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Abstract: Recently, plant disease classification has been done by various state-of-the-art deep 

learning (DL) architectures on the publicly available/author generated datasets. This research 

proposed the deep learning-based comparative evaluation for the classification of plant disease in 

two steps. Firstly, the best convolutional neural network (CNN) was obtained by conducting a 

comparative analysis among well-known CNN architectures along with modified and 

cascaded/hybrid versions of some of the DL models proposed in the recent researches. Secondly, 

the performance of the best-obtained model was attempted to improve by training through various 

deep learning optimizers. The comparison between various CNNs was based on performance 

metrics such as validation accuracy/loss, F1-score, and the required number of epochs. All the 

selected DL architectures were trained in the PlantVillage dataset which contains 26 different 

diseases belonging to 14 respective plant species. Keras with TensorFlow backend was used to train 

deep learning architectures. It is concluded that the Xception architecture trained with the Adam 

optimizer attained the highest validation accuracy and F1-score of 99.81% and 0.9978 respectively 

which is comparatively better than the previous approaches and it proves the novelty of the work. 

Therefore, the method proposed in this research can be applied to other agricultural applications 

for transparent detection and classification purposes. 

Keywords: plant disease classification; convolutional neural network; deep learning; validation 

accuracy; F1-score 

 

1. Introduction 

In order to match the food demand, agricultural problems should be addressed by advanced 

techniques. In this regard, the agricultural industries are focusing on artificial intelligence methods. 

Several traditional machine learning (ML) algorithms have been used to perform various agricultural 

operations. On top of that, deep learning (DL) produced significant developments in the agricultural 

field of research. This is due to the automatic feature extraction capability of the deep learning 

algorithms. Among several agricultural problems, the successful classification of plant diseases is 

vital to improve the quality/quantity of agricultural products and reduce an undesirable application 

of chemical sprayers such as fungicide/herbicide. Therefore, it is an emerging research topic to 

advance agricultural automation. This agricultural task has a complexity due to the resemblance in 

the occurrence of the plant containing diseases. In this regard, several studies have been conducted 

to improve the classification of plant disease.  
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Many conventional machine learning (ML) models have been applied for plant disease 

classification [1,2]. Similarly, advanced imaging techniques including hyperspectral [3–7] and 

multispectral imaging [8] have also been used for plant/leaf disease identification. However, after the 

evolution of deep learning (DL), many state-of-the-art architectures, including AlexNet [9–14], Visual 

Geometry Group (VGG) [10,11,13,15,16], DenseNet [16], Inception-v4 [16] and ResNet [11,13,14,16], 

got promising results for the classification of plant disease. In this regard, several studies proved the 

significance of deep learning-based methods as compared to the traditional ML techniques. For 

example, a well-known DL model named GoogLeNet outperformed the ML algorithms including 

Support Vector Machine (SVM) and Random Forest (RF) models for the classification of disease in 

tomato leaves [9]. Another research showed the effectiveness of Convolutional Neural Networks 

(CNN) in comparison with the other state-of-the-art techniques such as Radial Basis Function Neural 

Network (RBFNN), Particle Swarm Optimization (PSO), and SVM for the classification of defects in 

mango leaves [17]. An article proposed a CNN model to identify diseases in apple leaves, which 

provided higher accuracy than SVM, Back-Propagation Neural Network model (BPNN), AlexNet, 

GoogLeNet, ResNet, and VGG models [18]. In [19], a CNN model was proposed to classify the disease 

in the leaves of PlantVillage dataset; its performance was better than the ML techniques such as SVM, 

Decision Tree (DT), Logistics Regression (LR), and K-Nearest Neighbor (KNN) models. This model 

also performed better than the well-known DL architectures including AlexNet, ResNet, VGG-16, 

and Inception-v3. Therefore, this article focuses on the DL-based models for the classification of plant 

disease. 

Different approaches have been adopted to enhance the results of plant disease classification 

including modified versions of well-known DL models, various training techniques, data 

augmentation techniques, cascaded versions of two successful DL architectures, etc. [6]. For example, 

the famous GoogLeNet model was improved to achieve better testing accuracy for the identification 

of maize leaf disease in a small period due to its lesser number of parameters [20]. Similarly, inspired 

by the AlexNet model, a modified CNN architecture was proposed that had a lesser number of filters 

in convolutional layers and number of nodes, which apparently reduced overall parameters as 

compared to the original model and successfully identified the disease in tea leaves [21]. By using an 

extended version of the PlantVillage dataset, two modified versions of MobileNet models were 

proposed and their performance was compared with the original model (MobileNet), AlexNet, and 

VGG models [22]. Another research proposed a cascaded version of DL architecture to classify 

disease in apple leaves and it achieved better results as compared to AlexNet, GoogLeNet, VGG-16, 

Inception-v3, and various versions of ResNet models [23]. Moreover, several visualization techniques 

were also utilized along with DL models to highlight the disease spots in several plant species [9,24–

26]. Few studies have been conducted to further advance the research of plant disease classification 

by using various training techniques. In [12], the performance of two well-known DL models 

(AlexNet and GoogLeNet) was compared, which were trained from transfer learning and scratch 

techniques. Reference [16] implemented ResNet, VGG, Inception-v4, and DenseNet models by using 

a fine-tuning technique. Another research compared the performance of DL architectures including 

AlexNet, ResNet, DenseNet, SqueezeNet, Inception-v3, and VGG by training through transfer 

learning and scratch techniques [24]. 

