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Abstract: Prior knowledge on heterosis and quantitative genetic parameters on maize lethal necrosis
(MLN) can help the breeders to develop numerous resistant or tolerant hybrids with optimum
resources. Our objectives were to (1) estimate the quantitative genetic parameters for MLN disease
severity, (2) investigate the efficiency of the prediction of hybrid performance based on parental per
se and general combining ability (GCA) effects, and (3) examine the potential of hybrid prediction
for MLN resistance or tolerance based on markers. Fifty elite maize inbred lines were selected
based on their response to MLN under artificial inoculation. Crosses were made in a half diallel
mating design to produce 307 F1 hybrids. All hybrids were evaluated in MLN quarantine facility
in Naivasha, Kenya for two seasons under artificial inoculation. All 50 inbreds were genotyped
with genotyping-by-sequencing (GBS) SNPs. The phenotypic variation was significant for all traits
and the heritability was moderate to high. We observed that hybrids were superior to the mean
performance of the parents for disease severity (−14.57%) and area under disease progress curve
(AUDPC) (14.9%). Correlations were significant and moderate between line per se and GCA; and mean
of parental value with hybrid performance for both disease severity and AUDPC value. Very low
and negative correlation was observed between parental lines marker based genetic distance and
heterosis. Nevertheless, the correlation of GCA effects was very high with hybrid performance which
can suggests as a good predictor of MLN resistance. Genomic prediction of hybrid performance for
MLN is high for both traits. We therefore conclude that there is potential for prediction of hybrid
performance for MLN. Overall, the estimated quantitative genetic parameters suggest that through
targeted approach, it is possible to develop outstanding lines and hybrids for MLN resistance.

Keywords: maize lethal necrosis; combining ability; heterosis; genomic prediction; resistance

1. Introduction

Maize lethal necrosis (MLN) caused by the co-infection of two viruses, Maize chlorotic mottle
virus (MCMV) belonging to the Tombusviridae group and any member virus from the Potyviridae
group mostly Sugarcane mosaic virus (SCMV) is one of the most important maize diseases in sub
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Saharan Africa (SSA) [1]. MLN has been reported to cause up to 100% yield loss making it a serious
threat to food security in SSA [2]. Breeding cultivars for MLN resistance is the most economical and
environmental friendly way of controlling MLN [3]. Previous studies revealed that MLN disease
resistance is controlled by few major effect and several minor effect genes [4,5]. In this scenario,
finding appropriate parental combinations which can carry most of these resistance genomic regions is
critical in order to have MLN resistant hybrid. Screening large number of parental lines and selecting
appropriate parents for crossing and evaluating them in multiple locations is laborious. Further,
the efficiency of finding MLN resistant hybrids largely depends on how competently superior hybrid
combinations are identified with optimum use of available inputs. Therefore, understanding the nature
of inheritance of MLN resistance and testing of different prediction methods can maximize the chance
to develop MLN resistance or tolerance hybrids while using minimal resources.

Hybrid breeding is a gifted approach to enhance crop productivity and yield stability.
The development of hybrids involves selection of inbred parents with desired attributes and good
combining ability. With the availability of doubled haploid (DH) technology in maize, breeders
have the capacity to quickly and accurately create large number of inbred lines with high level of
homozygosity [6]. Consequently, millions of potential cross combinations are possible to create but
unfortunately, only a small portion of these combinations are possible to evaluate in the field due to
limited budget. Thus, identifying the most promising hybrids for field evaluation is cost effective
for breeders.

Hybrid performance prediction involves the estimation of the breeding value of the crosses.
The parental inbreds and a few crosses are evaluated in the field ensuing the prediction of the untested
crosses using the phenotypic data from the tested crosses and genotypic data of the parental inbreds.
Various methods have been used to predict the hybrid performance depending on the types of hybrids
(single cross or three-way cross) and traits in consideration [7,8]. Selection of best performing elite lines
as parents is common in hybrid breeding, however, for complex traits, line per se is a poor predictor
of hybrid performance, as a result per se based predictions are used in simple inherited traits which
are not largely affected by non-additive effects [7]. Mid-parent value is another simple predictor of
hybrid performance, however, the correlations between mid-parent value and hybrid performance are
generally affected by dominance effects revealed in heterosis and imperfect heritability [9]. Prediction
of F1 hybrid performance based on general combining ability (GCA) is of another interest and also
a promising phenotypic based approach [10]. In this case, the predominance of GCA variance over
specific combining ability (SCA) variance is of crucial importance to have an accurate prediction [10].
Further, prior information on GCA effects of line/s is required in order to use GCA based predictions.

