
Viewpoint

Energy Mechanisms of Free Vibrations and Resonance in
Elastic Bodies

Yury A. Alyushin

����������
�������

Citation: Alyushin, Y.A. Energy

Mechanisms of Free Vibrations and

Resonance in Elastic Bodies. Physics

2021, 3, 1133–1154. https://doi.org/

10.3390/physics3040072

Received: 30 July 2021

Accepted: 2 November 2021

Published: 25 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Engineering of Technological Equipment, National University of Science and Technology MISIS,
119991 Moscow, Russia; alyushin@misis.ru or alyushin7@gmail.com

Abstract: The scientific novelty of this work is determined by the rationale for the participation in
transformations, along with the kinetic energy of particles, of four types of elastic energy, identified
by the peculiarities of their phase changes in the oscillation process. Two types are converted into
kinetic energy, while the other two types change the deformed state of particles in accordance with
the equations of motion due to internal sources. The result is obtained based on the use of the
superposition principle in the space of Lagrange variables with the imposition of forced and free
oscillations, as well as a new model of mechanics based on the concepts of space, time, and energy
with a new scale of average stresses that takes into account the energy of particles in the initial state.
In such a model of mechanics, a generalized measure of the elastic energy of particles is a quadratic
invariant of asymmetric tensor whose components are partial derivatives of Euler variables with
respect to Lagrange variables. The concept of kinematic energy parameters is introduced, which
differ from the corresponding volumetric energy densities by a multiplier equal to the modulus of
elasticity, which is directly proportional to the density and heat capacity of the material, and inversely
proportional to the volumetric compression coefficient. Comparison of the values of kinematic
parameters shows that most of the energy required for oscillations is associated with the deformation
of particles and comes from internal sources. The mechanisms of transformation of forced vibrations
into their own for transverse, torsional, and longitudinal vibrations are considered, as well as the
occurrence of resonance when free and forced vibrations are superimposed with the same or a similar
frequency. The formation of a new free wave after each cycle of external influences with an increase
in amplitude, which occurs mainly due to internal, and not external, energy sources is justified.

Keywords: energy model of mechanics; equations of motion; Lagrange variables; superposition
principle; four types of elastic energy; kinematic parameters of elastic energy

1. Introduction

Vibrations are among the most common processes, and no phenomenon in nature,
none of the created mechanisms, can do without them. They should be considered when
calculating, manufacturing, and operating building structures, transport systems, and in
technological processes in mechanical engineering [1–7].

One of the founders of the theory of oscillations is J. Rayleigh [1]. His fundamental
theorems, including those based on the comparison of the kinetic and potential energy of
an oscillating system, have been successfully used to determine the natural frequencies
in elastic bodies, optical phenomena, and acoustics. The examples of solving technical
problems with a detailed analysis of various types of vibrations are given in [2]. A separate
chapter is devoted to the longitudinal, transverse, and torsional vibrations considered in
this work. The original concepts, paradoxes, and the most common errors in the analysis
of oscillations are considered in [3]. In [4,5], the importance of the general methods of the
theory of vibrations for dynamic calculations of engineering structures is noted.

The nature of free vibrations and resonance is still not fully understood. There are
reasons to believe that the energy basis of free vibrations and resonance, along with the
energy of external forces, are internal energy sources [8].
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In most publications, the analysis is limited to the form, frequency, and period of
oscillations. As a rule, the vibrations of material points are considered. For elastic bodies,
and the relations of the theory of elasticity are used, but without analyzing the energy
state of particles in the volume of the body [2,5]. While recognizing the essential role of
internal energy, the mechanism of its participation in the occurrence and development of
free vibrations and resonance is usually not considered.

The purpose of this work is: using a new concept in mechanics based on the concepts
of space, time and energy [9,10], to analyze the change in the deformed and energetic state
of particles; comparing their phase changes with changes in kinetic energy and energy
of external forces, to substantiate the essential role of additional types of internal energy,
providing a change only in the deformed state of particles determined by their equations
of motion; check the fulfillment of the law of conservation of energy for local volumes and
for the body as a whole.

2. Fundamentals of the Energy Model of Mechanics

Attempts to build an energy model of mechanics were made at the end of the 19th
century. In particular, in the work [11], it is noted that the replacement of the abstract con-
cepts of “force” and “mass” with energy allows us to clarify and obtain more information
about motion than follows from the basic principles of classical mechanics. The work [12]
was characterized by contemporaries as the kinetic basis of mechanics. The orientation of
scientists of that time to absolutely solid bodies did not allow for using the general concept
of energy (the generalized scalar measure of various types of motion), so their works did
not receive support.

The question, “Why do all sections of physics begin with energy and only the first and
basic ‘mechanics’ with an indefinite concept of force?” in the work [13] can be considered
as the recommendation of physicists to change the initial prerequisites of mechanics.

The energy model of mechanics should use a description of motion of material particles
in the form of Lagrange, since only Lagrange variables allow us to consider the change in
the energy state of particles at any time interval, and also to consider the transformation of
some types of energy into others, including due to deformation and temperature. Let us
use the notations [8–10]

xi = xi(αp, t), (1)

where t is the time, xi ∈ (x, y, z) are the current coordinates (Euler), and αp ∈ (α,β,γ) are
the Lagrange variables, uniquely associated with the initial coordinates of the particles.
They are the arguments of all the functions used in the future.

The different nature of the arguments in Equation (1) allows us to use two independent
infinitesimal operators: the d operator for infinitesimal increments in time, for example,
dxi/dt ≡ xi,t and d2xi/dt2 ≡ xi,tt, which are components of velocity and acceleration in
the directions of the xi axes, and the δ operator for increments in space, for example, the
volume of a particle δV0 = δαδβδγ.

Energy as a generalized scalar characteristic of any type of motion must consider all
independent invariants of the system (1), including the invariants of the strain tensors:

xi,αp ≡
∂xi
∂αp

=

 xα xβ xγ
yα yβ yγ
zα zβ zγ

, (2)

and strain rates xi,tαp = xi,αpt ≡ ∂(dxi/dt)/∂αp. Linear I1, quadratic I2, and cubic I3
invariants for tensor (2) are defined via the equations:
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I1 = xα + yβ + zγ, I2 = x2
α + y2

α + z2
α + x2

β + y2
β + z2

β + x2
γ + y2

γ + z2
γ = Γ2

e , I3 =
∣∣xi,αP

∣∣= δV/δV0 = R, (3)

here and in what follows, when denoting functions f (α,β,γ, t), the subscripts corre-
spond to the partial derivatives, fα ≡ ∂ f /∂α, with respect to the Lagrange variables and
with respect to time t, for example, d fα/dt ≡ fαt = ftα.

The energy of the particle, δEm(ξi), associated with the motion, is represented as a sum:

δEm = ∑ δEi(ξi) = ∑ kiξiδV0,

where the scalar factors ki ensure equality of the dimensions of the terms.
The law of conservation of energy is written in the form of a balance of increments of

the energy of motion, dδEm(ξi), and external forces, dδEe:

dδE =
13

∑
i=1

kiξi,tδV0d t− dδEe = 0. (4)

To determine dδEe we use, by analogy with classical mechanics, the scalar product of
the forces δP by the outer surfaces of the particle and their displacements dr. Taking into
account the rule of summation by a repeating index, using the concept of the surface force
density τpi, one obtains [8]:

d δEe = ∑ (δP · d r) = ∑ (δP · v) d t = (τpixi,tαp + xi,t∂τpi/∂αp)δV0d t.

