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Abstract: A Newtonian-like theory inspired by the Brans–Dicke gravitational Lagrangian has been
recently proposed by us. For static configurations, the gravitational coupling acquires an intrinsic spa-
tial dependence within the matter distribution. Therefore, the interior of astrophysical configurations
may provide a testable environment for this approach as long as no screening mechanism is evoked.
In this work, we focus on the stellar hydrostatic equilibrium structure in such a varying Newtonian
gravitational coupling G scenario. A modified Lane–Emden equation is presented and its solutions
for various values of the polytropic index are discussed. The role played by the theory parameter ω,
the analogue of the Brans–Dicke parameter, in the physical properties of stars is discussed.
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1. Introduction

Are the fundamental constants of physics truly constants? This is a long-standing
question, perhaps dating back to the identification of these constants themselves. In physics,
we can identify, in particular, four fundamental constants, each one connected with a given
theoretical structure: the (reduced) Planck constant, h̄, which defines the quantum world;
c, the speed of light, which is the limit velocity and is related to the relativistic domain;
the Newtonian gravitational constant, G, which indicates the presence of the gravitational
interaction; kB, the Boltzmann constant related to thermodynamics. The presence of one or
more of these constants in a given equation can suggest which sort of phenomena we are
dealing with. For example, an equation containing G refers to gravitation. If, in addition, it
contains c, one faces a relativistic gravitational structure, such as general relativity. If h̄ is
added, then quantum gravity is discussing. A phenomenon that, by its nature, is relativistic
and involves gravitation and quantum mechanics and, moreover, has a thermodynamic
characteristic will contain these four constants. This is the case, for example, of Hawking
radiation in a black hole.

Among these four constants, the gravitational coupling G was the first one to be
identified, although it is the one that is known with the poorest precision: its value is
determined up to the 10−4 order [1]. This is a consequence of the universality of this
fundamental physical interaction, the only one that is rigorously present in all phenomena
in nature, and always with an attractive behavior. These features led to the identification
of gravity with the innermost nature of space and time: all modern theories interpret the
gravitational phenomena as a consequence of spacetime curvature. Moreover, since it is
always attractive, it dominates the behavior of large-scale systems, such as in astrophysics
and cosmology.
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There are very stringent observational and experimental constraints on the variation of
G. In spite of these constraints, even a small variation of G with time and/or position may
have a significant impact on the cosmological and astrophysical observables. For example,
the H0 tension may be highly suppressed if G varies with time [2]. Even the large-scale
structure formation process may change substantially if G is not a constant. There are
many relativistic theories of gravity that try to incorporate the variation of the gravitational
coupling. The traditional paradigm of such a theoretical formulation is the Brans–Dicke
theory [3], based on an original proposal made by Dirac, inspired by the large number
hypothesis, which singles out some curious coincidences of numbers obtained from the
combination of the constants and some functions of time evaluated today, such as the
Hubble constant [4,5]. The Brans–Dicke theory is a more complete formulation of theo-
retical developments made by Jordan using the idea that G may not be a constant. Today,
the Horndesky class of theories [6] provides the most general gravitational Lagrangian
leading to second-order differential field equations. In most cases, the Horndesky theories
incorporate the possibility of a dynamical gravitational coupling.

Even if there exists such a plethora of relativistic theories with varying gravitational
coupling, it is not so easy to construct a Newtonian theory with a dynamical G. To our
knowledge, the first proposals to incorporate a varying G effect in a Newtonian context
were made in Refs. [7–9]. For example, in Ref. [8], the implementation of this idea was quite
simple: in the Poisson equation, a constant G is replaced by a varying gravitational coupling,
a function G(t). There is no dynamical equation for this new function, whose behavior
with time must be imposed ad hoc. A natural choice is to use the Dirac proposal, with

G = G0
t0

t
, (1)

where t0 is the present age of the universe and G0 is the present value of the gravitational
coupling. This Newtonian theory with varying gravitation coupling has no complete
Lagrangian formulation, since G(t) is an arbitrary function.

In a recent paper [10], a new Newtonian theory with varying gravitational coupling
has been proposed. The gravitational coupling, now given by a function of time and
position, is dynamically determined together with the gravitational potential from a new
gravitational Lagrangian. It has been shown that this theory is consistent with the general
properties of spherical objects such as stars and, at the same time, its homogeneous and
isotropic cosmological solutions can generate an accelerated expansion of the universe.