Prediction based on genetic distances between the parents has also been used on the basis that
there is a linear relationship between hybrid vigor and the genetic distances between the parents when
all QTLs associated with the trait are considered [11]. Best linear unbiased prediction (BLUP) is also
used in the prediction of untested single crosses performance using information on genetic relationships
among inbreds and phenotypic data of related tested hybrids [12]. Genetic relationships are obtained
from either pedigree information or molecular marker data whereby coefficients of coancestry are
estimated to measure the degree of similarity [11]. BLUP approach has been applied successfully to
predict hybrid performance in maize [13], sunflower [7], and triticale [14].

A vast number of molecular markers are available allowing breeders to use markers in plant
breeding programs [15]. With the aim of saving resources, selection of inbred lines either based on
GCA or by using molecular markers are paramount. Marker assisted selection (MAS) utilizes only
markers with significant association to the loci [16]. The use of only significant associations, however,
has limited success in predicting or improving maize hybrid performance. This is mainly because the
detected quantitative trait loci (QTL) are specific to a particular genetic background and/or have small
additive effects [17].

Genomic prediction (GP) in comparison to GCA based prediction, prior information on GCA
effects of parental lines is not required, as it uses a model trained on both phenotypic and genotypic
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data on hybrids without essentially including all hybrid parents [18]. GCA based prediction has
a limitation when there is low genetic variance or high SCA variance for the trait of interest. GP
contrary to the traditional QTL mapping utilizes genome-wide markers to estimate the effects of all
loci and thereby compute a genomic estimated breeding value (GEBV) [13]. The GEBV is therefore the
sum of all marker effects and the prediction accuracy is the correlation between the true breeding value
and the GEBV. Various approaches utilizing GP to predict hybrid performance have been proposed,
including ridge regression-BLUPs [19], Bayesian methods, genomic BLUP (GBLUP) and machine
learning [20]. GP has been applied in prediction of hybrid performance for grain yield in maize [11,21],
triticale [14], and sunflower [7]. These studies showed the potential of GP in prediction of hybrid
performance for important traits.

Plant breeders commonly use diallel mating design to determine the basis of complex traits
inheritance and to identify the superior general and specific combiners. In this study we used
phenotypic and molecular data of half diallel crosses and parental lines gathered in CIMMYT maize
hybrid breeding program and compared several approaches to investigate their potential to predict
single-cross performance for MLN resistance. In particular, the objectives of our study were to (1)
estimate the variance components for MLN resistance or tolerance (2) assess the extent of mid-parent
and better parent heterosis, and (3) predict the performance of F1 hybrids for MLN resistance or
tolerance based on mean of the parents, GCA effects, genetic distance, and GP.

2. Results

2.1. Phenotypic Variation

The mean performance of parental lines and F1 hybrids across environments for MLN disease
severity (DS) and area under disease progress curve (AUDPC) was 6.25 and 135.28; 5.05 and 136.50,
respectively (Table 1). For both parents and hybrids, analysis of variance (ANOVA) revealed highly
significant genotypic variance (σ2

G) and GxE (genotype x environment) interaction variances for
MLN DS and AUDPC across environments (Table 1). This ruled out the possibility of bias due to
environment-specific disease responses in the combined analysis. The variance for GCA (σ2

GCA) and
SCA (σ2

SCA) and their interactions with environment were also significant for both MLN DS and
AUDPC values (Table 1). For MLN DS and AUDPC values, we observed that relative to the total
genotypic variance (σ2