The stresses τpi are similar to the Kirchhoff stresses [10] but differ in the range of the
arguments (Lagrange variables) and the possibility of arbitrary selection of the reference
point of the average stress scale.

The invariants obtained by time integration take into account the change in the energy
state of the particles due to dissipative processes. In the field of reversible deformations,
the invariants should not be considered, and the law of energy conservation (4) takes the
form [10,14]:

kI1 I1,t + kI2 I2,t + kI3 I3,t = τpixi,tp + xi,t
(
∂τpi/∂αp − ρ0xi,tt

)
, (5)

where I1,t, I2,t, and I3,t are the time derivatives for the linear, quadratic, and cubic invariants
(3) of the tensor (2), respectively.

From the condition that the energy is invariant with respect to the choice of the velocity
reference system, the sum of the last three terms in Equation (5) must turn to 0, and the
system (1) must satisfy the differential equation [14,15]:

xt

(
∂τpx

∂αp
− ρ0xtt

)
+ yt

(
∂τpy

∂αp
− ρ0ytt

)
+ zt

(
∂τpz

∂αp
− ρ0ztt

)
= 0, (6)

where ρ0 is the density of the material in the initial state, τpi is the surface density of forces
on the faces of the infinitesimal parallelepiped, to which the normal is in the initial state
that specifies the first subscript p ∈ (α,β,γ), and the direction of the voltage is—second
i ∈ (x, y, z). If each bracket is equated to zero, one gets analogs of the differential equations
of motion of the classical mechanics of a deformable solid [2,3], but in this case the loss of
some possible solutions is not excluded.
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Equating the coefficients with the same multipliers xi,tαp in the remainder of Equation (5):

kI1 I1,t + kI2 I2,t + kI3 I3,t = τpixi,tp,

one obtains the dependences between the stress components τpi, derivatives ∂xi/∂αp ≡ xi,αp ,
and coefficients kIi with a dimension of MPa, called the elastic modulus:

τpi = kI1δpi + 2kI2 xi,p + kI3 x̃i,p. (7)

In relations (7) and further on, x̃i,p—the algebraic complements elements xi,p of the
matrix (2), the unit tensor δpi takes values δpi = 1 for ταx, τβy, τγz and δpi = 0 for all other
stresses not located on the main diagonal of the tensor τpi. Equation (7) is derived from the
law of energy conservation (5) and is analogous of Hooke’s law for the elastic deformation
of materials in the space of Lagrange variables.

The linear invariant I1 cannot determine the energy, since it depends not only on the
deformation of the particle, but also on its rotation as a rigid whole [14]. In this regard,
the condition kI1 = 0 should be accepted. The cubic invariant I3 determines the ratio of
the particle volumes in the current and initial states: I3 =

∣∣xi,p
∣∣= δV/δV0 . The coefficient

corresponding to this invariant, kI3 , is an additive component of the normal Cauchy stresses
and determines the choice of the reference point of the average stress scale [10,14]. At
kI3 = 0, the average voltages in the initial state take values σ0 = 2kI2 .

When moving to a single modulus of elasticity and a new scale of average stresses,
considered as the volume energy density of particles [10,14], the concept of stresses τpi
becomes redundant, since they differ from the components of the tensor (2) only by a
constant factor equal to twice the modulus of elasticity kI2 = κ:

τpi = 2κxi,p. (8)

The remaining only one modulus of elasticity κ is directly proportional to the den-
sity ρ0, the heat capacity of the material, c, and is inversely proportional to the volume
compressibility, β = 3α, where α is the coefficient of linear expansion [14]:

κ =
ρ0c
β

=
ρ0c
3α

.

Instead of Equation (6), one gets:

xt

(
∂xp

∂αp
− µ2xtt

)
+ yt

(
∂yp

∂αp
− µ2ytt

)
+ zt

(
∂zp

∂αp
− µ2ztt

)
= 0, (9)

where µ2 = ρ0
2κ . The differential equations of motion are transformed into Poisson equations

for each of the functions (1):

∂2xi/∂α2
p = µ2(∂2xi/∂t2). (10)

The energy model of mechanics with a single modulus of elasticity leads to a signifi-
cant reduction in mathematical difficulties, and the solutions do not contradict classical
mechanics for any types of problems [14].

Under these assumptions, the quadratic invariant (3) of the tensor (2) is a kinematic
parameter of the volume density of the elastic energy of particles, considering their initial
state, Γ2

e = δEe/(κδV0) [10]. In the following, the designations ei = δEi/(κδV0) correspond
to the dimensionless kinematic parameters of the volume density of the corresponding
modifications of the elastic energy δEi, of a particle with a volume δV0. The energy of the
particle acquired (edef > 0) or lost (edef < 0) due to elastic deformation, δEdef = κedefδV0,
in comparison with the initial state, defines a local kinematic parameter edef = Γ2

e − 3, the
right part of which can be written in terms of the squares of the ratios of the lengths of the
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edges before δl0 and after δl of the deformation, initially oriented in the direction of the
corresponding axes,

l2
p = (δl/δl0)

2
p = x2

p + y2
p + z2

p, p ∈ (α,β,γ).

Then, the parameter edef can be represented via the other dimensionless scalars ee and
es [8,15]:

edef = Γ2
e − 3 = 3(e2 − 1) + es = ee + es,

e = (lα + lβ + lγ)/3, ee = 3(e2 − 1), es = (lα − e)2 + (lβ − e)2 + (lγ − e)2,
(11)

where e is the average value of the relative lengths of the lp edges of an infinitesimal
parallelepiped before and after deformation. Parameter ee depends on the average length
of e and can be either positive or negative. The value es is always positive and coincides
with the standard deviation of the lengths of the edges of the parallelepiped lp from their
average value e. Equation (11) allows a change in the deformed state of particles due to
internal energy sources if ee + es = const.

Considering the features of phase changes, for the processes, discussed below, ee and
es can be represented in terms of additional kinematic parameters such as ee = ee1 + ee2 and
es = es1 + es2, which play a different role in fulfilling the law of conservation of energy for
particles and the body as a whole [8,15]. In particular, the parameters ee1 and es1 will include
the energy shares that participate in the transformation of the kinetic energy of particles
into elastic or vice versa, as well as in the implementation of the law of conservation of
energy for an elastic body as a whole when considering external forces. The parameters ee2
and es2 consider transitions only within the elastic deformation of particles, for example,
the transition of the energy of volume change to the energy of shape change or vice versa.
They do not require an influx of energy through its boundaries—as, by analogy, with
the implementation of the law of conservation of energy for free vibrations in an elastic
body—and do not affect the change in the energy of elastic deformation of the body.

Taking into account the current and the initial (Γ2
e = 3) states, the energy δEdef of a

particle with a volume δV0 due to deformation can be represented as:

δEdef = κδV0(Γ2
e − 3) = κδV0[3(e2 − 1) + es] = κδV0(ee + es) = κδV0(ee1 + ee2 + es1 + es2). (12)

In all the cases discussed below, an elastic rod of length L with a cross section S0
is considered as a physical body, the ends of which are fixed in fixed arrays that do not
exchange energy with the oscillating system.

For the energy justification of the resonance, the transformation of forced vibrations
into free ones is considered after the termination of external forces, as well as the subse-
quent occurrence of resonance, when periodic external forces with a frequency of natural
vibrations or close to it appear.