The research in deep learning has been progressing with the passage of time by introducing 

various methods to achieve remarkable outcomes. For example, in [27], a random search method was 

proposed for tuning the hyperparameters of the neural network to reduce forecasting errors. 

Similarly, various recent studies proposed the optimizations algorithms to find the optimal value of 

hyperparameters of DL architectures [28]. Moreover, deep learning requires an optimization 

algorithm to update the weight parameters and reduce the losses. Therefore, various deep learning 

optimizers have been developed by the research community to achieve better results in image 

classification tasks. These optimizers produce a significant improvement in the performance of DL 

models. In the context of plant disease classification, the previous researches either focused on the 

modification of state-of-the-art DL models or the deployment of various training techniques. 

However, none of the previous studies has proposed an improvement in the plant disease 
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classification by state-of-the-art DL optimizers through a comparative study. In this regard, this 

article presents a comprehensive comparative analysis to perform plant disease classification in two 

steps. In the first step, the performance of 18 convolutional neural networks was evaluated: 10 

famous/well-known DL architectures that were previously used for several image recognition tasks, 

six recently published modified versions that were derived from the famous DL models, and two 

cascaded/hybrid versions that were developed from two efficient DL algorithms; the second step was 

applied to improve the performance of the best-obtained model by training with various deep 

learning optimizers including RMSProp, Adam, Adadelta, Adamax, and Adagrad. For a 

comprehensive evaluation, validation accuracy/loss, F1-score, and the number of epochs (required to 

converge training and validation plots) were compared. The PlantVillage dataset was selected for this 

research, which contains disease in 14 different plant species. The successful/better classification 

results obtained in a large variety of dataset classes confirm that the method presented in this article 

can also be applied to other datasets related to plant disease. Furthermore, the better results obtained 

by this research will be useful for future studies regarding the real-time classification and detection 

of plant disease in a single framework. Moreover, the proposed methodology could also be adopted 

to other agricultural applications. 

The rest of the paper is organized as follows: Section 2 presents the details of the dataset, 

hardware/software specifications, DL architectures, DL optimizers, and specifications required to 

train the DL models. Section 3 presents the results to indicate the performance of all the well-known, 

modified, and cascaded/hybrid versions of DL models along with the improvement in the 

performance of best-obtained models by using various deep learning optimizers, and finally, Section 

4 describes the concluding remarks along with some future recommendations. 

2. Materials and Methods 

The Convolutional Neural Networks (CNNs) are mostly used for image classification tasks. 

Therefore, in this research, the performance of many state-of-the-art CNN architectures was 

evaluated for the classification of plant diseases. The modified and cascaded versions of DL 

architectures were also considered, which were recently published in prominent research articles 

related to plant disease classification. Figure 1 shows all the 18 DL architectures considered for this 

research. These models were divided into three categories: well-known, modified/improved, and 

cascaded/hybrid versions. An overall methodology of this research is presented in Figure 2. Firstly, 

the Stochastic Gradient Descent (SGD) with momentum optimizer was selected to train the CNN 

models due to its fast convergence ability [24]. Then, 18 CNN architectures were trained on the 

PlantVillage dataset and their convergence to the final training/validation values was observed to 

update the hyperparameters. Next, the CNN models were compared in terms of training and 

validation accuracy/loss, and F1-score. This led us to apply the DL optimization algorithms for further 

improvement in the performance of those CNN architectures, which achieved the highest F1-score in 

their particular category. The novelty of the work is proved by getting the most suitable combination 

of the CNN model and DL optimizer, which provided considerably better result as compared to the 

previous researches. 
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Figure 1. Three categories of DL architectures: well-known, improved/modified, and cascaded/hybrid 

versions. MLCNN: Multi-label Convolutional Neural Network, VGG: Visual Geometry Group. 

 

Figure 2. The methodology of this research. CNN: Convolutional Neural Network, SGD: Stochastic 

Gradient Descent. 
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2.1. Dataset 

All the DL models were trained on a publicly available dataset called PlantVillage [29], which 

contains a total of 54,306 images containing 38 different healthy/diseased leaves related to their 14 

plant species (some of the plant diseases are shown in Figure 3). The size of the images was changed 

to 224 × 224 × 3 and normalization was considered by dividing the values of pixel by 255 for making 

it suitable for the initial values of the models. The dataset was divided by 70%, 20%, and 10% into 

three categories to avoid overfitting: training, validation, and testing datasets, respectively [22]. 

