
plants

Article

Modulation of Arabidopsis Flavonol Biosynthesis
Genes by Cyst and Root-Knot Nematodes

Noureddine Hamamouch 1,2,*, Brenda S. J. Winkel 3 , Chunying Li 1 and Eric L. Davis 1

1 North Carolina State University, Department of Entomology & Plant Pathology, Raleigh, NC 27695, USA;
cli2@ncsu.edu (C.L.); eric_davis@ncsu.edu (E.L.D.)

2 Laboratory of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty,
University Sultan Moulay Slimane, Beni Mellal 23000, Morocco

3 Virginia Tech, Department of Biological Sciences, Blacksburg, VA 24061, USA; winkel@vt.edu
* Correspondence: hamamouch@yahoo.com; Tel.: +212-653-797-723; Fax: +212-523-424-597

Received: 4 January 2020; Accepted: 7 February 2020; Published: 17 February 2020
����������
�������

Abstract: Although it is well established that flavonoid synthesis is induced in diverse plant species
during nematode parasitism, little is known about the regulation of genes controlling flavonol
biosynthesis during the plant–nematode interaction. In this study, expression of the Arabidopsis
thaliana flavonol-specific transcription factor, AtMYB12, the flavonol synthase genes, AtFLS1, 2, 3, 4,
and 5, and the gene encoding the central flavonoid enzyme, chalcone synthase (AtCHS), were examined
in plant roots during infection by Heterodera schachtii (sugar beet cyst) and Meloidogyne incognita
(root-knot) nematodes. These experiments showed that AtMYB12 was transiently upregulated at 9
dpi in syncytia associated with sugar beet cyst nematode infection and that an Atmyb12-deficient
line was less susceptible to the parasite. This suggests that, rather than contributing to plant defense,
this gene is essential for productive infection. However, the AtCHS and AtFLS1 genes, which are
controlled by AtMYB12, did not exhibit a similar transient increase, but rather were expressly
downregulated in syncytia relative to adjacent uninfected root tissue. Genetic analyses further
indicated that AtFLS1 contributes to plant defense against Cyst nematode infection, while other AtFLS
gene family members do not, consistent with prior reports that these other genes encode little or no
enzyme activity. Together, these findings indicate a role of AtMyb12 in promoting the early stages of
Cyst nematode infection, while flavonols produced through the action of AtFLS1 are essential for plant
defense. On the other hand, a transient induction of AtMYB12 was not observed in galls produced
during root-knot nematode infection, but this gene was instead substantially downregulated, starting
at the 9 dpi sampling point, as were AtCHS and AtFLS1. In addition, both the AtMYB12- and
AtFLS1-deficient lines were more susceptible to infection by this parasite. There was again little
evidence for contributions from the other AtFLS gene family members, although an AtFLS5-deficient
line appeared to be somewhat more susceptible to infection. Taken together, this study shows
that sugar-beet cyst and root-knot nematodes modulate differently the genes involved in flavonol
biosynthesis in order to successfully infect host roots and that AtFLS1 may be involved in the plant
basal defense response against nematode infection.

Keywords: cyst nematode; flavonoids; Heterodera schachtii; Meloidogyne incognita; parasitism;
root-knot nematode

1. Introduction

Plant parasitic nematodes are the causal agents of an estimated USD 100 billion in crop losses
to the world-wide agro-economy annually, with Cyst (Heterodera and Globodera spp.) and root-knot
(Meloidogyne spp.) nematodes causing the most extensive damage [1]. Plant infection by these
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nematodes involves the penetration of second-stage juveniles (J2) into host roots and migration
through the root and subsequent intracellular migration (for cyst nematodes) or intercellular migration
between the cortical cells to the vascular cylinder [2] until the favored site for feeding site induction
is reached [3]. The nematodes then secrete an array of effectors into host cells through their stylet (a
protrusible hollow mouth spear) to initiate the formation of specialized feeding structures known as
syncytia for cyst nematodes and giant cells for root-knot nematodes [4–6]. These plant feeding cells,
which are characterized by dense cytoplasm, enlarged multiple nuclei, a fragmented central vacuole
and proliferation of organelles [3,5] act as the permanent source of nutrients for further nematode
development. The feeding sites formed by cyst and root-knot nematodes have similarities in final
phenotype but differ in ontogeny. Cell expansion with karyokinesis uncoupled from cytokinesis
characterizes giant cells formed around the root-knot nematode head, while coordinated dissolution of
walls adjacent to an initial syncytial cell give rise to a syncytium induced by cyst nematode [3]. The
majority of effectors reported from cyst and root-knot nematodes differ, consistent with the differences
observed in the parasitic process [6]. The secretion of nematode effectors is accompanied by an
extensive alteration of gene expression in parasitized plant cells and roots including genes related to
defense responses, cell-wall modifications, metabolic and signaling pathways, phytohormone balance,
and the phenylpropanoid pathway [6–12]. Cyst and root knot nematodes induce the expression of
different genes in Arabidopsis thaliana roots [7,12]. This is likely to be a reflection of the different modes
of parasitism between cyst and root-knot nematodes as reflected in feeding cell ontogeny.