3. Transverse Vibrations

Consider the energy features of transverse vibrations in accordance with the equations:

x(αp, t) = α, y(αp, t) = β+ v(α, t), z(αp, t) = γ, (13)

where v(α, t)—moves in the direction of the y-axis. We start counting the time when there
is no deformation v(α, t) = 0 and the Lagrangian coordinates coincide with the initial ones.
The vibrations, allowed by the law of energy conservation, must correspond to Equation (9),
which is converted to the form
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ytt(α, t) = (2κ/ρ0)yαα. (14)

This equation under the initial condition, αi = xi(αp, t = 0), and boundary conditions
for displacements, v(α = 0, t) = 0, v(α = L, t) = 0, is fulfilled by the function

y(α, t) = β+ q sin(πα/L) sin(ω0t) (15)

with derivatives

yαα(α, t) = −q
(π

L

)2
sin
(

π
α

L

)
sin(ω0t), ytt(α, t) = −qω2 sin

(
π
α

L

)
sin(ω0t), (16)

where q is the maximum displacement of particles along the y axis in the cross section
α = L/2. Natural frequency,

ω0 = (π/L)
√

2κ/ρ0, (17)

considers the properties of the material and the size of the sample. Velocities of particles

yt(α, t) = vt(α, t) = qω0 sin(πα/L) cos(ω0t) (18)

at the ends of the rod are equal to 0, at t = πn
ω0

they are maximal in each of the sections along
its entire length. The tensor corresponds to the system (13) considering Equation (15):

xi,p =

 1 0 0
qπ/L cos(πα/L) sin(ω0t) 1 0

0 0 1

.

The deformation is carried out due to shifts, ∂y/∂α ≡ yα, and the quadratic invariant
of the tensor determines the increment of the local energy of elastic deformation of the
particles (11),

δEdef = κ(Γ2
e − 3)δV0 = κδV0(πq/L)2 cos2(πα/L) sin2(ω0t). (19)

The energy for deformation in the volume of the rod is

Edef =
1
2

κV0(πq/L)2 sin2(ω0t). (20)

For kinetic energy with velocity (18) one finds

δEkin =
1
2
ρ0v2

t δV0 =
1
2
δV0ρ0[qω0 sin(πα/L) cos(ω0t)]2. (21)

After integration by volume, one gets

Ekin =
L
4

S0ρ0q2ω2
0 cos2(ω0t) = 0.5V0κ(πq/L)2 cos2(ω0t). (22)

Total kinetic energy and strain energy in the volume of the oscillating rod,

Esum = Edef + Ekin = S0κ
π2q2

2L

[
sin2(ω0t) + cos2(ω0t)

]
=

1
2

V0κ
(πq

L

)2
= const, (23)

coincides with the kinetic energy (22) available in the system at the moment t = 0 and does
not change in time, which indicates compliance with the law of conservation of energy, if
there is no energy transfer to the fixed walls at the contacts with the ends of the sample or
to the environment from the outer surface of the rod.
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Condition (23) corresponds to proper transverse vibrations in an elastic rod without
energy consumption from external forces and without changing the volume of particles:

R = δV/δV0 =

∣∣∣∣∣∣
1 0 0

yα 1 0
0 0 1

∣∣∣∣∣∣ = 1.

At the end of the cycle (t = T = 2π
ω0

), the system returns to its initial state, the elastic
energy is absent, and the kinetic energy (22) takes the maximum possible value.

To find out the energy features of the resonance, we consider vibrations with a driving
force [1–3]:

F = F0 sin(ωt), (24)

acting in the central section along the length α = L/2 with an amplitude F0 and a circular
frequencyω, which does not necessarily coincide withω0. The force F0 can be determined
from the integral law of conservation of energy in the form of equality of the power of the
external force and the rate of change of kinetic and elastic energy in the volume of the rod.

Considering the velocity yt in the cross section α = L/2, where the force (24) is applied,
one obtains the power

Wext = Fyt|α=L/2 = F0qω sin(ωt) cos(ωt). (25)

The energy transferred to the system is converted into elastic (19) and kinetic (21)
energies of particles, which characterize the specific powers δWkin and δWdef:

δWkin = dδEkin/dt = 0.5ρ0δV0dy2
t /dt = 2κδV0ytytt/λ2

0,δWdef = dδEdef/dt = κδV0dy2
α/dt = 2κδV0yαytα. (26)

In the expression for the rate of change of the kinetic energy of the particle, δWkin, the
material constant is used λ2

0 = 2κ/ρ0, which determines the circular frequency (17). The
ratio η = ω/ω0 characterizes both the kinematic features of vibrations (ω) and the physical
properties of the material (ω0). Considering the derivatives (16) and (18) of the function (15)
in time and Lagrange variables at the force frequencyω, the local powers of the kinetic, δWkin,
and elastic, δWdef, particle energy are determined by the following equations,

δWkin
2κδV0

= −ω(qπη/L)2 sin2(πα/L) sin(ωt) cos(ωt),

δWdef
2κδV0

= ω(qπ/L)2 cos2(πα/L) sin(ωt) cos(ωt).

The total power integral in the rod volume at any given time then is

Ws

2κV0
=

Wdef
2κV0

+
Wkin
2κV0

= 0.5ω(qπ/L)2(1− η2) sin(ωt) cos(ωt). (27)

Note that when describing the motion in the Lagrange form, it is not necessary to
monitor the change in the contour of an elastic body during the oscillation, since for a
Lagrangian coordinate system, it coincides with the original configuration and does not
change in time.

Equating the powers of external (25) and internal (27) forces, one finds the force F0
corresponding to the vibrations with the frequency and amplitude considered:

F0 = κV0q(1− η2)(π/L)2. (28)
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Depending on the frequency ratio, the force F0 can be positive (ω < ω0), negative
(ω > ω0), and zero (ω = ω0). The positive force, as follows from Equation (25), supplies
energy to the rod in the first and third quarters of the cycle when the kinetic energy is
converted into the elastic deformation of the particles. In the other two quarters, the power
will be negative, and the energy of the elastic deformation of the particles is converted into
kinetic energy and transmitted to an external source. A negative force F0 occurs when the
circular frequency of the periodic external force exceeds the natural frequency of the system.
Then, in the first and third quarters of the cycle, the power is negative, and the kinetic
energy is spent on the deformation of the particles and transferred to an external source.

Equations (24) and (25)–(27) correspond to forced vibrations in an elastic rod with a
period T = 2π/ω under the action of an exciting force (28). After the cycle is completed,
the system returns to its original state and, if the force (24) continues to operate, the
cycle repeats.

If the external force ceases after the next cycle, regardless of the frequency ratio, in the
system remains the kinetic energy of the particles,

δEkin

∣∣∣∣ t = T
= 0.5ρ0v2

t δV0 = 0.5δV0ρ0[qω sin(πα/L)]2 = κδV0(πηq/L)2 sin2(πα/L),

which will lead to continued fluctuations. The frequency and amplitude may vary,
but Equations (26) and (27) remain valid.

It follows from Equation (27) that if the frequency of the external force is less than
ω < ω0, then the positive power Ws > 0 in the first quarter of the cycle will increase the
actual frequencyω. Similarly, whenω > ω0, the negative power of Ws < 0 will reduce the
actual frequency. Only in the case that ω = ω0, the volume integral power is equal to 0
over the entire cycle the sum of kinetic and elastic energy in the system remains unchanged,
which corresponds to the definition of free vibrations that can continue without energy
input from external sources [1–5].