G), the σ2
SCA estimates amounted to 21% and 22%, respectively. Estimate of

heritability for parental lines was 0.42 and 0.86 for MLN DS and AUDPC values, respectively. Whereas
for hybrids the estimate of heritability was 0.77 and 0.83 for MLN DS and AUDPC, respectively.
The frequency of the phenotypic values in both MLN DS and AUDPC revealed an approximate
normal distribution (Figure 1) showing adequate distribution from tolerant to susceptible lines
across environments.
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The mean values of MLN DS of parents ranged from 3.44 (CLRCY039) to 7.12
(DTPYC9_F13_2_3_1_2_B). Among the 50 parental lines, five lines (CLRCY039, CLRCY034, CLYN231,
DTPYC9_F46_1_2_1_2_B, and CLYN261) had scores of < 5 while the highest disease severity values
(> 7) were scored from parents CZL068, DTPYC9_F13_2_3_1_2_B, CML544 and CML444. In the case
of F1 hybrids, around 12 hybrids had scores of <4 and 61 hybrids showed <4.5 score as well as 135
hybrids were showed MLN DS value of <5. The highest and the lowest MLN DS were recorded as 3.5
(CML550 x CML494) and 7.12 (CML443 x CKL5005), respectively. Out of 307 crosses, only 14 hybrids
showed MLN DS score of >6.0.

Table 1. Estimates of mean, range, variance components (genotypic, σ2
G; genotype x environment

interactions, σ2
GxE; error, σ2

e) and heritability (h2) for MLN disease severity (MLN DS) and area under
disease progress curve (AUDPC) for parental lines and their 307 F1 hybrids.

Trait MLN DS AUDPC

Parents

Mean 6.25 135.28
Range 3.44–7.12 58.69–216.05
σ2

G 0.545 ** 2303.16 **
σ2

GxE 0.78 ** 143.36 *
σ2

e 1.40 1267.99
h2 0.42 0.86

F1 Hybrids

Mean 5.05 136.50
Range 3.53–7.24 96.30–199.10
σ2

G 0.550 ** 398.006 **
σ2

GCA (Female) 0.156 ** 114.85 **
σ2

GCA (Male) 0.280 ** 194.13 **
σ2

SCA 0.114 ** 89.02 **
σ2

GxE 0.081 ** 44.36 **
σ2

GCA (Female)xE 0.030 ** 18.47 **
σ2

GCA (Male)xE 0.030 ** 21.18 **
σ2

SCAxE 0.030 ** 11.07 **
σ2

e 0.490 217.55
h2 0.77 0.83

*, ** Significance at p < 0.05 and p < 0.01, respectively.

2.2. Heterosis and the Genetic Distance among Parental Lines

For MLN DS, negative values for heterosis are preferable as the goal was to develop MLN resistant
or tolerant hybrids and the resistance or tolerance is associated with lower values in the 1–9 scale
(Table 2). Compared to the mid-parent performance, hybrids had on an average low susceptibility
or high resistance or tolerance level to MLN as revealed for DS (−14.57%). Mid-parent heterosis for
MLN DS ranged from −38.63% to 43.83%. Compared to better resistant parent, hybrids had an average
−04.28% lower susceptibility to MLN. For AUDPC the mean mid-parent and better parent heterosis
was 14.19% and 51.19%, respectively.
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Table 2. Mean and range of absolute and relative values of mid parent heterosis and better parent
heterosis and the correlation between genetic distance of parental lines with F1 hybrids performance
and mid parent heterosis for MLN disease severity and AUDPC values based on 307 F1 hybrids.

Heterosis MLN DS AUDPC

Absolute mid-parent heterosis mean −0.90 11.99
range −2.41–1.77 −53.96–68.36

Relative mid parent heterosis mean −14.57 14.19
range −38.63–43.83 −28.14–93.21

Absolute better parent heterosis mean −0.39 39.79
range −2.05–2.56 −45.78–98.50

Relative better parent heterosis mean −4.28 51.19
range −36.66–74.63 −24.93–100

r(GD:F1HP) correlation 0.04 0.07
r(GD:MPH) correlation −0.11 −0.12

GD—genetic distance, MPH—mid parent heterosis.