Of course, one may wonder about the interest in constructing a Newtonian theory
with varying G. One can evoke the academic interest of obtaining a complete and consistent
Newtonian formulation implementing dynamical gravitational coupling. The Newtonian
framework is, in principle, simpler than the relativistic one, so would it be so difficult to
give a dynamical behavior to G, something that is, if not trivial, at least perfectly possible
in a relativistic context? However, at least two other motivations can be quoted. First,
a consistent Newtonian theory with varying G may suggest possible new relativistic
structures, such as, for example, the non-minimal coupling of gravity with other fields,
in a similar way as the general relativity equations suggested by the Poisson equation.
Second, many astrophysical and cosmological problems are more conveniently analyzed
in a Newtonian framework, e.g., the dynamics of galaxies, clusters of galaxies and even
numerical simulations of large-scale structures. If G is not a constant, it would be beneficial
to have a consistent Newtonian theory incorporating this feature.

In this paper, we focus on the stellar structure of non-relativistic stars. This is an
important analysis in the context of the theory proposed in [10] since it has been shown
that the main difference from the standard Newtonian gravity should manifest within
matter distributions.
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2. Newtonian Theory with Variable G

In Ref. [10], a Lagrangian for a theory with varying G has been proposed and is
reviewed in this Section. The Lagrangian of this new approach is given by

L =
∇ψ · ∇ψ

2
− ω

2

(
ψ

σ̇2

σ2 − c4∇σ · ∇σ

)
+ 4πG0ρσψ, (2)

where G0 is a constant, ψ is an equivalent of the ordinary Newtonian potential and σ is a
new function related to the gravitational coupling. In addition, the parameter ω, which
shall be assumed to be constant, is introduced.

A constant with dimensions of velocity, the speed of light c, has been introduced to
guarantee that the Lagrangian has the correct physical dimensions. However, no direct
mention is made of a relativistic framework in doing so: one has simply borrowed from
electromagnetism two fundamental constants, the vacuum electric permissivity ε0 and
magnetic permeability µ0.

In some sense, the above Lagrangian corresponds to the Newtonian version of the
relativistic Brans–Dicke theory (in Einstein’s framework). Let us emphasize again that
the constant c appears in this Lagrangian for dimensional reasons. This does not mean
that this is a relativistic theory since this Lagrangian is invariant under the Galilean
group transformations.

Applying the Euler–Lagrange equations of motion,

∇ · ∂L
∂∇ψ

− ∂L
∂ψ

= 0, (3)

d
dt

∂L
∂σ̇

+∇ · ∂L
∂∇σ

− ∂L
∂σ

= 0, (4)

the following equations are obtained:

∇2ψ +
ω

2

(
σ̇

σ

)2
= 4πG0σρ, (5)

c4 σ

ψ
∇2σ− d

dt

(
σ̇

σ

)
− ψ̇

ψ

σ̇

σ
=

4πG0σρ

ω
. (6)

The over-dot indicates the total time derivative, which ensures in the resulting equa-
tions an invariance with respect to Galilean transformations. Equations (5) and (6) show
that the quantity G0σ can be interpreted as an effective gravitational coupling.

From expression (2), one can verify that the usual Newtonian Lagrangian is re-
covered with the identifications ω = 0 and σ = 1. However, from the theory field
Equations (5) and (6), it is clear that the standard Newtonian limit takes place with σ
constant and ω → ∞. A similar situation arises with the original Brans–Dicke theory,
although, there, one recovers general relativity.

It is worth noting that the above set of equations cannot be seen as the non-relativistic
limit of a pure covariant scalar-tensor gravitational theory. Due to the limiting cases for
σ and ω in obtaining the Newtonian behavior, as is the case with the Brans–Dicke theory,
only a self-similarity with Brans–Dicke can be evoked. The true scalar-tensor theory giving
rise to these non-relativistic dynamics is still missing.

