964824153050
39 28.628 28.62677689946369 28.62677689946369

Table 2 shows the comparison between the inductance given by Kalantarov [4] and
that calculated in [12], with Equation (58) as well as with Equation (14) from this work.
The agreement is excellent in all cases.

Example 5

Table 3 shows calculations of the self-inductance of the ordinary disk for various shape
factors and for values remarkably close to the logarithmic singularity as α→ 1 . These
calculations are compared to two sets of the results obtained by the Spielrein method, see
Ref. [5] and Equation (58) in Ref. [12].

Table 3. Comparison of calculations for the self-inductance (in µH/m) for values of the shape factor,
both close to and far from the singularity α→ 1 .

α [5] [12], Equation (58) Equation (14), This Work

50 36.2822050627 36.28220506268449 36.28220506268449
10 8.5558078657 8.555807865723495 8.555807865723494
3 4.1202478984 4.120247770949786 4.120247770949786

1.5 3.9375565536 3.937556957309482 3.937556957309482
1.1 5.1875898298 5.187589829874826 5.187589829874826

1.01 7.8169836166 7.816983616632973 7.816983616632973
1.001 10.6712873756 10.67128737563754 10.67128737563754

1.00001 16.4524421475 16.45244214746880 16.45244214746880
1.000001 19.3458776688 19.34587766869611 19.34587766869611

1.0000001 22.2393823064 22.23938230721058 22.23938230721058

Again, there is excellent agreement between the results of Equation (14) of this work
and those of Equation (58) of Ref. [12], as well as the close agreement is with the results of
Ref. [5]. Also, Equation (14) gives much more accurate results (for α− 1→ 10−5, 10−6, . . . )
than Equation (3) of Ref. [11].

Example 6

In this example, we show the performance of the Equation (8) when the singularity is
approached ( α− 1→ 10−16 ). We compare the results of Equation (14) with those obtained
by the asymptotic Equations (12) and (58) of Ref. [12], see Table 4.
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Table 4. Comparison of the results of Equation (14) with those from [12] (Equaition (58) and the
asymptotic formula (20) there) as the singularity at the unit shape factor is approached. The results
are given in µH/m.

α−1 [12], Equation (58) [12], Equation (20) Equation (14), This Work

10−1 4.998068846886786 5.187589829874826 5.187589829874826
10−2 7.784316262102376 7.816983616632973 7.816983616632973
10−3 10.66658208170639 10.67128737563754 10.67128737563754
10−6 19.34586862407991 19.34587766869611 19.34587766869611
10−8 25.13289490994222 25.13289502932351 25.13289502932351
10−10 30.91992242743389 30.91992242891705 30.91992242891705
10−12 36.70694995724185 36.70694995725958 36.70694995725958
10−15 45.38749125213915 45.38749125213918 45.38749125213918
10−16 48.28100501710534 48.28100501710534 48.28100501710534

All the results are in a remarkably good agreement. This shows that Equation (14) has
a large range of applications.

Example 7

Let us provide the graphical presentation of the kernel function of the integral I0
which appears in Equations (13) and (14), for which R1 = 1 m , R2 = 2 m, or α = 2.

The kernel function is given by:

T0 =
dI0

dθ
= arsinh

α + cos(2β)

sin(2β)
+ α3arsinh

1 + α cos(2β)

α sin(2β)
= arsinh

2 + cos(2β)

sin(2β)
+ 8 arsinh

1 + 2 cos(2β)

2 sin(2β)
,

and is displayed in Figure 4 in the interval β ∈ [0, π/2]. From Figure 4 one can
conclude about two discontinuities of the type II because T0 does not exist at β = 0,
β = π/2.
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Figure 4. T0 in the interval β ∈ [0, π/2].

Using the numerical integration in MATLAB programming, we obtain:

I0 =
∫ π

2

0
T0dβ = 9.640116560153466.

Using the numerical integration in Mathematica programming, we obtain:

I0 =
∫ π

2

0
T0dβ = 9.64011655154581.
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Both numerical integrations are in very good agreement.

Example 8

Here, we calculate the self-inductance of the full disk coil, for which R = 1 m and
N = 100.