The Rogers’ genetic distance estimates based on SNP marker data revealed a high variation in
relatedness among the parental lines. The distances among the 50 parental lines ranged considerably
from zero to 0.54 with a mean of 0.37. In the 50 pairwise comparisons, only 2.6% had genetic distances
<0.10. Most of the pairs of parents (40.1%) fell between 0.40 and 0.50. The principal component analyses
(PCA) showed clustering among the inbred lines (Figure 2). The first two principal components (PCs)
explained 56.6% of the total variation.
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The correlation between the line per se and the GCA effects of the lines was moderate and
significant with r = 0.72 (p < 0.01) and 0.58 (p < 0.01) for MLN DS and AUDPC, respectively (Figure 3).
The correlation between the mid parent heterosis (MPH) and the Rogers’ genetic distance was low and
negative for both the traits (Table 2). Mid parent performance was significantly (p < 0.05) correlated
with F1 hybrid performance for MLN DS (r = 0.29) and AUDPC values (r = 0.54, Figure 4). Compared
to predictions based on mid parent values, the GCA based correlations for F1 hybrid performance was
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higher for both the traits with r = 0.94 (p < 0.01) for MLN DS and r = 0.93 (p < 0.01) for AUDPC values
(Figure 4). Genomic predictions revealed high correlations with hybrid performance, for MLN DS r =

0.74 and for AUDPC values r = 0.77 (Figure 5).
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3. Discussion

MLN is a complex disease as the interaction between the two viruses (SCMV and MCMV) and their
interaction the with environment are critical for its widespread in the field [4]. Early discovery studies
clearly showed the contribution of many genomic regions for MLN resistance [4]. Genetic studies
on MLN showed both recessive [22] and dominance [23] type of inheritance in different populations.
Predominance of additive effects in the control of MLN resistance or tolerance was also evident in
a diallel study which involved 344 F1 hybrids [8]. Combining all the favorable alleles from diverse
sources of MLN resistance or tolerance into one hybrid combination is challenging. Nevertheless,
understanding the genetic differences and the type of gene action involved in MLN resistance or
tolerance is useful in prioritizing inbred lines to be used as parents or in hybrid development.

Breeding for MLN resistance is an important goal in SSA in the effort to reduce yield losses
and ensure food security [2]. Finding appropriate combinations to form hybrids which contribute to
both MLN resistance or tolerance and grain yield is the final goal. Hybrid breeding mainly aims at
identifying inbred parents with high genetic diversity and strong heterosis in the F1 generation [24].
In the present study 307 hybrids and their 50 parental lines were evaluated for their response to
MLN and the 50 parents were genotyped in order to compare different approaches to predict F1
hybrid performance and investigate the relationship between the mid parent heterosis and the parental
genetic distances.

The genetic variances were significant (p < 0.05) for both MLN DS and AUDPC values with
moderate to high heritability. This was consistent with previous studies on MLN resistance that
observed significant genetic variances and moderate to high heritability [4,5,8,23,25]. GCA and SCA
estimates provide useful information on potential parental value which helps the breeders to choose
appropriate breeding parents. The significance of the GCA effects indicates that at least one parent
differs from other parents in terms of number of favorable genes or alleles. GCA represents additive
genetic effects, with recurrent selection, it is possible to accumulate those favorable genes. In the
current study for MLN resistance GCA estimates are five times higher than SCA estimates, indicating
the importance of additive gene action for MLN resistance. Earlier study also revealed 2–3 times higher
GCA estimates over SCA estimates for MLN resistance [7]. Nevertheless, we also observed significant
SCA effects which indicating that one cannot completely ignore the non-additive effects, and this can
also be exploited to develop better MLN-resistant hybrids. The interaction of both GCA and SCA with
the environment was significant (p < 0.01) showing that both additive and non-additive genetic effects
were influenced by the environment. Higher heritabilities show the amenability of the trait to improve
for MLN resistance or tolerance through recurrent selection.
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Average genetic distance reported was 0.37 which is comparable with the earlier findings [26–28].
Masuka et al., [26] reported distances ranging from 0.004 to 0.40 with a mean of 0.294 from the analysis
of 53 parental lines and two F2 populations derived from the CIMMYT Africa breeding program.
Beyene et al., [27] analyzed the genetic distances of 703 doubled haploids and reported distances
ranging from 0.070 to 0.457 with an average of 0.355. Ertiro et al., [28] reported genetic distances which
ranged from 0.011 to 0.346 with an average of 0.313 across pairwise combinations of 265 inbred lines.
For Beyene et al., [27] most of the distances fell between 0.300 to 0.475 with a frequency of 69% and
in addition, less than 5% of the distances fell below 0.10. Masuka et al., [26] on the others reported
97.7% of the pairwise comparisons falling between 0.20 and 0.40 with only 0.5% showing <0.10 genetic
distance. Studies however, from different geographical regions have reported relatively contrasting
genetic distance like Li et al., [29] who evaluated popcorn lines from China using simple sequence
repeats (SSRs) and reported genetic distances ranging from 0.125 to 0.730 with an average of 0.477.
These differences could be contributed by different factors such as the type of markers used in the
study in that SSRs may show higher distances compared to GBS which covers the whole genome
and captures information that might have been missed by SSRs [26]. Other factors include the use of
different materials and breeding objectives such as target quality.