From the point of view of resonance, the case is interesting when a cyclic force (24)
acts creating a forced oscillation with a frequency of natural vibrationsω = ω0 or close to
it. Then the two waves will interact, forming a new wave.

In accordance with the superposition principle [9], to obtain the equations of joint
motion it is sufficient to replace the Lagrange variables of external (superimposed) motion
with expressions for the corresponding Euler variables of internal (nested) motion. In our
case, the equations for natural and forced oscillations may differ in the circular frequency
ω and the amplitude q, but they are equivalent in their effect on the resulting oscillation.
Any of them can be considered external or internal.

We choose the amplitude of natural oscillations by the lower index q0:

x(αp, t) = α, y(α, t) = β+ q0 sin(πα/L) sin(ω0t), z(αp, t) = γ. (29)

For a forced oscillation considering the resonance, we use the equation

x(αp, t) = α, y(α, t) = β+ q1 sin(πα/L) sin(ω0t), z(αp, t) = γ. (30)

Replacing the variable β in Equation (29) with the right-hand side of Equation (30),
for joint motion one obtains:

x(αp, t) = α, y(α, t) = β+ (q0 + q1) sin(πα/L) sin(ω0t), z(αp, t) = γ. (31)
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If the frequencies of external and natural oscillations on the new cycle are equal, the
amplitude will be equal to the sum of the amplitudes of forced (on the current cycle) and
natural (on the previous cycle) oscillations of the system. To clarify the question of the
energy possibility of such oscillations, it is necessary to additionally determine the kinetic
and elastic energies using derivatives of Equation (31),

yt = (q0 + q1)ω0 sin(πα/L) cos(ω0t), yα = (q0 + q1)(π/L) cos(πα/L) sin(ω0t).

The integral values are equal to

Edef = 0.5κV0(q0 + q1)
2(π/L)2 sin2(ω0t), Ekin = 0.5κV0(q0 + q1)

2(πη/L)2 cos2(ω0t).

Only these equations, by analogy with Equations (20) and (22), can ensure the con-
tinuation of oscillations with the fulfillment of the law of conservation of energy for the
system as a whole:

Edef + Ekin = 0.5κV0(q0 + q1)
2(π/L)2 = const. (32)

As a result, one gets a new free oscillation with an increased amplitude which can
interact with a new cycle of forced oscillation. An increase in the amplitude of free
vibrations due to interaction with forced vibrations with the frequency of natural vibrations,
or close to it, is the basis of resonance [15]. Equation (32) can be considered the energy
justification of the resonance. The kinetic and elastic energies in the body volume increase
in proportion to the square of the new amplitude due to internal sources determined by
the elastic modulus of the material.

The superposition principle, which is successfully used in various problems for abso-
lutely solid and deformable bodies [9,14], and the new model of mechanics with a single
elastic modulus (8), confirm the kinematic and energy possibility of joint motion (31) in
compliance with the law of conservation of energy. At equal amplitudes q0 = q1, all energy
characteristics of the combined oscillation increase by four times in relation to the initial
free oscillation.

To identify the role of internal energy sources, we pay attention to the kinematic
parameters of the energy invariants (11), which depend on the relative average length e
and standard deviations es. For each particle, one can point out four specific fractions of
the dimensionless bulk energy density:

ee = ee1 + ee2 = 1
3
(πq

L
)2 cos2(πα

L
)

sin2(ω0t) + 4
3

{[
1 +

(πq
L
)2 cos2(πα

L
)

sin2(ω0t)
]1/2
− 1
}

,

es = es1 + es2 = 2
3
(πq

L
)2 cos2(πα

L
)

sin2(ω0t)− 4
3

{[
1 +

(πq
L
)2 cos2(πα

L
)

sin2(ω0t)
]1/2
− 1
}

,

edef = ee + es =
(πq

L
)2 cos2(πα

L
)

sin2(ω0t).

(33)

These equations carry objective information, including that about the energy sources
that are not related to external forces and are not converted into kinetic energy of particles.
The most informative are the relative measures with respect to the kinematic parameter of
the total elastic energy (19) of a particle. Considering the first two terms of the function
expansion in a series

√
1 + x = 1 + 1/2x− 1/8x2 + . . ., these relations remain the same for

all particles at any given time:
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ee1

edef
+

ee2

edef
=

1
3
+

2
3

,
es1

edef
+

es2

edef
=

2
3
− 2

3
,

where the energy fractions ee1 = 1/3edef and es1 = 2/3edef change synchronously and
participate in the transformation of elastic energy into kinetic energy. The amount,

edef = ee + es = ee1 + es1 =
(πq

L

)2
cos2

(πα

L

)
sin2(ω0t),

ensures the implementation of the law of energy conservation in the volume of the rod
with an integral significance (20) and a phase shift of π/2 with respect to the change in the
kinetic energy (22) of particles.

The energy shares of ee2 and es2 vary in opposite phases, and the sum of these shares
is always 0, although each of them is comparable to the total energy of edef. In other words,
the energy ee2, determined by the change in the average length of the edges of the particle
in the form of an infinitesimal parallelepiped, passes into the energy es2, which is associated
with the standard deviation of the relative lengths of the edges of the particle from their
average value, and vice versa. Such deformations do not change the energy state of the
particle and the body as a whole. The addition of velocities in accordance with the principle
of superposition of motions (31) provides the necessary kinetic energy for the deformation
of particles during the cycle and the fulfillment of the law of conservation of energy for the
system as a whole when taking into account external forces.

Further development of oscillation can occur in one of the following ways:

(1) the appearance of a new oscillation with an amplitude depending on the frequency ratio,

y(α, t) = β+ [q0 sin(ω0t) + qn sin(ωt)] sin(πα/L),

if, after the formation of free vibrations, the external force (24) begins to act again with
a frequency ω significantly different from ω0. The influence of the free wave will
decrease and forced oscillations (30) with the frequency of force (24) will continue,
which require power (25);

(2) continuation of free oscillations with an increase in the amplitude q0 + q1 + . . . + qi
after the next superposition if the frequency of forced oscillations is close to its own
and there is no energy exchange with the external environment;

(3) decrease in the amplitude if the resonant system is used as an accumulator; energy
stored in the system energy will go into the environment, including if due to displace-
ment were considered the stationary supporting walls of a perfectly rigid body, in
which is fixed the elastic rod;

(4) the most dangerous is the continuation of vibrations in the conditions of resonance
with the achievement and subsequent exceeding of the limit values of the stresses
acting in the system, and the occurrence of irreversible deformations or destruction of
the system.

4. Torsional Vibrations

During torsional vibrations, circumferential and radial movements of particles can
occur. In this regard, under the condition of plane deformation in the Cartesian coordinate
system, two of the three equation in the system (10) must be considered:

yαα + yββ + yγγ = µ2ytt, zαα + zββ + zγγ = µ2ztt. (34)

As soon as one ignores the change of the radial coordinate and accepts the ratios

x = α, y = β cos ∆ψ− γ sin ∆ψ, z = β sin ∆ψ+ γ cos ∆ψ, (35)
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where ψ is the angle of rotation of the section relative to the x axis, system (34) takes the form,

− yψ2
α − zψαα = −µ2yψ2

t − µ2zψtt,

− zψ2
α + yψαα = −µ2zψ2

t + µ
2yψtt.