From Equation (15), the self-inductance of the full disk is:

Lfull−disk = 6.969570425670744 mH.

To verify this result, we use Equation (14), and for R1 = 10−17m , R2 = 1 m, N = 100,
that gives:

Lfull−disk = 6.969570425670744 mH.

We obtain the identical result.

Example 9

Table 5 gives the calculations of the mutual inductance in millihenrys for two con-
centric coplanar thin disk coils, where the radii are given the fixed values R2 = 1 m,
R3 = 0.4 m, and R4 = 0.6 m, whereas R1 varies between 0.1 and 0.9 m. The number of
turns in disks is 100 [12]. This covers all the generic overlap cases.

Table 5. Mutual inductance for all overlap cases.

R1 (m) M (mH) [12] M (mH) Equation (12), This Work

0.1 8.3452226401271722326 8.3452226401271722326
0.2 9.2662149362835422651 9.2662149362835422651
0.3 10.178800706150685814 10.178800706150685814
0.4 10.751261394420867987 10.751261394420867987
0.5 10.014392107083652030 10.014392107083652030
0.6 8.2517781770123374536 8.2517781770123374536
0.7 7.1724760612076564190 7.1724760612076564190
0.8 6.5028431844372044556 6.5028431844372044556
0.9 6.0061106298597996959 6.0061106298597996959

Table 5 shows that all results are identical, obtained by Ref. [12] and Equation (12)
from this work. The findings confirm that the relatively simple Equation (12) covers all
overlap cases.

Example 10

We calculate the mutual inductance between two disk coils for which R1 = 1 m,
R2 = 2 m, R3 = 1 m, R4 = 2 m, and N1 = N2 = N = 1000.

Obviously, the disks completely overlap, and it is a case of self-inductance. Let us
apply Equation (12) for the mutual inductance of the disk coils. It gives:

M = L = 3.794801607308613 H.

Applying Equation (13) for the self-inductance of the disk coil, we obtain:

L = 3.794801607308613 H.

We obtain the identical result.
Thus, we show that simple Equation (13) is general for any case, either for the regular

or for the singular. This is also confirmed in the previous examples.

Example 11

Here, we calculate the self-inductance of the real Bitter coil with the real thickness
b = 0.02 m, the radii R1 = 2 m, R2 = 3 m, and N = 1000.
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From [17,23], the self-inductance is:

MB−real = 7.656835021915879 H.

Obviously, as b� Di, i = 1, 2, then condition (B) is satisfied, so that the real Bitter coil
can be practically considered as the thin Bitter disk coil, for which applying Equation (18),
the self-inductance is:

MB−disk = 7.720464217225742 H.

The discrepancy between these two calculations is 0.8242%. The results are in a very
good agreement. This confirms the validity of our approach.

Example 12

Here, we calculate the mutual inductance of the two real Bitter coils with the real thick-
ness d = 0.001 m, the radii R1 = 1 m, R2 = 2 m, R3 = 3 m, R4 = 4 m, and N1 = N2 = 1000.

For these two real Bitter coils [17], the mutual inductance is:

MB−real−coils = 1.356044812667535515160466 H.

By Ren’s method [18,19], the mutual inductance is:

MB−Ren = 1.35604559122892 H.

By finite-element method (FEM), the mutual inductance is:

MB−Ren(FEM) = 1.356045548 H.

Thus, the results obtained by three different methods are in excellent agreement.
Obviously, two real Bitter coils can be practically considered as the two thin Bitter

disk coils because the condition (B) is satisfied.
Applying Equation (17), the mutual inductance is:

MB(thin−disks) = 1.356044785714056066794342 H.

We see that the obtained result is in an excellent agreement with the earlier ones.

Example 13

The mutual inductance for two Bitter disk coils is given in Table 6, where the radii are
given as R2 = 10 m, R3 = 4 m, and R4 = 6 m, and R1 varying between 1 and 9 m. The
number of turns for the disk is 1000. This covers all the overlap cases.

Table 6. Mutual inductance for all overlap cases.