3. Gravitational Field within Mass Distributions

As already pointed out in Ref. [10], in a vacuum, Equations (5) and (6) are decoupled.
Thus, the fields ψ and σ have independent dynamics, both satisfying Laplace’s equations.
Only within matter are their dynamics linked. One should therefore focus on such interior
solutions to better understand the behavior of the theory.
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3.1. Constant Density Sphere

Let us start by reviewing the simple realization of a static sphere of radius R with
constant density ρ0. As shown in [10], the gravitational potential in this case assumes
the form

ψ(r) =− G0M k
kR cosh (kR)− sinh (kR)

[
cosh(kR)− sinh (k r)

k r

]
, for r < R, (7)

ψ(r) =− G0M
r

, for r ≥ R. (8)

In the above result,

k2 =
4πG0ρ0

c2
√

ω
, (9)

is defined being valid for ω > 0.
In order to provide an order of magnitude estimation for possible deviations from

the standard Newtonian gravity, we analyze the behavior of quantity kr appearing in the
interior solution above. Using the Newtonian constant value for G0, one can write:

kr ∼ 10−2

ω1/4

√
M/M�
R/R�

( r
R

)
, (10)

where M� and R� are the mass and radius of the Sun. In the above calculation, we only
focused on the order of magnitude of the numerical values of the constants. For constant
density star configurations, deviations from Newtonian gravity occur for

M
R

& 104√ω
M�
R�

. (11)

This confirms that deviations from Newton’s theory are more accentuated for small
values of ω. The higher the ω value, the more compact should be the source in order to
have non-negligible deviations from Newtonian gravity.

According to this rough estimation, Equation (11) means that the Sun cannot probe
manifestations of this theory if the theory parameter assume values ω & 10−8. Only more
compact objects would be suitable for testing the theory. However, more realistic scenarios
should be investigated. This is the goal of the next Sections.

3.2. The Modified Lane–Emden Equation

In ordinary Newtonian gravity, the Lane–Emden equation is a useful description of
self-gravitating spheres. It is constructed by assuming a polytropic fluid as a source of the
gravitational potential, where pressure and density are related through the expression

p = Kρ1+1/n, (12)

with K being a constant and n the so-called polytropic index. Moreover, the Lane–Emden
equation is dimensionless, which is a suitable property for numerical analysis. Thus,
in this Section, we show how the usual Lane–Emden equation is modified in the varying-G
Newtonian gravity.

Assuming a static and spherically symmetric star, all functions depend only on the
radial coordinate r. The momentum conservation (Euler’s equation) for this distribution
assumes a static velocity field with ~v = 0, leading to the relation

p′

ρ
= −ψ′, (13)
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where the symbol prime ( ′ ) means a derivative with respect to r. It is worth noting that
that only the gradient of the potential ψ is assumed here to be relevant for the classical
hydrostatic equilibrium. One should therefore obtain the behavior of the potential ψ, which
is coupled to the field σ. This can be derived from Equations (5) and (6), which can be
rewritten as a new set of equations:

ψ′′ + 2
ψ′

r
= 4πG0σρ, (14)

σ′′ + 2
σ′

r
= 4πG0

c4ω
ψρ. (15)

As mentioned before, the Newtonian counterpart of the above equations is obtained
when σ is a constant and ω tends towards infinity.

To proceed, the density is redefined:

ρ(r) = ρcΘ(r)n, (16)

where Θ(r) is a dimensionless density function such that Θ(0) = 1. Thus, ρc represents the
central density value. With this redefinition and the polytropic equation of state (12), Euler
Equation (13) can be integrated, resulting in a relation between ψ and Θ:

ψ(r) = −K(n + 1)ρ1/n
c Θ(r) + ψR. (17)

The parameter ψR is a constant of integration that must be fixed by the potential at the
star’s radius.