Squaring and summing the left and right parts, one obtains equation for the function
ψ(α, t),

ψ4
α +ψ2

αα = µ4ψ4
t + µ

4ψ2
tt.

The solution ψ(α, t) = C sin(α± qt) turns this equation into an identity, but it does
not agree with the initial and boundary conditions

ψ(α, t = 0) = θ sin(πα/L), ψ(α = L/2, t = 0) = θ, ψt(α, t = 0) = 0,
ψ(α = 0, t) = 0, ψ(α = L, t) = 0.

(36)

If ψ4
α = µ4ψ4

t is accepted, then for the function ψ = ψ(α, t) one obtains an equation
similar to Equation (14) for transverse vibrations:

ψ2
αα − µ4ψ2

tt = 0 (37)

with a solution
∆ψ(α, t) = θ sin(πα/L) sin(ω0t), (38)

ω0 = (π/L)
√

2κ/ρ0, (39)

whereω0 is the frequency of natural vibrations and θ is the angle of rotation of the rod in
the cross section with the coordinate α = L/2 at t = π/(2ω0). In this case, system (35) as
well as the boundary and initial conditions (36) are fulfilled.

Time and direction derivatives,

ψt(α, t) = θω0 sin(πα/L) cos(ω0t), ψtt(α, t) = −θω2
0 sin(πα/L) sin(ω0t),

ψα(α, t) = θπ/L cos(πα/L) sin(ω0t), ψαα(α, t) = −θ(π/L)2 sin(πα/L) sin(ω0t),

ψαt(α, t) = θω0π/L cos(πα/L) cos(ω0t),

determine the kinematic, deformation, and energy characteristics of the particles and the
body as a whole. Note that the obtained solution satisfies not only the system (10), but also
the more general Equation (9):

yt(yαα + yββ + yγγ − µ2ytt) + zt(zαα + zββ + zγγ − µ2ztt) = 0.

In the latter case, only the simplified condition (37) must be satisfied.
This can be considered as an additional argument about the acceptability of the

obtained solution for analyzing the energy features of free torsional vibrations.
Considering the components of the tensor (2),

xi,p =

 1 0 0
−ψαz cos ∆ψ − sin ∆ψ
ψαy sin ∆ψ cos ∆ψ

,

one finds the value of the quadratic invariant, the specific energy of elastic deformation,
and the kinetic energy of particles:
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Γ2
e = l2

α + l2
β + l2

γ = 3 + y2
α + z2

α = 3 +ψ2
αr2,

δEdef = κδV0ψ
2
αr2 = κδV0π2θ2(r/L)2 cos2(πα/L) sin2(ω0t),

δEkin = κµ2δV0ψ
2
t r2 = κδV0θ

2π2(r/L)2 sin2(πα/L) cos2(ω0t),

which depend on the particle radius, r. Volume integral energy values,

Edef = κV0π2θ2 R2

4L2 sin2(ω0t), Ekin = κV0θ
2π2 R2

4L2 cos2(ω0t),

in sum, correspond to the law of conservation of energy in the volume of the oscillating
rod and coincide with the work of external forces transmitted to the body at the time of the
beginning of vibrations, which corresponds to the concept of natural vibrations

Esum = Edef + Ekin = κV0θ
2π2 R2

4L2 = const. (40)

In accordance with Equations (35) and (38), similar to the case of transverse vibrations,
the elastic deformation is carried out due to shifts, while the volume of material particles
and the density of the material remain unchanged, regardless of the magnitude of the
rotation angle ψ:

R = δV/δV0 =

∣∣∣∣∣∣
xα xβ xγ
yα yβ yγ
zα zβ zγ

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1 0 0
−ψαz cos ∆ψ − sin ∆ψ
ψαy sin ∆ψ cos ∆ψ

∣∣∣∣∣∣ = 1.

The cause of forced torsional vibrations may be the moment

M = M0 sin(ωt) (41)

with an amplitude M0 that acts in a cross section with the coordinate α = L/2 with a
frequencyω that does not necessarily coincide with the properω0.

Considering system (35), Equation (38) and angular velocity ψt|α=L/2 = θω cos(ωt),
the moment (41) produces the power,

Wext = Mψt|α=L/2 = M0θω sin(ωt) cos(ωt), (42)

converted into elastic and kinetic energies of particles, for the rate of change of which
(taking into account δWi = dδEi/dt) the following equations are valid:

δWdef
2κδV0

= ψαψαtr
2 = π2θ2

0ω(r/L)2 cos2(πα/L) sin(ωt) cos(ωt),

δWkin
2κδV0

=
1

λ2
0
ψtψttr

2 = −θ2
0π2η2ω(r/L)2 sin2(πα/L) sin(ωt) cos(ωt).

As in the case of transverse vibrations, the kinetic energy of particles depends on the
density of the material, ρ0, so it contains a multiplier η = ω/ω0, which characterizes the
ratio of the frequencies of forced and natural vibrations.

Integrating the powers over the volume:

Wdef = 0.5κV0π2θ2(R/L)2ω sin(ωt) cos(ωt), (43)

Wkin = −0.5κV0θ
2π2η2(R/L)2ω sin(ωt)cos(ωt), (44)
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and using the energy identity that includes the external moment (42), as well as the internal
forces (43) and (44), one finds the moment,

M0 = 0.5κV0θπ2(R/L)2(1− η2). (45)

The system (35) under the action of a moment (41) with an amplitude (45) corresponds
to forced harmonic oscillations with a circular frequency of the external moment ω. If the
external moment (41) ceases to act, for example, after the completion of the next cycle, the
kinetic energy of the particles remains in the system, which causes its own vibrations.

Sum of capacities (43) and (44),

Wdef + Wkin = 0.5κV0θ
2
0π2(R/L)2(1− η2)ω sin(ωt) cos(ωt), (46)

in the absence of external influence characterizes the possible transitions of elastic energy
to kinetic energy, and vice versa. Stationary mode occurs when ω/ω0 = 1. If the actual
frequency of vibrations is lower than the proper ω0 determined by the elastic properties of
the material (39), the positive power will lead to its increase by one and three quarters of
cycles. Otherwise, the oscillation frequency will decrease, and the mode will correspond to
its own oscillations. Equation (46) can be considered as a mechanism for converting forced
oscillations into proper ones after the external influence ceases.

This feature is confirmed by the analysis of the total elastic and kinetic energy in the
rod volume, which depends on the frequency ratio,

Edef + Ekin = κV0θ
2π2 R2

4L2

[
sin2(ωt) + η2 cos2(ωt)

]
,

and only if they are equal (η = 1), remains constant, as follows from the definition of the
system’s natural oscillations [1–5].

Resonance is possible if the free vibrations are superimposed, forced with a circular
frequency of natural vibrationsω0. Let us use the equations for natural oscillations

x = α, y = β cos ∆ψ0 − γ sin ∆ψ0, z = β sin ∆ψ0 + γ cos ∆ψ0, (47)

and forced fluctuations

x = α, y = β cos ∆ψ1 − γ sin ∆ψ1, z = β sin ∆ψ1 + γ cos ∆ψ1, (48)

where ∆ψ0 and ∆ψ1 are the angles of rotation of the sections in free and forced oscillations,

∆ψ0 = θ0 sin(πα/L) sin(ω0t), ∆ψ1 = θ1 sin(πα/L) sin(ω0t).