Negative and low magnitude of correlations were observed between genetic distance and mid
parent heterosis for both MLN DS and AUDPC (Table 2). Negative correlation implies that the
higher the genetic distance, the higher the MLN resistance or tolerance however, the magnitude of
correlation was low for both DS and AUDPC (Table 2). Previous studies have reported similar results
with low but significant negative correlations [10,14,30,31]. Gowda et al., [14] reported no significant
association between Rogers’ distance and heterosis from a weakly related panel of triticale lines. Various
explanations have been suggested in the relationship between heterosis and genetic distance. This
low correlation can be attributed to poor association between heterozygosity estimated from marker
data and with one at QTL in the crosses; poor association between heterozygosity and heterosis at the
QTL in the crosses; existence of multiple alleles and epistasis [32]. Melchinger et al., [33] explained
that heterosis could be predicted from the genetic distance depending on the type of germplasm used
and when it is smaller than a certain threshold.

In hybrid breeding, new lines are chosen as parental lines based on their line per se performance.
For simple inherited traits, mid parent value can serve as a good predictor of hybrid performance
in many crops including maize. For instance, several studies reported moderate to high accuracy
of >0.60 between mid-parent value and hybrid performance in maize for days to silking, ear dry
matter content, and plant height [34], also in wheat and triticale for plant height, heading time, and
1000-kernel weight [14,35–37]. In contrast to this expectation, we observed low to moderate correlations
between mid-parent value and hybrid performance for both traits (r = 0.29 for DS and r = 0.54 for
AUDPC). This is quite unexpected as we observed predominance of additive effects for MLN (Table 1),
the interaction between two viruses SCMV and MCMV and their interaction with environments
independently and/or together which is difficult to capture with current study may play a role here in
the observed low correlations which warrants further study. The correlation between the mid parent
value and the hybrid performance is anticipated to be low in complex traits due to masking dominance
effects [38]. MLN is a complex trait because of two viruses and controlled by few major and many
minor genes distributed across the genome [4,5,23,25]. Similar low correlations were also observed
in several studies for grain yield in maize [11,34,39], wheat [35,37], triticale [14,36,40], sunflower [7],
and barley [41]. For less complex traits like heading time and plant height, Gowda et al., [14] reported
higher accuracies (r = 0.81 and 0.88 respectively). Nonetheless prediction of hybrid performance based
on mid parental value is not high enough to use solely on MLN resistant hybrid prediction however,
its positive correlation with hybrid performance is a good indicator to select MLN resistant or tolerant
lines as parents.

Availability of prior information on GCA values of selected lines on trait of interest can help the
breeders to choose the specific lines for the hybrid combination which can enhance the probabilities of
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finding best hybrid combinations. Lines CML550, CML494, and CML343 showed low GCA values
(<4.5) and low MLN DS values (<5.7) indicating the high chances of success for selecting good
GCA lines based on per se performance (Figure 3). The observed moderate and significant positive
correlation between line per se performance and GCA effects showed that the inbreds per se performance
information can be used to prioritize the parental lines to make hybrid combinations. These results
are comparable with past studies whereby Dagne et al., [42] reported highly significant correlations
between GCA effects and per se performance for gray leaf spot and grain yield. Miedaner et al., [3] also
reported highly significant correlation between line per se and GCA effects in wheat.