Flavonoids are natural products found in all plant species that are produced as part of the
phenylpropanoid pathway [13]. In addition to ubiquitous pigments that play key roles in plant
reproduction, seed dispersal, and UV protection [14,15], flavonoids are essential as chemical cues
and defense molecules in interactions with microbes and insects [16–20]. There is also growing
evidence that flavonoids contribute to defense against parasitic nematodes, although this remains
poorly understood [21–23]. Flavonols represent the most abundant class of flavonoids and are also
believed to be among the most ancient [24]. They possess potent free radical scavenging activity [25]
and can have insecticidal properties [26]. In fact, soybean (Glycine max) genotype PI 227687, which
accumulates the flavonol rutin, has been used widely in breeding programs as a source of insect
resistance [27]. Flavonols are also involved in modulating auxin transport and signaling [28,29].
Several studies support a role of auxin in nematode feeding site formation of both cyst and root-knot
nematode [30–32]. Moreover, flavonols have been shown to have a direct effect on chemotaxis, motility,
and egg hatching of many nematode species [33]. Flavonols are synthesized from dihydroflavonols
by a 2-oxoglutarate-dependent dioxygenase enzyme, flavonol synthase (FLS). Arabidopsis contains
six FLS genes (AtFLS1 to AtFLS6) located at three sites on chromosome 5 [34]. AtFLS1, 3, and 5
encode full-length proteins while AtFLS2, 4, 6 are considered pseudo-genes unlikely to contribute to
flavonol synthase activity [34]. AtFLS1 has been shown to have substantial flavonol synthase activity,
both in vivo and in vitro [34,35], while AtFLS2 exhibits a relatively small amount of activity [36] and
AtFLS5 no detectable activity under any conditions tested to date.

The R2R3-MYB family of transcription factors participates in a variety of cellular processes, including
development [37–39], signal transduction [40,41], cell division [42], secondary metabolism [43–45], and plant
disease resistance [46]. Among members of the R2R3-MYB family in Arabidopsis, AtMYB12 is a key
regulator of FLS and chalcone synthase (CHS) gene expression [47–49]. CHS is the first enzyme in the
flavonoid branch of the phenylpropanoid pathway and is encoded by the single-copy AtCHS gene
in Arabidopsis [50]. Expression of AtCHS and AtFLS1 is induced by overexpression of AtMYB12 and
substantially reduced in an Atmyb12 T-DNA knockout, with corresponding changes in flavonol levels
in Arabidopsis seedlings [48].

In the study presented here, quantitative real-time PCR was used to analyze the expression
patterns of AtMYB12 and the flavonoid biosynthetic genes, AtCHS and AtFLS1-5 during Arabidopsis
parasitism by the beet cyst nematode, Heterodera schachtii and the southern root-knot nematode,
Meloidogyne incognita. Histochemical analyses were used to examine the cell-type expression of these
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genes in nematode-infected root tissues. In addition, the effects on nematode parasitism of AtMYB12
overexpression and null mutations in Atmyb12 and five Atfls genes were examined. Our hypothesis
is that sugar beet cyst and root knot nematodes modulate the expression of genes involved in the
biosynthesis of flavonols in order to successfully infect host roots.