Using the general rule of superposition of motions [9], the Lagrange variables in the
equations for forced oscillations (48) are replaced with expressions for the corresponding
Euler variables of natural oscillations (47):

y = β cos ∆ψ1 − γ sin ∆ψ1 = (β cos ∆ψ0 − γ sin ∆ψ0) cos ∆ψ1 − (β sin ∆ψ0+
+γ cos ∆ψ0) sin ∆ψ1 = β cos(∆ψ0 + ∆ψ1)− γ sin(∆ψ0 + ∆ψ1)

As a result, one obtains a system of type of system (35), in which the angle of rotation
in the joint oscillation, instead of Equation (38), is equal to the sum of the angles of rotation
of the forced and free oscillations:

∆ψ = (θ0 + θ1) sin(πα/L) sin(ω0t). (49)
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The rationale for the energy feasibility of joint oscillations in accordance with Equa-
tions (35) and (49) differs only slightly from the one given for transverse oscillations. In
accordance with Equations (35) and (49), particles of the rod with volume δV0, density ρ0,
and elastic modulus κ rotate relative to the x-axis with angular velocities

ψt(α, t) = (θ0 + θ1)ω0 sin(πα/L) cos(ω0t),

and due to this, the system acquires kinetic energy,

Ekin =
1
4
κV0(πR/L)2(θ0 + θ1)

2 cos2(ω0t). (50)

Elastic energy for system (35) with tensor (2),

xi,p =

 1 0 0
−ψαz cos ∆ψ − sin ∆ψ
ψαy sin ∆ψ cos ∆ψ

,

considering the invariant (11), is equal to

edef = ee + es = ψ2
αr2 = (θ0 + θ1)

2π2(r/L)2 cos2(πα/L) sin2(ω0t).

The elastic energy in the volume of the rod is:

Edef =
1
4

κV0(πR/L)2(θ0 + θ1)
2 sin2(ω0t). (51)

Equations (46), (50), and (51) correspond to harmonic oscillations (34) with changes in
angles (49). Kinetic and elastic energies provide a constant value of their sum at any moment:

Ekin + Edef = 0.25κV0π2(θ0 + θ1)
2(R/L)2 = const. (52)

Resonance from the point of view of the law of conservation of energy is possible and
allows for a significant increase in the amplitude of the new phase of free oscillation and
the energy parameters associated with the amplitude at the expense of internal forces [15].

The structure of the local kinematic parameters of the volumetric energy density (11),
which depend on the mean value e and the standard deviation es,

e = 2/3 +
√

1 +ψ2
αr2/3, ee = 3(e2 − 1) = 1

3ψ
2
αr2 + 4

3

(√
1 +ψ2

αr2 − 1
)
= ee1 + ee2,

es =
2
3ψ

2
αr2 + 4

3

(
1−

√
1 +ψ2

αr2
)
= es1 + es2,

(53)

and are the same as for transverse vibrations. Considering the series expansion of the
function with a square root, one gets:

ee

edef
=
ψ2
αr2

ψ2
αr2

= 1,
ee1

edef
=

(1/3)ψ2
αr2

ψ2
αr2

=
1
3

,
ee2

edef
=

(2/3)ψ2
αr2

ψ2
αr2

=
2
3

,

es

edef
=

2
3
− 2

3
= 0,

es1

edef
=

2
3
ψ2
αr2

ψ2
αr2

=
2
3

,
es2

edef
=

(4/3)(−ψ2
αr2/2)

ψ2
αr2

= −2
3

.
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As in the case of transverse vibrations, the energy fractions ee1 and es1 change syn-
chronously and in total provide the elastic energy necessary to fulfill the integral conser-
vation law, which is converted into kinetic energy. The components ee2 and es2 are two
times larger than ee1, but do not participate in such transformations and determine the
energy consumption only for changing the shape of particles, associated with changes
in the length of the edges of particles ee and their standard deviation from the mean es
according to the Equation (11). Changes occur with the same frequency but in opposite
phases, and energy costs are compensated by the opposite type of deformation.

The analysis shows that part of the energy involved in free and combined vibrations
is not associated with the energy coming from external sources, and it is not converted into
kinetic energy, but rather is an integral element of resonant phenomena.

5. Longitudinal Vibrations

Using the method of the previous sections, let us consider the longitudinal oscillations
with the equations

x(α, t) = α+ p sin(πα/L) sin(ωt), y = β, z = γ. (54)

The Lagrange variables αp coincide with the initial xp at t = 0. As in the previous
sections, the equations in the system (54) correspond to a coordinate system whose origin
is aligned with the left fixed end of the elastic rod, while the x-axis is directed along the
axis of the rod with length L and cross section S0.

Equation (54) with derivatives

xα(α, t) = 1 + pπ/L cos(πα/L) sin(ωt), xtα(α, t) = pπω/L cos(πα/L) cos(ωt),
xt = pω sin(πα/L) cos(ωt), xtt = −pω2 sin(πα/L) sin(ωt)

(55)

satisfy the condition (9) as well as the boundary and initial conditions

x(α = 0, t) = 0, x(α = L, t) = L, xt(α = 0, t) = xt(α = L, t) = 0, xi(αp, t = 0) = αp (56)

with natural frequency
ω0 = π/(µL). (57)

Longitudinal vibrations differ from transverse and torsional by deformations of ten-
sion and compression, which are determined by the derivative ∂x/∂α ≡ xα:

xi,p =

 xα xβ xγ
yα yβ yγ
zα zβ zγ

 =

 1 + πp/L cos(πα/L) sin(ω0t) 0 0
0 1 0
0 0 1

. (58)

The kinematic parameter of the elastic strain energy (11) for longitudinal vibrations
contains two terms, and, due to the smallness of the p/L ratio, the first term may be several
orders of magnitude larger than the second term

edef = 2(πp/L) cos(πα/L) sin(ω0t) + (πp/L)2 cos2(πα/L) sin2(ω0t), (59)

but the volume integral value of Edef coincides in form with (20) for transverse vibrations

Edef =
∫
V0

κ(Γ2
e − 3)δV0 = 0.5κV0(πp/L)2 sin2(ω0t). (60)
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Kinetic energy of particles considering Equation (55),

δEkin = 0.5ρ0x2
t δV0 = κδV0(πp/L)2 sin2(πα/L) cos2(ω0t), (61)

for the entire volume of the rod is

Ekin =
L
4

S0ρ0
π2 p2

L2 cos2(ω0t) = V0κ
π2 p2

2L2 cos2(ω0t). (62)

In each section, the rate of change of elastic and kinetic energy changes in accordance
with Equations (59) and (61), but for the entire volume of the rod, the sum of the energies,

Edef + Ekin = V0κ
π2 p2

2L2 = const, (63)

remains constant, coincides with the one in the system (62) at t = 0, and does not change in
time, which indicates that free oscillations continue.

The occurrence of resonance should be facilitated by a periodic force acting in the
central section along the length α = L/2 with a frequency ω that does not necessarily
coincide with Equation (57):

F = F0 sin(ωt), (64)

which produces the power

Wext = Fxt|α=L/2 = F0 pω sin(ωt) cos(ωt), (65)

which is spent on elastic deformation and kinetic energies of particles,

δWkin = ρ0δV0xtxtt, δWdef = κδV0(edef)t = κδV0(x2
α − 1)t = 2κδV0xαxtα,

where κ is the elastic modulus.
Considering Equation (57), η = ω/ω0, and derivatives (55), one obtains:

δWkin
2κδV0

= −ω(πpη/L)2 sin2(πα/L) sin(ωt) cos(ωt).