With the last result, one can rewrite Equations (14) and (15) in a similar form to the
original Lane–Emden equation:

1
x2

d
dx

(
x2 dΘ

dx

)
= −σΘn, (18)

1
x2

d
dx

(
x2 dσ

dx

)
= −

κ2
0

ω
Θn+1 + λ0Θn. (19)

In the above equations,

x =
r
r0

, r0 =

√
(n + 1)
4πG0

pc

ρ2
c

, (20)

κ0 =

√
4πG0r2

0 pc(n + 1)
c4 =

K(n + 1)ρ1/n
c

c2 , (21)

λ0 =
pc(n + 1)ψR

ρcωc4 . (22)

In order to guarantee that the ordinary Lane–Emden equation is recovered when σ
is constant and ω → ∞, λ0 must be set to zero. The constant κ0 is directly related to the
central pressure/central density ratio, namely,

pc

ρc
=

κ0c2

(1 + n)
. (23)

The dimensionless radius of the star is defined as the point x1 where Θ(x1) = 0.
The physical radius of the star is simple:

R = r0x1. (24)



Physics 2021, 3 1128

An expression for the stellar mass can be obtained by the integral,

M = 4π
∫ R

0
ρ(r)r2dr = 4πρcr3

0

∫ x1

0
Θnx2dx. (25)

Outside the star, one has Θ = 0, and the vacuum external solution for the σ field is (cf.
Equation (19)):

σ(x) = σ1 +
σ2

x
, (26)

where σ1 and σ2 are constants of integration. σ1 = 1 is considered here without loss of
generality. However, the external solution must be continuous with the numerical internal
solution at the star radius r = R. Thus, the second constant can be fixed:

σ2 = R(σ(R)− 1). (27)

If one now imposes the continuity of the derivative of σ at the star’s radius, a criterion
that the numerical solution is reached, and its derivative must satisfy:

dσ

dx

∣∣∣∣
R
=

1− σ(R)
R

. (28)

Now, for a given central value of σ(0) ≡ σC, the solution will give the correct asymp-
totic behavior if Equation (28) is satisfied.

4. Numerical Results

The new physical element of our model is the field σ. It was shown that, for the static
and spherically symmetric configurations studied here, this field has a spatial dependence
on the radial coordinate. One can thus wonder about the magnitude of the σ field variation
along the star and also whether or not the stellar compactness affects this variation. In the
discussion above, we have provided hints that indeed the variation of σ should be more
pronounced in more compact objects. Let us try to quantify this feature in this section.

4.1. The Case n = 1

As a first example, let us start with the simplest case of a specific equation of state
with polytropic index n = 1:

p = Kρ2. (29)

This equation of state is considered a crude but very useful approximation for the mat-
ter state in compact objects. Whereas these objects are in the relativistic regime, the theory
that we are considering is Newtonian. However, the new field σ allows some contact with
typical relativistic effects. For this reason, it is worthwhile to investigate such an equation
of state and verify whether some properties of compact objects can be reproduced.

With the adapted Lane–Emden system at hand (n = 1), one can apply them to a
couple of typical stellar structures.

Let us firstly consider very compact objects. The case n = 1 is suitable for neutron
stars with central density and pressure with the following magnitudes:

ρc ∼ 1017 kg/m3, (30)

pc ∼ 1034 Pa. (31)

After performing a numerical integration of the Lane–Endem equations, we obtain
x1 ∼ 1, leading to R ∼ 10 km, roughly in agreement with the expected value. At the same
time, the field σ has a variation along the star of the order of 0.3%. Hence, compact objects
can help to test the theory.
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Let us promote the following test. For the same equation of state, let us work with less
compact objects, e.g., the Sun, keeping in mind that the chosen equation of state only very
crudely can represent such stars. We are interested in orders of magnitude estimations.
If the Sun is physically described by the following central density and pressure,

ρc ∼ 105 kg/m3, (32)

pc ∼ 1016 Pa, (33)

and performing again a numerical integration, one finds that the dimensionless radius of
this star is of the order of x1 = 0.01, leading to R ∼ 108 m, which is roughly the radius of
the Sun (R� = 7× 108 m). At the same time, the field σ remains essentially constant across
the star, which is in agreement with the constraint given by stellar evolution for the Sun.
In fact, for the values chosen above, the difference in the value of the gravitational coupling
at the center of the star and at infinity is in the fourth decimal case for |ω|. This relates to
the experimental uncertainty level of G measurements. The value at the center of the star is
approximately 0, 01% smaller for ω = −1 and 0, 01% greater for ω = 1, always supposing
the standard value at infinity.