2. Results

2.1. AtMYB12 Is Upregulated in Syncytia and Downregulated in Galls

To test the effect of nematode infection on the flavonol transcriptional regulator, AtMYB12,
quantitative real-time PCR (qRT-PCR) was used to quantify mRNA levels in Arabidopsis roots at 0, 5, 9,
and 14 dpi with H. schachtii and M. incognita. During infection by H. schachtii, expression of AtMYB12
increased at -9 dpi and returned to preinfection level by 14 dpi (Figure 1A). In contrast, during infection
with M. incognita, expression of AtMYB12 decreased over this time course, first detected at 9 dpi and
continuing at 14 dpi (Figure 1B). These results indicate that AtMYB12 is affected differently during H.
schachtii and M. incognita infection.
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Quantitative expression analyses were normalized to the Arabidopsis Actin8 gene and presented 
relative to uninfected control tissue (baseline set at 1.0). Values are means ± SE (3 technical 
replicates) with different letters indicating significant differences between time points p < 0.05 (One-
way ANOVA test). Similar results were obtained from two independent biological replicates. Scale 
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Figure 1. Temporal pattern of Arabidopsis AtMYB12 gene expression during nematode infection.
AtMYB12 expression was quantified by qRT-PCR in roots of wild-type Arabidopsis plants at 0, 5, 9 and
14 dpi with the beet-cyst nematode, H. schachtii (BCN) (A) or the southern root-knot nematode M.
incognita (RKN) (B). Histochemical localization of GUS activity directed by AtMYB12p::GUS fusion
in H. schachtii-induced feeding sites (C) and in M. incognita-formed galls (D) at 9 dpi as compared to
non-infected roots (E). G, gall; N, nematode; S, syncytium; R, Arabidopsis root. Quantitative expression
analyses were normalized to the Arabidopsis Actin8 gene and presented relative to uninfected control
tissue (baseline set at 1.0). Values are means ± SE (3 technical replicates) with different letters indicating
significant differences between time points p < 0.05 (One-way ANOVA test). Similar results were
obtained from two independent biological replicates. Scale bar = 200 µm (C), and 100 µm (D,E).
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To localize the expression of AtMYB12 in nematode-infected roots, AtMYB12p::GUS plants were
infected with H. schachtii and M. incognita and GUS expression was examined by histochemical staining
at 9 dpi. The results of this experiment indicate that expression of AtMYB12 is upregulated in syncytia
formed by H. schachtii (Figure 1C) but strongly downregulated in galls generated by M. incognita
(Figure 1D). These results further support the hypothesis that AtMYB12 mediates different responses
to H. schachtii and M. incognita infection.

2.2. AtMYB12 Expression Promotes Sugar Beet Cyst Infection and May Contribute to Basal Defense Response
to Root-Knot Nematode Infection

To assess the roles of AtMYB12 in nematode infection, Arabidopsis plants that either ectopically
overexpress AtMYB12 or carry a T-DNA insertion in the Atmyb12 coding region were challenged with H.
schachtii or M. incognita in six-well plates containing agar-based plant growth medium and the numbers
of developing H. schachtii cyst females or M. incognita root galls in wild-type and mutant plants were
counted 3–4 weeks post infection. No difference was observed in the number of H. schachtii-formed
cysts or M. incognita-formed galls between plants over-expressing AtMYB12 and wild-type Arabidopsis
plants. However, the Atmyb12 T-DNA mutant line was less susceptible to H. schachtii than were wild
type plants, suggesting that the presence of AtMYB12 may promote H. schachtii parasitism (Figure 2).
In contrast, Atmyb12 T-DNA mutant plants were more susceptible to M. incognita than wild-type plants,
suggesting that AtMYB12 may contribute to basal defenses against M. incognita. These findings further
suggest that Myb12 upregulation in syncytia and downregulation in galls is induced by the nematodes
in order to promote infection.
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Figure 2. Role of AtMYB12 in H. schachtii (A) and M. incognita (B) infection. Homozygous lines
overexpressing AtMYB12, Atmyb12 knock-out, and wild-type Col-0 (WT) plants were planted on
modified Knop’s medium and 10 days-old seedlings were inoculated with approximately 60 surface
sterilized J2 of either H. schachtii or M. incognita. Three weeks after inoculation, the number of cyst
female nematodes (for suagr beet cyst nematode) per root system or galls (for southern root-knot
nematode) were counted. Data are presented as means ± standard errors. Mean values significantly
different from wild type (Col 0) as determined by t test (p < 0.05) are denoted by asterisks. Similar
results were obtained from a second, independent biological replicate.