In hybrid breeding, for the traits governed predominantly by GCA variance over SCA variance,
finding superior hybrids is moderately successful with GCA based predictions. For instance, simple
inherited traits like grain dry matter content in maize [43], plant height, and heading time in
wheat [10,14,35], resistance to leaf rust, powdery mildew and Septoria tritici blotch in wheat [35], and oil
content in sunflower [7] were effectively predicted for best hybrid combinations based on their GCA
effects. Similarly, even though MLN is relatively more complex, GCA is seems to be very effective
predictor of best hybrid combination/s which is clear with observed prediction accuracy of >0.90 for
both MLN DS and AUDPC values (Figure 4). This is also well supported from the previous study
results on GCA based prediction of MLN DS with 344 hybrids [7]. Further, Miedaner et al., [3] also
reported high prediction accuracy for hybrid performance of fusarium head blight based on GCA
effects (r = 0.86). Dagne et al., [42] also reported high correlation between the sum of GCA values of the
parents and the GLS severity of their progeny in maize. Therefore, though SCA effects are important in
hybrid breeding for MLN resistance or tolerance, GCA alone can be used as an effective predictor to
find the best possible combinations of MLN resistance or tolerance.

Though prediction based on GCA is effective for MLN resistance, having prior information on
GCA effects for all the available lines to be used in hybrid breeding is time consuming and labor
intensive. Alternative to phenotypic based GCA prediction, GP models are used to predict the hybrid
performance and estimate GCA effects with reduced field evaluation [21,44,45]. With GBLUP model,
we observed high prediction accuracy for both DS and AUDPC value (Figure 5). Similar results were
also reported in maize with accuracy ranging from 0.60 to 0.98 for several simple inherited traits like
grain moisture [13,21], grain dry matter content [44], plant height, days to silking, lignin content,
starch content, sugar content [45], root lodging, stock lodging [13], and northern corn leaf blight
resistance [46]. GP is also promising for complex traits like grain yield and dry matter yield in maize
which predicted with high accuracies ranged from 0.50 to 0.95 [21,44,45]. In conclusion, marker-based
prediction is also promising for both simple and complex inherited traits however their accuracy is
influenced by marker density, size of tested hybrids and relatedness of tested and untested hybrids.

In classical way of hybrid breeding, forming large number of crosses and further testing them in
yield trials is very much time and supply demanding. Therefore, optimally allocating the available
resources with increase in selection gain and the probability to identify the hybrids with superior
performance is crucial in hybrid breeding. Having prior knowledge on genetic architecture of the trait
under evaluation, analysis of genetic variance, estimate of heritability, combining ability, and trait
linked markers assist the breeder to predict the untested hybrids performance with more precision.
Further predominance of variance due to GCA over SCA effects suggests high recurrent selection
gain is possible in hybrid breeding for MLN resistance. GCA tests are feasible but very tedious.
Alternatively, studies in maize have shown that GCA effects can be predicted accurately using tools
like GP. Consequently, implementing GP specially to predict GCA effects of the parental lines is
a promising approach.
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4. Materials and Methods

4.1. Selection of Parents, Hybrid Formation, and Trial Design

After screening >1100 lines for MLN under artificial inoculation [20], a set of 50 lines with varying
level of MLN resistance or tolerance were chosen and crossed in a half diallel mating scheme and
generated 307 F1 hybrids at the maize research station of Kenya Agriculture and Livestock Research
Organization (KALRO), Kiboko, Kenya. All these hybrids with adequate seeds for evaluation over
two seasons were harvested for this study. The inbred lines and hybrids were evaluated in one row
3m plots with two replicates in alpha lattice design for two seasons at MLN Screening Facility at the
KALRO Research Center at Naivasha (Latitude 0◦43′ S, longitude 36◦26′ E, 1896 asl), Kenya. All the
recommended standard agronomic practices were followed.