The local power of elastic deformation, in comparison with Equation (19), has a
summand with the first degree of amplitude

δWdef
2κδV0

= xαxtα = pωπ/L cos(πα/L) cos(ωt) + (πp/L)2
ω cos2(πα/L) sin(ωt) cos(ωt).

The total power of elastic and kinetic energies also differs from Equation (19) by an
additional term

δWdef
2κδV0

+ δWkin
2κδV0

= pπω/L cos(πα/L) cos(ωt)+
+(πp/L)2

ω sin(ωt) cos(ωt)
{

cos2(πα/L)− η2 sin2(πα/L)
}

but this does not affect the integral power value for the rod volume

Wdef
2κV0

+
Wkin
2κV0

=
1
4
(πp/L)2

ω(1− η2) sin(2ωt). (66)
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From the equality of powers (65) and (66), we find the modulus of force in Equation (64),

F0 = κV0 p(1− η2)(π/L)2, (67)

which provides energy to the forced vibrations of the body.
At the end of each cycle (t = T = 2π/ω), there is no deformation over the entire volume

of the rod, and only the kinetic energy of the particles is preserved at its maximum value in
the volume of the rod,

Ekin = 0.5V0κ(πpη/L)2. (68)

The system (54) under the action of force (67) performs harmonic forced oscillations
with a period T = 2π/ω of the exciting force. If the external force ceases to act, the kinetic
energy (68) of the particles remains, which causes the vibrations to continue. As in the
case of transverse vibrations, in accordance with Equation (66), due to the excess energy
appearing at ω < ω0 (or the lack of energy at ω > ω0), the system will bring the actual
frequency closer to its own. Only when ω = ω0 (η = 1) is the sum of kinetic and elastic
energy in the system unchanged, which corresponds to the definition of free vibrations.

In what follows, the resonance is considered as an overlap of two independent oscilla-
tions and the kinematics (by fulfilling the boundary conditions) and energy (by fulfilling
the law of conservation of energy for the system as a whole and taking into account external
forces) implementation is checked.

For free oscillations, equations of the type of Equation (54) are used which are distin-
guished by the notation of the amplitude

x(α, t) = α+ p0 sin(πα/L) sin(ω0t), y = β, z = γ. (69)

For forced oscillations with a frequency of naturalω0, the amplitude p1 is denoted

x(α, t) = α+ p1 sin(πα/L) sin(ω0t), y = β, z = γ. (70)

Similar to the case of transverse and torsional vibrations, when using the superposition
principle [9], any movement can be taken as internal and another as external. For example,
replacing the Lagrange variables in Equation (70) with expressions for the corresponding
Euler variables from Equation (69), one obtains

x(α, t) = α+ p0 sin
(

π
α

L

)
sin(ω0t) + p1 sin

{π

L

[
α+ p0 sin

(
π
α

L

)
sin(ω0t)

]}
sin(ω0t).

Considering the smallness of the p/L << 1 ratio, it can be argued that the amplitude of
the joint oscillation is equal to the sum of the amplitudes of the internal free and external
forced oscillations,

x(α, t) = α+ (p0 + p1) sin(πα/L) sin(ω0t). (71)

This result also confirms the traditional approach to determining joint movements
by adding velocities [3,9]. Note that the boundary conditions (56) for the system (71) are
fulfilled, as well as for the joint oscillations (69) and (70).

The superposition of vibrations leads to the kinetic energy of particles in joint motion,

δEkin =
1
2
ρ0x2

t δV0 = κδV0(p0 + p1)
2
(π

L

)2
sin2

(πα

L

)
cos2(ω0t).
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For the volume of the rod, the energy is

Ekin =
1
2

κV0(p0 + p1)
2(π/L)2 cos2(ω0t). (72)

The kinematic parameter (11) of the strain energy,

edef = 2(p0 + p1)
(π

L

)
cos
(

π
α

L

)
sin(ω0t) + (p0 + p1)

2
(π

L

)2
cos2

(
π
α

L

)
sin2(ω0t),

allows us to determine the elastic energy for the body as a whole:

Edef = κ
∫

edefδV0 = 0.5κ(p0 + p1)
2V0(π/L)2 sin2(ω0t). (73)

Two types (72) and (73) of energy change with the same frequency and phase shift
by π/2, what ensures that the summed energy is constant and that the law of energy
conservation for the rod as a whole is fulfilled:

Ekin + Edef = 0, 5κ(p0 + p1)
2V0(π/L)2 = const. (74)

Additional energy from external sources is not required to continue the oscillations
determined by the superposition principle. Equation (74) confirms the possibility of
resonance when using the method of converting the deformed state determined by the
equations of motion into elastic energy according to Equation (73) [15]. It shows the
possibility of continuing vibrations without violating the law of conservation and energy
inflow from outside if the frequency of forced vibrations coincides with the frequency of
their own or close to it. After the completion of each cycle, the amplitude of the joint free
oscillation increases by the magnitude of the amplitude of the imposed forced oscillation,
with an increase in the energy parameters of the system in accordance with the change
in the derivatives (55) due to the internal energy, determined by the elastic modulus of
the material.

To identify the role of internal energy sources, let us consider, as done in previous
sections, the kinematic parameters of elastic energy (11) for the equations of motion (54),

edef = 2(πp/L) cos(πα/L) sin(ω0t) + (πp/L)2 cos2(πα/L) sin2(ω0t).

The presence of the two terms in Equation (59) does not allow us to switch to relative
fractions, as this was done for transverse oscillations, so only the actual relative fractions
are given as follows:

ee = 2(πp/L) cos(πα/L) sin(ω0t) + (1/3)[(πp/L) cos(πα/L) sin(ω0t)]2,

ee1 = 1
3
(πp

L
)2 cos2(παL ) sin2(ωt), ee2 = 2πp

L cos
(
παL
)

sin(ωt),

es = es1 = 2
3
(πp

L
)2 cos2(παL ) sin2(ωt), es2 = 0.

(75)

The frequency of changes in the elastic energy fractions ee1 and es1 is consistent with
the frequency of changes in kinetic energy (61) and differs in phase by π/2, which ensures
that their sum (63) is equal throughout the cycle, and which is necessary to fulfill the law
of energy conservation for the body, considering external forces.

Since the volume-integral fraction of ee2 is 0, it cannot participate in the implementation
of the energy conservation law for the system as a whole. The energy, associated with the
kinematic parameter ee, corresponds to deformations in the system due to internal sources,
in particular, a decrease and increase in the volume (3) of particles in various parts of the
system without changing the total volume. In this case, the ratio
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ee2

ee1
=

6
(πp/L) cos(πα/L) sin(ωt)

=
6

δV/δV0 − 1

can reach large values, especially when the ratio of the amplitude to the length of the rod
p/L is small.

Thus, during longitudinal vibrations, most of the energy for the deformation of
particles comes from internal sources, and only a small part (ee1 and es1), converted to
kinetic energy (61), is associated with the energy acquired from outside and participates in
the implementation of the energy conservation law for an elastic body as a whole.