2.3. Expression of AtCHS and AtFLS1 Is Downregulated in Both Syncytia and Root Galls

To examine the expression of AtCHS and AtFLS1 during nematode infection, qRT-PCR was
used to compare transcript abundance in H. schachtii and M. incognita-infected Arabidopsis roots at
0, 5, 9, and 14 dpi. Our results show that expression of AtCHS and AtFLS1 was strongly reduced in
Arabidopsis roots between 9–14 days following infection with H. schachtii. During infection with M.
incognita, expression level of AtFLS1 was observed by 5 dpi and 9 dpi, and at 14 dpi, it was strongly
downregulated, while expression of AtCHS was reduced between 9–14 dpi (Figure 3A,B).
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Figure 3. Temporal patterns of AtCHS and AtFLS1 gene expression during nematode infection.
AtCHS and AtFLS1 gene expression was quantified by qRT-PCR in roots of wild-type Arabidopsis
plants at 0, 5, 9 and 14 days post-infection (dpi) with the sugar beet cyst nematode, H. schachtii
(A) or the southern root-knot nematode M. incognita (B). Histochemical localization of GUS activity
directed by AtCHSp::GUS and AtFLS1p::GUS fusion in H. schachtii-induced syncytia (C,D) and in
M. incognita-induced gall (E,F) at 9 dpi and in non-infected controls (G,H). G, gall; N, nematode;
S, syncytium; R, Arabidopsis root. Expression was normalized to the Arabidopsis Actin8 gene and
presented relative to expression at 0 dpi. Values are means ± SE (3 technical replicates) with different
letters indicating significant differences between time points p < 0.05 (One-way ANOVA test). Similar
results were obtained from a second, independent biological replicate. Scale bar = 200 µm (C,D,G,H),
and 100 µm (E,F).
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In addition, AtCHSp::GUS and AtFLS1p::GUS reporter genes were used to examine the expression
level of AtCHS and AtFLS1 at the nematodes feeding structures 9dpi. Histochemical analysis of
GUS gene expression showed that expression of AtCHS and AtFLS1 was strongly downregulated in
syncytia and nematode-induced galls suggesting that the downregulation of these genes is important
in nematode infection (Figure 3C–F).

2.4. Expression of AtFLS2 in Upregulated in H. schachtii-Induced Syncytia, but Downregulated in M.
incognita-Induced Galls, While Expression of AtFLS5 Is Downregulated in Both.

The observed downregulation of AtFLS1 in both nematode-induced syncytia and galls prompted
us to examine the expression of four additional FLS genes to determine whether these might have
a role in nematode infection. To this end, the abundance of AtFLS2, AtFLS3, AtFLS4, and AtFLS5
transcripts in Arabidopsis whole roots at 0, 5, 9, and 14 dpi by H. schachtii and M. incognita was also
measured using qRT-PCR. Our results showed that expression of AtFLS2, AtFLS3, and AtFLS4 increased
during H. schachtii infection, while expression of AtFLS5 did not change (Figure 4A). In contrast,
during infection with M. incognita, the expression of AtFLS2, AtFLS3, AtFLS4, and AtFLS5 remained
relatively unchanged or increased only slightly compared to non-infected roots (Figure 4B).

To visualize the expression AtFLS2, AtFLS3, AtFLS4, and AtFLS5 at the nematode feeding sites,
Arabidopsis plants expressing the GUS gene under the control of AtFLS2, AtFLS3, AtFLS4, and AtFLS5
promoters were infected with H. schachtii or M. incognita, and GUS expression was visualized at the
nematode-induced feeding sites. In H. schachtii-formed syncytia, AtFLS2 was upregulated, suggesting
that AtFLS2 may also play a role in syncytia formation and/or maintenance. The expression of
AtFLS5 was downregulated at 9 dpi (Figure 4C,F), while the expression of AtFLS3 and AtFLS4 did not
change (Figure 4D,E). In M. incognita-formed galls, the expression of AtFLS2 and AtFLS5 was strongly
downregulated (Figure 4G,J), while the expression of AtFLS3 and AtFLS4 did not change.