R1 (m) MB (H) , Equation (17), This Work MB (H) [18,19]

1 6.176953480899784 6.176890611593179
2 8.442109820575922 8.441929573292805
3 10.32822091283136 10.32810057022684
4 11.43930901799091 11.44063208654759
5 10.40642626084792 10.40633203780527
6 8.263044997910772 8.263044761562908
7 7.051548638612127 7.051548623257631
8 6.338568884058207 6.338568878810852
9 5.83274907953413 5.832749077642109

From Table 6, we can observe very good agreement of all results. There is negligible
discrepancy between the presented results because the filament method [18,19] is approxi-
mative and depends on the number of divisions of the disk coils. Note that the more disk
divisions are more computing time is needed.
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Example 14

In this example, the self-inductance of the Bitter coil are calculated for the thickness
b = 0.001, with the radii R1 = 1 m, R2 = 2 m, and N = 1000. Calculating the self
inductance of this coil.

From [23,24], the self-inductance of the real Bitter disk coil is:

LB = 3.56801733624027848673978942784 H.

By Ren’s method [18,19], the self-inductance is:

LB−Ren = 3.57200018 H.

By FEM, the self-inductance is:

LB−Ren(FEM) = 1.356838 H.

Equation (17) gives the mutual inductance between two Bitter disk coils. Let us take
R1 = 1 m, R2 = 2 m, R3 = 1 m, R4 = 2 m, and N1 = N2 = 1000. Applying Equation (17),
we obtain:

MB = LB = 3.569912886724817 H.

Applying Equation (18) for the self-inductance of the Bitter coil, we have:

LB = 3.569912886724817 H.

We showed that all results for the self-inductance, obtained by the different methods,
are in particularly good agreement.

Example 15

In Table 7, the self-inductance of the real Bitter coil [23,24] are given with the coil
dimensions R1 = 0.3 m, R2 = 0.4 m, and the number of turns N = 100, for widely changing
thickness of the real coils.

Table 7. The self-inductance for the real Bitter coil and the thin Bitter disk coil with strongly varying
thickness.

b LB−coli (mH) [23,24] LB−thin−disk (mH), Equation (18), This Work

10−3 12.31719134402740 12.36243889748211
10−4 12.35787124164836 12.36243889748211
10−5 12.36198154993393 12.36243889748211
10−6 12.36243432318282 12.36243889748211
10−7 12.36243844005104 12.36243889748211
10−8 12.36243885173889 12.36243889748211
10−9 12.36243889290775 12.36243889748211
10−10 12.36243889701627 12.36243889748211
10−11 12.36243889743836 12.36243889748211
10−12 12.36243889749853 12.36243889748211

The Equation (18) for the thin Bitter disk coil gives the self-inductance:

Lthin−disk = 12.36243889748211 mH.

All results [23,24] are in a very good agreement with the result obtained in the analyt-
ical form (18). Thus, the real Bitter coils with thicknesses which are remarkably smaller
than their radii can be considered as the concentric coplanar thin Bitter coils.

From the previous examples, we proved that it is possible to treat the real circular
coils of the rectangular cross-section, whose thicknesses are remarkably smaller than
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their radii (conditions (A) and (B)), as the thin disk coils (pancakes). In these cases, we
use the amazingly easier analytical and semi-analytical expressions. It validates our
presented method.

5. Conclusions

In this paper, we presented remarkably simple formulas for calculating the self- and
mutual inductance of ordinary concentric coplanar disk coils with azimuthal current
density and concentric coplanar Bitter disk coils with non-uniform current density. All
presented formulas were obtained under some valuable conditions for the real coils of
the rectangular cross-section, either for ordinary real coils or the real Bitter coils. For the
concentric coplanar ordinary disks, the formulas were obtained in the semi-analytical form
as the combination of the elliptic integral of the second kind and a simple integral. For the
concentric coplanar thin Bitter disks, the formulas were obtained in the analytical form
as the elliptical integral of the second kind. All cases of either the regular or the singular
(disks overlap) were covered with obtained formulas. Many examples presented are shown
to approve the correctness of the presented method. The presented formulas are simple to
use for potential readers which are not familiar with complicated special functions, such as
Bessel functions, generalized hypergeometric functions, or Mellin transform.
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