4.2. Viral Inoculum and Artificial Inoculation

The SCMV and MCMV isolates collected from MLN hotspot areas in Kenya were used to develop
inoculum for this study. The isolates were confirmed by enzyme-linked immunosorbent assay (ELISA).
Maintenance of inoculum purity was carried out on the susceptible hybrid H614 in separate greenhouses
until artificial inoculation of entries in the field. MLN inoculum was prepared from an optimized
combination of MCMV and SCMV viruses in the ratio of 1:4 to ensure uniform MLN pressure across
the fields. Plant leaves used for inoculum were cut into small pieces and ground in 10 Mm Potassium
phosphate at pH 7.0. The resulting sap extract was centrifuged at 12,000 rpm for two minutes and
decanted with carborundum at 0.02 g/mL. Plants were inoculated at an inoculation spray pressure of
10 kg/cm2 using a backpack mist blower with an open nozzle of 2 inches in diameter. The presence of
both viruses (SCMV and MCMV) in the inoculated field trials was confirmed by ELISA at approximately
two weeks after inoculation. Each plot has 13 to 14 plants in each replications and disease data was
recorded across all plants. MLN DS was visually scored on a plot basis for each replication, first score
was started at three weeks after second inoculation (21 days post inoculation), afterwards at 10-day
interval scoring was done for up to four observations (21-, 31-, 41-, and 51-days post inoculation).
The scoring was done in the scale of 1 (no disease symptoms) to 9 (highly susceptible, complete plant
death). After analyzing DS for each time score, the third score (41 days post-inoculation) was chosen
for further analysis because of its higher heritability and full expression of disease symptoms. AUDPC,
a quantitative measure of disease intensity with time was calculated for each plot using SAS 9.4 (SAS
Institute Inc., 2015, Cary, NC, USA) to provide a measure of the progression of MLN severity across
time. MLN Severity measurements over time were used to calculate the AUDPC by integrating the
following formula for each parental line and hybrid separately:

AUDPC =
n−1∑

i

(Xi + Xi+1)(ti+1 − ti)

2

where Xi is an assessment of a disease severity (here in ordinal score of 1–9) at the ith observation, ti is
time (in days) at the ith observation, and n is the total number of disease severity observations [47].

4.3. Phenotypic Data Analysis

Both lines and hybrids were evaluated in two seasons under artificial inoculation in Naivasha.
For the analyses each season were treated as different environment. Since MLN DS was scored on
an ordinal scale data was checked to know whether they follow all the applied statistical model
assumptions like independent, normally distributed and having constant variance. These assumptions
were checked by plotting residuals for each and across environments, which revealed MLN data
met all the assumptions. In the process of quality check, we excluded the detected outliers from
further analyses. Analysis of variance was determined for MLN DS and AUDPC within and across
environments for inbred lines and hybrids by restricted maximum likelihood method using META-R
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(Multi Environment Trait Analysis R software) for calculating best linear unbiased predictions (BLUPs)
for each lines and hybrids, and PROC MIXED procedure in SAS 9.4 (SAS Institute Inc., 2015, Cary,
NC, USA) to calculate variance components, best linear unbiased estimates (BLUEs) and GCA effects.
Dummy variables were used to separate genotypes into parental lines and hybrids. The phenotypic
data of the parental inbred lines and hybrids were analyzed based on following linear model:

yi jklm = µ+ a + gi j + lk + (gl)i jk + rlk + bmlk + ei jklm

where yijklm represents the phenotypic performance of ijth genotype (parental line i = j, or hybrid i , j)
in the mth incomplete block of the lth replication in the kth environment, µ is an intercept term, a is the
group effect for lines and hybrids, gij the genetic effect of the ijth genotype (parental line i = j, or hybrid
i , j), lk the effect of the kth environment, (gl)ijk the interaction of ijth genotype (parental line i = j, or
hybrid i , j) with kth environment, rlk the effect of the lth replication in the kth environment, bmlk the
effect of the mth incomplete block in the lth replication of the kth environment, and eijklm is the residual
error term. Except (gl)ijk and bmlk all effects were treated as fixed to estimate BLUEs. Total variance
components for lines and hybrids were estimated by assuming lk, and rlk, as fixed effect and all other
effects as random.