The potential roles of AtFLS1, AtFLS2, AtFLS3, AtFLS4, and AtFLS5 in H. schachtii and M. incognita
infection of Arabidopsis were explored further using Atfls T-DNA knockout lines and wild type plants.
The number of cyst females in Atfls mutant plants was not significantly different from those developed
on the corresponding wild type ecotypes, with the exception of a significant increase in developed
cyst nematodes on the Atfls1 mutant (Figure 5A). These results suggest that AtFLS1 plays a role in
H. schachtii infection of Arabidopsis roots, while the other four AtFLS genes have little or no effect. A
similar significant increase was observed for the Atfls1 and Atfls5 mutants in the number of root-knot
nematode galls, with the remainder of the Atfls mutants showing no difference in the number of galls
compared to wild-type plants (Figure 5B). This suggests that both AtFLS1 and AtFLS5 may play a role
in M. incognita infection.
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Figure 4. Temporal expression of Arabidopsis FLS gene family members during nematode infection.
Expression of AtFLS2, AtFLS3, AtFLS4, and AtFLS5 was quantified by qRT-PCR in roots of wild-type
Arabidopsis plants at 0, 5, 9 and 14 dpi with the sugar beet cyst nematode, H. schachtii (A) of the
southern root-knot nematode, M. incognita (B). Histochemical localization of GUS activity directed by
AtFLSp::GUS in H. schachtii-induced syncytia (C–F) and in M. incognita-formed galls (G–J) at 9 dpi.
(K–N) are non-infected Arabidopsis roots; G, galls; N, nematode; S, syncytium; R, Arabidopsis root.
Expression was normalized to the Arabidopsis Actin8 gene and presented relative to expression at
0 dpi. Values are means ± SE (n = 3 technical replicates) with different letters indicating significant
differences between time points p < 0.05 (One-way ANOVA test). Similar results were obtained from a
second, independent biological replicate. Scale bar = 200 µm (C,J,N), and 150 µm (K–M).
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Figure 5. The effects of Atfls T-DNA mutations on H. schachtii (A) and M. incoinita (B) infection. Atfls1,
Atfls2, Atfls3, Atfls4, and Atfls5 knock-outs, two wild-type Arabidopsis plants; Col-0 and WS, were planted
on modified Knop’s medium and 10-day-old seedlings were inoculated with approximately 60 surface
sterilized J2 of either H. schachtii or M. incognita. Three weeks after inoculation, the number of cyst
female nematodes (for sugar beet cyst nematode) per root system or galls (for southern root-knot
nematode) were counted. Data are presented as means ± standard errors. Mean values significantly
different from the wild type ecotype as determined by t test (p < 0.05). Similar results were obtained
from a second, independent biological replicate.
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2.5. Expression of AtFLS2, 3, 4, and 5 Is Dependent on AtMYB12

To determine whether AtMYB also affects the expression of the other four AtFLS genes, qRT-PCR
was used to compare the mRNA transcript levels of AtFLS2, AtFLS3, AtFLS4, and AtFLS5 in Arabidopsis
plants that over-express AtMYB12 as well as in Atmyb12 mutant plants. AtFLS6, which does not appear
to be expressed, was not included in this analysis. We also measured the expression levels of AtCHS
and AtFLS1 transcripts as controls. Our results did confirm the finding of Mehrtens et al. [48], that the
over-expression of AtMYB12 induced expression of AtCHS and AtFLS1, while Atmyb12 knockout
reduced AtCHS and AtFLS1 transcript levels to almost undetectable levels (Figure 6). In addition,
while over-expression of AtMYB12 had little or no effect on the transcript levels of the other four FLS
genes, the Atmyb12 knockout significantly reduced the expression of AtFLS2, AtFLS3, and AtFLS5,
with a slight decrease also observed in expression of AtFLS4 (Figure 6), indicating that AtFLS2, 3, 4,
and 5 expression is dependent on AtMYB12.Plants 2020, 9, x FOR PEER REVIEW 8 of 14 
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Figure 6. Effect of AtMYB12 on the expression of AtFLS genes. Expression of AtCHS and AtFLS1, AtFLS2,
AtFLS3, AtFLS4, and AtFLS5 in plants overexpressing AtMYB12, Atmyb122 knockout, and wild-type
Col-0 (WT) seedlings using quantitative real-time PCR (qRT-PCR). The presented data are the mean
fold changes ± standard errors in gene transcript levels relative to uninfected control tissue (baseline set
at 1.0). Asterisks (*) indicate that the mean fold change is significantly different from 1.0 as determined
by t test (p < 0.05). Similar results were obtained from a second, independent biological replicate.

3. Discussion

Flavonoids are natural plant products involved in diverse plant functions. A previous study using
a flavonoid-specific stain showed that these compounds are produced in and around the developing
syncytia of H. schachtii and galls of the European dagger nematode, Xiphinema diversicaudatum,
respectively [22]. However, a detailed analysis of the expression of flavonoids biosynthesis genes
during cyst and root-knot nematode parasitism has not previously been conducted. In this study, we
examined the expression patterns of R2R3-MYB12, a flavonol-specific transcription factor; AtCHS,
which encodes the first enzyme in the flavonoid pathway; and five flavonol synthase genes (AtFLS1,
AtFLS2, AtFLS3, AtFLS4, and AtFLS5) during parasitism by H. schachtii and M. incognita and at the
nematode-induced feeding sites. The role of these genes in nematode parasitism was investigated
using T-DNA knockouts and over-expression lines.