4.2. The Case n = 3

For n = 3, we have the equation of state,

P = Kρ4/3, (34)

which may represent a completely degenerate and non-interacting Fermi gas in the ultra-
relativistic limit. This is the limit case of white dwarfs, compact stars that sustain themselves
against gravity by the degeneracy pressure of the electrons. In this case, the constant K has
a value of [11]

K =
hc

8m4/3
u

(
3
π

)1/3 1

µ4/3
e

, (35)

where mu is the atomic mass unit and µe is the mean molecular weight per free electron.
For a completely hydrogen-depleted gas, µe ≈ 2.

The results for this case are shown in Figures 1 and 2. As expected, the theory with
varying gravitational coupling is almost identical to the ordinary Newtonian one as the
ω parameter value increases. For small and positive values of ω, the central value of
the σ field starts to grow and, if it is interpreted as being proportional to the effective
gravitational coupling (Geff = G0σ), this indicates a stronger gravity that lowers the star’s
mass and radius. The situation for negative ω is the opposite. The central value of σ
starts to decrease, indicating a weaker gravity that increases the star’s mass and radius.
Compared results for both positive and negative ω values are not symmetrical. We have
checked that the solutions are more sensitive to negative values of the ω parameter.

The sigma profile in Figure 2 indicates that, in the stellar exterior, the σ field assume
values σ 6= 1, and its derivative also does not vanish. This reminiscent feature of the
extra scalar field σ resembles the spontaneous scalarization effect, present in scalar-tensor
theories. This consists in the development of a scalar cloud around the star [12,13]. Al-
though the original spontaneous scalarization effect appears in the strong field regime of
relativistic theories, there is remarkable similarity within the Newtonian context with the
extra σ field.
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Figure 1. Left: The behavior of the central value of the σ field. For positive ω, the gravitational coupling is larger than the
Newtonian value, and, for negative ω, it is weaker. Right: The Chandrasekhar mass MCH of such a limit star configuration.
For positive ω, the mass is smaller than for negative values.
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Figure 2. Left: The σ field profile, with the approximate dimensionless radius of the star marked with the vertical thick line.
For ω as small as 10−4, the gravitational coupling can be 20% greater than the asymptotic Newtonian value. For negative
small ω, the gravitational coupling at the star’s center is almost half the usual value. Right: The dimensionless density
profile for the same values of ω. For values of ω of the order 0.1, the theory is practically indistinguishable from the
Newtonian one.

5. Final Remarks

Even though the actual description of the gravitational phenomena demands a co-
variant and relativistic formulation, the Newtonian gravity still works with acceptable
accuracy for a broad range of astrophysical applications. The author of Ref. [10] proposed a
non-relativistic version of a modified gravity theory inspired by the Brans–Dicke relativistic
scalar-tensor theory of gravity. For simplicity, one can mention two new features of this
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theory: it possesses a new parameter ω and the strength of the effective gravitational
coupling dictated by the field σ.

In this paper, this non-relativistic theory was applied to the structure of stellar configu-
rations. While, in the exterior vacuum solutions, both ψ and σ satisfy the Laplace equation,
with their behavior resembling the standard Newtonian potential, deviations are present
in the interior solutions. Therefore, one cannot probe such new gravitational effects due
to the existence of an intrinsic degeneracy with the equations of state for the stellar fluid.
On the other hand, by fixing the equation of state, it is possible to measure the impact of
the theory parameter ω on the astrophysical observables such as the star’s mass and the
star’s radius.

The manifestation of the new gravitational features depends on the compactness of
the star. Curiously, such dependence is not present in other modified gravity theories.

As the main result of the present study, the impact of the ω parameter on Chan-
drasekhar’s mass limit is discussed. If ω = 10−4, then one finds MCH = 1.14M�, while,
for ω = 10−3, MCH = 1.41M�. Then, the existence of white dwarfs with masses around
1.3M� [14,15] clearly rules out a ω value of order 10−4 or smaller. On the other hand,
higher Chandrasekhar mass limits are allowed for negative ω values. This case would
become very interesting in the event of a future detection of a white dwarf that is more
massive than the currently accepted Chandrasekhar limit. Recent studies have pointed
towards this possibility [16]. Finally, it is worth noting that modified gravity is not the only
route to obtain modified Chandrashekhar mass limits, since they can also be obtained even
within the Newtonian theory if, for example, the star is charged [17].
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