The total variance of hybrids was further divided into variance due to GCA effects of males and
females and SCA effects of crosses and their interactions. The mixed model used to estimate the
variance components for hybrids was:

yi jklm = µ+ lk + g′i + g′′j + si j + (g′l)ik + (g′′ l) jk + (sl)i jk + rlk + bmlk + ei jklm

where yijklm is the phenotypic performance of F1 hybrids in the mth incomplete block of the lth
replication in the kth environment lk the effect of the kth environment, g′i and g′′j the GCA effect
of the ith female line and jth male line, respectively, si j is the SCA effect of crosses between lines i
and j, (g′l)ik and (g′′ l) jk are GCA x environment effects of female and male lines, (sl)i jk, the SCA x
environment interaction effect and eijklm is the residual error. Except environment and replication effect,
all other effects were treated as random. A Wald’s F test [48] was used to test whether variances were
significantly greater than zero. Broad sense heritability was estimated as the ratio of genotypic to
phenotypic variance. Best linear unbiased estimate (BLUE) and best linear unbiased predictor (BLUP)
for each parental line and hybrids were obtained for within and across environments.

4.4. Molecular Data Analysis

DNA of all 50 inbred lines was extracted from 3–4 leaves old stage seedlings and genotyped using
Genotyping by Sequencing (GBS) platform at the Institute for Genomic Diversity, Cornell University,
Ithaca, USA as per the procedure described in earlier studies [49]. The GBS SNP datasets were filtered
where a minor allele frequency of <0.10, heterozygosity of >5% and missing data rates >5% were
excluded from further analysis in TASSEL ver 5.2 [50]. Finally, we used 13,450 SNPs for further analyses.
Hybrid profiles were deduced from the parental fingerprints. Principal coordinate analyses (PCoA)
was performed with Tassel ver 5.2 and then visualized in R software (http://www.R-project.org/).

4.5. Heterosis and Correlations

For each combination of parental lines, mid-parent value (MPV), relative mid-parent heterosis
(MPH), and relative better parent heterosis (BPH) were calculated using hybrid performance (HP) as
follows: MPV = (P1 + P2) / 2, MPH = [(HP −MPV) / MPV] × 100, and BPH = [(HP − Pmax) / Pmax] × 100,
where Pmax is the better resistant parent. Pairwise Pearson’s correlation coefficients (r) were calculated
for HP with MPV, r(MPV:HP), and the GCA effects with the lines per se performance, r(GCA:per se).
Further, we also tested the Pearson’s correlation of HP with the sum of GCA effects of both the parents,
r(GCA: HP). The correlation between the Roger’s genetic distance between the parents and their

http://www.R-project.org/
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MPH was estimated, r(GD:MPH). Correlation between Roger’s genetic distance and F1 HP was also
calculated, r(GD:F1HP). All analyses were performed using the R software (http://www.R-project.org/).

4.6. Genomic Prediction

Parametric prediction method G-BLUP accounting for the GCA was used to predict the
performance of the single-crosses for MLN DS and AUDPC values. BLUEs across environments were
used for the prediction. For the GP of the hybrid’s performance, we used a two-stage approach [13],
where, in the first stage, the phenotypes were corrected for the experimental design effects, and in
the second stage, the prediction models were fitted using the adjusted phenotypes. The details of the
model and steps in implementation are explained in our earlier study [51]. In brief, this method is
based on the commonly used additive effect model. Given the n by p matrix M describing the marker
states of the n individuals at loci p, the additive model is defined as:

Y = mu + M ∗ beta + e.

Here, Y is n by 1 the vector of phenotypic data, mu a fixed effect, beta a vector of marker effects
and e a vector of errors. Note that the term GBLUP usually refers to a reformulated version using g =

M * beta. In which g is assumed to be normally distributed with mean zero and variance covariance G
that is the marker-derived relationship matrix obtained as VanRaden [52]. It must be highlighted that
G matrix was obtained between parents and hybrids were predicted considering the GCA incidence
matrix. For cross validations, the set of 307 hybrids were split into a training set (80%) and a testing set
(20%) to test the predictive ability of the model; this process was repeated 50 times by random selection
of the subsets. For each, correlation between predicted and observed values were calculated.
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