Quantitative RT-PCR was first used to quantify AtMYB12 transcripts in H. schachtii and M.
incognita-infected Arabidopsis roots. It must be noted that only one reference gene (Actin 8) was used
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in qRT-PCR [51] and that small differences in expression observed among the data are subject to
potential variations in reference expression [52,53]. H. schachtii appears to induce AtMYB12 expression
in Arabidopsis roots between 5–9 dpi. Similar to this finding, the genome-wide expression analysis
of soybean roots infected with soybean cyst nematode showed that a soybean homolog of AtMYB12
(BE0240360) is also upregulated in infected roots [11].

A histochemical analysis of AtMYB12p::GUS lines revealed that expression of AtMYB12 increases
in H. schachtii-formed syncytia, suggesting a role of this gene in syncytia formation. Previous studies
on the expression of AtMYB12 in syncytia have generated inconsistent results. Szakasits et al. [12]
examined gene expression in H. schachtii-formed syncytia using Affymetrix GeneChips and showed that
AtMYB12 is downregulated in syncytia. In contrast, transcript profiling of cyst nematode feeding cells
in soybean roots showed the soybean homolog of AtMYB12 to be upregulated in syncytia [11]. Using the
AtMYB12p:GUS lines offered the advantage of visualizing promoter activity within nematode-induced
syncytia without the need for mRNA extraction, suggesting a role of this transcription factor in syncytia
formation and/or maintenance.

The role of the transcription factor AtMYB12 in syncytia formation and development is still unclear,
but AtMYB12 may induce the expression of downstream genes necessary for the formation and/or
maintenance syncytia, such as genes involved in auxin transport. In fact, several auxin-responsive
genes are modulated in tobacco plants over-expressing AtMYB12, including downregulation of an
auxin efflux carrier [54,55]. Studies on the role of auxin in host-nematode interaction have suggested
that changes in auxin levels, possibly achieved by a disruption of local auxin transport, may be
important in feeding site formation of cyst nematodes [31,32,56]. A role for auxin in nematode feeding
site development is supported by the finding that the cyst nematode effector protein 19C07 interacts
specifically with the auxin influx transporter LAX3 [55], possibly to enhance auxin influx into host roots
for syncytium development. The expression of AtMYB12 in syncytia may be necessary to modulate
host cell metabolism in order to increase the demands of the flux of amino-acids and macromolecules
needed for nematode feeding. This latter hypothesis is supported by the increased expression of genes
related to carbohydrates and lipid metabolism and the accumulation of amino-acids that have been
reported to occur in tobacco plants over-expressing AtMYB12 gene [54]. The reduction in the number
of cyst females developing in Arabidopsis Atmyb12 mutant plants compared to wild-type plants further
supports the role of AtMYB12 in cyst nematode infection. However, overexpression of AtMYB12 did
not increase the susceptibility of Arabidopsis to H. schachtii.

On the other hand, infection with M. incognita decreased the expression of AtMYB12 in
the nematode-induced galls, suggesting that downregulation of AtMYB12 may be necessary in
establishing giant cells needed for nematode’s survival. The exact role of AtMYB12 downregulation in
nematode-induced galls in still unclear, but M. incognita may downregulate the expression of AtMYB12
gene to limit expression of target genes that may interfere with giant cell formation and maintenance.
However, the identity of these genes is still unknown and there is little information available on
the genes, other than those involved in flavonoid biosynthesis, affected in AtMYB12 knockout lines.
The hypothesis that the downregulation of AtMYB12 gene promotes giant cell formation is further
supported by the finding that plants impaired in AtMYB12 gene expression showed hyper-susceptibility
to infection by M. incognita compared to wild-type plants. The observation that a single gene (AtMYB12)
appears to play distinct roles in H. schachtii and M. incognita feeding site development is interesting
but not surprising, as these two different nematodes secrete different effector proteins into host root
cells [6,57,58], and regulate the expression of distinct genes for the formation and establishment of the
feeding sites [7,8,12].