For comparison, the equations for joint longitudinal vibrations is presented when the
frequency of the forced oscillation does not coincide with the frequency of its own. Then,
instead of Equation (70) we should use the system (54), and as a result of the superposition,
one gets:

x(α, t) = α+ p0 sin
(

π
α

L

)
sin(ω0t) + p1 sin

{π

L

[
α+ p0 sin

(
π
α

L

)
sin(ω0t)

]}
sin(ωt).

Even in the region of small ratios p/L << 1 system,

x(α, t) = α+ [p0 sin(ω0t) + p1 sin(ωt)] sin(πα/L), y = β, z = γ,

describes vibrations with a time-varying amplitude that depends on the ratio of am-
plitudes and the frequencies of joint vibrations. The equations for local and integral kinetic
and elastic energies will have a more complex form in comparison with Equations (60)–(63),
which do not provide for the occurrence of resonance.

The main condition for resonance is the equality of the frequencies of the joint move-
ments, where it is possible with a superposition of various types of vibrations, such as
longitudinal (69) and transverse (14) ones. As a result, one gets the equations of motion,

x = α+ p sin(πα/L) sin(ωt), y = β+ q sin(πα/L) sin(ωt), z(γ, t) = γ (76)

with the tensor (2),

xi,p =

 xα xβ xγ
yα yβ yγ
zα zβ zγ

 =

 1 + πp/L cos(πα/L) sin(ωt) 0 0
πq/L cos(πα/L) sin(ωt) 1 0

0 0 1

.

The system satisfies differential Equation (10) as well as initial and boundary condi-
tions of type of Equation (56) for each of the considered and joint oscillations. In this case,
added are the algebraically local,

edef = Γ2
e − 3 = e′def + e′′ def =

= 2 πp
L cos

(
πα
L
)

sin(ω0t) +
[πp

L cos
(

πα
L
)

sin(ω0t)
]2

+
[πq

L cos
(

πα
L
)

sin(ω0t)
]2

ekin = 0.5ρ0v2 = 0.5ρ0(x2
t + y2

t ) = e′kin + e′′ kin,

and integral energy characteristics (at the frequency of natural),

Edef = E′def + E′′ def =
1
2

κV0

{[πp
L

sin(ω0t)
]2

+
[πq

L
sin(ω0t)

]2
}

,

Ekin = V0κ
π2 p2

2L2 cos2(ω0t) + V0κ
π2q2

2L2 cos2(ω0t),

and for the energy implementation of the movement (76), no additional energy is required.
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6. Discussion and Conclusions

To analyze the features of the transformation of kinetic and elastic energy in oscillating
bodies, a new concept of mechanics based on the concepts of space, time, and energy, with
one modulus of elasticity (8) and a new scale of average stresses which takes into account
the energy of particles in the initial state, is used. In this model, the elastic deformation of
particles is determined by the quadratic invariant of the tensor (2), whose components are
partial derivatives of Euler variables with respect to Lagrange variables of the equations of
motion (1). The increment of the invariant due to elastic deformation can be represented as
the sum of two invariants ee and es (11), one of which depends on the average value of the
relative lengths of the edges of the particles in the form of an infinitesimal parallelepiped,
while the second is equal to the standard deviation of these lengths from the average
value. Equation (12) allows for the spontaneous development of deformations without the
participation of external forces if the sum (ee + es) remains unchanged. In classical solid
mechanics, such a possibility is interpreted as the transition of the energy of shape change
into the energy of volume change, or vice versa.

The features of the phase changes of these invariants during the considered oscillations
do not coincide with the corresponding changes in the kinetic energy of the particles.
Therefore, there must be other participants in the energy conversion process that play
an important role in the oscillations, and which must be considered in the right part of
Equation (12). They can be identified by subtracting from the ee and es in Equation (11)
the terms ee1 and es1 corresponding to the frequency characteristics of the change in the
kinetic energy of the particles for the corresponding process. In particular, for transverse
oscillations (13), taking into account Equations (21) and (33), one obtains:

ee2 = ee − ee1 =
4
3

{[
1 +

(πq
L

)2
cos2

(πα

L

)
sin2(ω0t)

]1/2
− 1

}
,

es2 = es − es1 =
4
3

{
1−

[
1 +

(πq
L

)2
cos2

(πα

L

)
sin2(ω0t)

]1/2
}

.

These two types of deformation are the kinematic parameters of the elastic energy
of particles, which change in antiphases and do not require energy from external sources.
Similarly, Equation (53) for torsional oscillations is obtained.

In the case of longitudinal oscillations the Equation (75) for es contains only one term.
If one uses the described algorithm, the value of ee2 goes to es2. In both cases, the energy,
determined by the kinematic parameter ee2, should be used to deform the particles. Parts
of the elastic energy ee1 and es1 in all considered oscillations turn into kinetic energy and
participate in the implementation of the law of conservation of energy for the body as
a whole. The other parts of ee2 and es2 are not converted into kinetic energy but change
the deformed state of the particles, in accordance with the equations of motion due to
internal sources.

Thus, based on the analysis of the structure of the deformed state and the phase
changes of its components, the necessity of participation in energy transitions of four frac-
tions of elastic energy, differing in their interaction with the kinetic energy of particles
and the implementation of the energy conservation law in integral and local volumes of
an oscillating body, is justified: two fractions participate in mutual transformations of
kinetic and elastic energy, and the other two change the deformed state of particles while
remaining elastic, taking into account the peculiarities of the equations of motion.

For all the considered types of vibrations, four types of elastic energy reveal the
mechanism of participation of internal types of energy in the development of vibrations
with the fulfillment of the energy conservation law. In particular, part of the energy for
changing the shape of particles during transverse and torsional vibrations comes from the
particles themselves, with an equivalent change in the deformed state. The change in the
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volume of particles in the areas of tension and compression during longitudinal vibrations
also does not require an influx of energy from external sources.

The dimensionless parameters ee, es, ee1, es1, ee2, and es2 are real deformations, corre-
sponding to the equations of motion, are determined through derivatives of Euler variables
by Lagrange variables, and are reflected in invariants (3), (11) and (12). They expand the
possibilities of transitions of elastic energy from one form to another as allowed in the
classical mechanics of deformable solids, and by analogy with the transition of the energy
of shape change to the energy of volume change and vice versa.

A distinctive feature of resonance with Equations (31), (48), (49), and (71) is an increase
in the amplitude of the natural oscillations when they interact with forced ones. Multiple
interactions lead to a multiple increase in the amplitude and energy of the resulting resonant
wave due to internal sources.

Equations (27), (46), and (66) correspond to the mechanism of transformation of the
forced oscillations with a frequency as determined by external influences into their own
after the termination of the driving force. This mechanism continues to operate with a
superposition of free and forced oscillations, the frequency of which is close to its own but
does not coincide with it.

Resonance is possible as a result of a superposition of both similar and different
types of vibrations if their frequencies coincide with their own or are close to them [15].
For example, as with a superposition of longitudinal and transverse oscillations (76) at
the same frequencies and coinciding with the frequencies of natural oscillations. Local
and volume–integral energy characteristics have the property of additivity, the law of
conservation of energy is fulfilled, and resonance is possible.

The ratios (23), (40), and (63) can be used to determine the elastic constant of a material
according to experimental studies with the main forms of free oscillations [8].

The obtained results on the transformation of forced oscillations into free ones after
the termination of the external force, on the implementation of the conservation law for
volume integral values of kinetic and elastic energy, on participation in the resonance of
internal energy sources can be considered as additional arguments for the validity of the
energy model for solving various problems of mechanics.
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