The expression of AtMYB12 in H. schachtii-induced syncytia was not accompanied by an increase
in AtFLS1 and AtCHS gene expression, suggesting that, in syncytia, the expression of these two genes
may not be under the control of AtMYB12. The observed downregulation of AtFLS1, which has
substantial enzymatic activity among the AtFLS genes, in the feeding sites of both H. schachtii and M.
incognita is surprising since flavonols are known to have potent free radical-scavenging activity [25] and
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it has been reported that ROS are produced in both syncytia and giant cells [59,60]. Downregulation of
AtFLS1 and AtCHS gene expression in syncytia has been previously reported in studies of syncytia
transcriptome [12]. However, these two genes have not been identified to be differentially regulated in
M. incognita-formed giant cell in Arabidopsis at least at very early infection stages [7].

Downregulation of key genes in flavonol biosynthesis (CHS and FLS1) at the nematode feeding
structures may be necessary for feeding site formation and/or maintenance, perhaps related to the role
of flavonols in modulating auxin transport [61]. A study on the effect of selected flavonoid compounds
on the behavior of M. incognita showed that flavonols and chalcone, which are the products of FLS1
and CHS, respectively, have inhibitory effects on motility and the hatching of nematodes [33]. The
importance of AtFLS1 downregulation in syncytia and giant cells formation was further supported by
the hyper-susceptibility of an AtFLS1-deficient line. Atfls1 T-DNA knockout lines appear also to be more
susceptible to both H. schachtii and M. incognita compared to wild type plants. The downregulation of
AtFLS1 in nematode feeding sites, either directly or indirectly, may reduce potential defense responses
from the flavonol pathway that could inhibit successful parasitism by nematodes.

4. Materials and Methods

4.1. Nematode Culture

Cyst nematodes of H. schachtii (BCN) and M. incognita (RKN) were cultured on roots of cabbage
plants (Brassica oleracea var. capitata) and tomato plants (Solanum lycopersicon cv. Rutgers) grown in soil,
respectively. Eggs of H. schachtii were collected from crushed cysts as previously described for cyst
species [62], while eggs of M. incognita were extracted from tomato roots with sodium hypochlorite
as previously described [63]. Eggs were hatched over water in Baermann pans at 28 ◦C for 48 h,
and the hatched preparasitic J2 (pre-J2) were collected, surface-sterilized by incubation for 10 min
in sterilization solution (0.004% mercuric chloride, 0.004% sodium azide and 0.002% Triton X-100),
and rinsed three times with sterile distilled water.

4.2. Nematode Infection Assay and Data Collection

Arabidopsis thaliana (Columbia and Wassilewskija ecotypes) seeds were surface sterilized and
transferred (one seed per well) into six-well culture plates (Falcon) containing 6 mL of sterile modified
Knops medium [64] solidified with 0.8% Daishin agar (Brunschwig Chemie) as previously described [8].
Seeds on plates were placed in a 24 ◦C growth chamber under a 16 h light/8 h dark cycle for 2 weeks.
Surface sterilized pre-J2 nematodes were suspended in 1.5% low-melting-point agarose to allow even
distribution and to facilitate their movement into solid Knops medium. Plants were inoculated with
approximately 60 J2 per plant and developed cysts (for sugar beet cyst nematodes) and galls (for
root-knot nematodes) were counted 3–4 weeks post-infection, using a dissecting microscope. Nematode
infection assays were conducted on two independent biological replicates, and similar results were
obtained (the data of one experiment is presented). The means and standard errors of 18 replicates per
treatment were calculated. Statistical differences were determined by the paired t-test with an alpha
level of 0.05 using SAS software (Cary, NC, USA).

4.3. Plant Material

Arabidopsis lines containing AtCHSp::GUS and AtMYB12P::GUS were previously described [48]
and were kindly provided by Dr. Bernd Weisshaar of the Max Planck Institute, Cologne, Germany.
The AtMYB12 T-DNA insertion line (Salk_046675C, insertion in third exon) and AtMYB12 ectopic
over-expression line (35S-MYB12, CS9603; [48] were obtained from the Arabidopsis Biological Resource
Center (ABRC, The Ohio State University, Columbus, OH, USA). AtCHSp::GUS, AtFLSp::GUS,
and T-DNA insertion lines for AtFLS1, 2, 3, 4, and 5 were previously described [34,65]. The T-DNA lines
were AJ588535 (insertion in the 5′ untranslated region of AtFLS1), SALK_076420 (AtFLS1 promoter),
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GABI 429B10 (second intron of AtFLS2), SALK_050041 (third exon of AtFLS3), SALK_002309 (third
exon of AtFLS4), and GABI 317E12 (first intron of AtFLS5).

4.4. Histochemical Localization of GUS

Arabidopsis roots infected with H. schachtii and M. incognita were excised 9 dpi. Histochemical
staining for GUS expression was performed at 37 ◦C for 4 h using X-Gluc solution [(0.1 M NaH2PO4,
10 mM EDTA, 0.5 mM each of K3Fe(CN)6 and K4F2(CN)6, 3H2O, 0.1% Triton X-100 and 1 mg/mL
5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid (cyclohexylammonium salt) (Gold Biotechnology,
St. Louis, MO, USA)], and then mounted onto glass slides. Samples were examined using a Nikon
SMZ 800 stereo microscope, and images were captured with a SPOT 2 digital camera (Diagnostic
Instruments, Inc., Sterling Heights, MI, USA).

4.5. RNA Isolation and Quantitative RT-PCR

Total RNA was isolated from whole roots of six Arabidopsis plants using the RNeasy Plant Mini
Kit (QIAgen, Valencia, CA, USA) following the manufacturer’s instructions. Prior to quantitative
RT-PCR, total RNA was treated with RNase-free DNase I (Ambion, Austin, TX, USA) to eliminate
any contaminating genomic DNA. First-strand cDNA was synthesized from 2–3 µg of total RNA
using SuperScript-II RT (Invitrogen, Carlsbad, CA, USA) and oligo-dT18 primers following the
manufacturer’s instructions.

All reactions were performed in a DNA Engine Mx3000P (Agilent Technologies, Santa Clara, CA,
USA). Each 20 µL qRT-PCR reaction contained 1X Brilliant II SYBR Green qPCR Master Mix (Agilent
Technologies, Santa Clara, CA, USA), 5 µL cDNA template and 5 µM each forward and reverse primers
(Table 1). The PCR cycling parameters were set at 95 ◦C for 10 min followed by 40 cycles of 95 ◦C
for 15 s, 60 ◦C for 1 min, and 72 ◦C for 1 min. At the completion of each reaction, dissociation melt
curve analyses (60–90 ◦C every 0.5 ◦C for 1 s) were conducted to discount the effects of primer-dimer
formation and contamination. The qRT-PCR reactions were performed in three technical triplicates.
Using the 2−∆∆CT method [66], the data are presented as the fold change in gene expression normalized
against the endogenous Arabidopsis actin 8 gene (At1g49240), and presented relative to expression at
0 dpi. qRT-PCR experiments were conducted on two independent biological replicates and similar
results were obtained (the data of one experiment was presented). Values are means ± SE (n = 3
technical replicates). One-way ANOVA with a Student–Newman–Keuls post hoc test was used to
determine significant differences between means.

Table 1. Primers used in Real-time PCR.

Gene Name Locus Name Primers Target Size (bp)

AtMYB12 At2g47460 F; 5′-AACCAAGGGAATCTCGACTGTCT-3′

R; 5′-CCCAATCGATAAACTCATCCGT-3′ 109

AtCHS At5g13930 F; 5′-CGCATCACCAACAGTGAACAC-3′

R; 5′-TCCTCCGTCAGATGCATGTG-3′ 94

ATFLS1 At5g08640 F; 5′-CCGTCGTCGATCTAAGCGAT-3′

R; 5′-CGTCGGAATCCCGTGGT-3′ 107

ATFLS2 At5G63580 F; 5′-TCTTATGGCCAAGACGATCC-3′

R; 5′-GAAAAATGCCCCACTCTTCA-3′ 101

ATFLS3 At5G63590 F; 5′-CGACGCGGAGTATACCACTT-3′

R; 5′-TATCCATCTTCGCCCTATGC-3′ 107

ATFLS4 At5G63595 F; 5′-GGGATCCCAACCGAACTAAT-3′

R; 5′-TCTCTTTGGAGTTCGCTGGT-3′ 109

ATFLS5 At5G63600 F; 5′-AAGCCTTCAAGGACGAACAA-3′

R; 5′-CTTTAACCTCCCGTTGGTCA-3′ 107

Actin 8 At1g49240 F; 5′-GATGGAGACCTCGAAAACCA-3′

R; 5′-AAAAGGACTTCTGGGCACCT-3′ 108
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