 

Figure 3. Some of the plant diseases from the PlantVillage dataset [29]. 

2.2. Software and Hardware Specifications 

The DL architectures were programmed in Python language due to the availability of very useful 

libraries and DL frameworks. Keras with TensorFlow backend was utilized to build the architectures. 

CuDNN library was installed as it increases the speed of training and works with TensorFlow. All 

the experiments were carried out on a Graphical Processing Unit (NVIDIA Quadro K2200) having 

the specifications: 4GB memory, 640 CUDA cores, 1045 MHz core clock, and 80 GB/sec memory 

bandwidth. 

2.3. Deep Learning Architectures 

After the development of the AlexNet architecture, a revolutionary period of state-of-the-art 

CNN architectures was started for many image classification tasks. Therefore, in this article, we 

considered very popular and successful CNN models such as AlexNet [30], OverFeat [31], VGG-16 

[32], ZFNet [33], ResNet-50 [34], Inception ResNet-v2 [35], Inception-v4 [35], MobileNet [36], 

DenseNet-121 [37] and Xception [38]. 

Some researchers proposed improved/modified versions of state-of-the-art DL architectures to 

achieve better/more results for classifying the diseases of plant species. Among them, we have 

considered improved GoogLeNet [20], inspired by the famous GoogLeNet model [39], Cifar-10 [20], 

LeafNet [23], a multilayer convolutional neural network (MLCNN) [17] derived from the AlexNet 

model [30], and modified and reduced MobileNet [22] inspired by the MobileNet model [36]. Some 

cascaded/hybrid versions of DL architectures have also been considered in this article such as a 

cascaded form of the well-known AlexNet with GoogLeNet models as described in [18] and a hybrid 

DL architecture of AlexNet with VGG models (AgroAVNET) as proposed in [40]. 
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2.4. Deep Learning Optimizers 

The Stochastic Gradient Descent (SGD) was used to train all the DL models during the first step 

of the proposed method. After getting the best DL architecture, an improvement in the classification 

of plant disease was also attempted. In this regard, we used five state-of-the-art deep learning 

optimizers to train those DL models which attained the highest validation accuracy and F1-score in 

the first step of the analysis. Few characteristics of these optimizers are provided as under: 

 SGD: This is one of the simplest deep learning optimizers. A static learning rate for all the 

parameters requires in the duration of whole training and it has a fast convergence ability [41]. 

 Adagrad: This optimizer uses different learning rates for every parameter in the model. It 

updates the learning rate according to the frequency of the update of each parameter [42].  

 RMSProp: To reduce the training time observed in Adagrad, the RMSProp optimizing functions 

were proposed and its learning rate decays exponentially [43]. 

 Adadelta: This is an extended version of Adagrad optimizer and accumulates the previous 

gradients over a fixed time window which ultimately ensures the continuation of learning even 

after many iterations. Adadelta used Hessian approximation to ensure the update direction in 

the negative gradient and eliminated the learning rate from update rule [44].  

 Adam: The Adaptive moment estimation method (Adam) evaluates adaptive learning rates from 

the first and second moments of gradients for various parameters [45]. It has combined 

advantages of two extended versions of the SGD method that are Adagrad and RMSProp. In 

contrast with the RMSProp, it calculates the average of the second moment of gradient and it 

also utilizes the previous gradients to speed up learning [45].  

 Adamax: A different version of Adam was also proposed in [45] which is based on the infinity 

norm and could be useful for sparse parameter updates like word embeddings. 

2.5. Training Specifications 

All the DL models were trained from scratch on the PlantVillage dataset. The hyperparameters 

were tuned by the random search method [46]. The internal covariate shift problem occurs on the 

neural network because of the variation in the distribution of input data due to a change in the 

number of parameters in the previous layer. This problem was addressed by Batch Normalization 

which is a very useful technique for a high learning rate [47]. For training all the DL models, the ReLU 

activation function was used as it is computationally efficient [24,30] and reduces the possibility of 

the gradient vanishing. The specifications of all the DL optimizers are summarized in Table 1. 

Table 1. Hyperparameters of the deep learning optimizers. 

Optimizers Specifications 

SGD 
learning rate = 0.001, weight decay = 0.0005, momentum = 0.9, nesterov 

= False  

Adagrad learning rate = 0.001, epsilon = 1 × 10−7  

RMSProp learning rate = 0.001, rho = 0.9, epsilon = 1 × 10−7 

Adadelta learning rate = 1.0, rho=0.95, epsilon= 1 × 10−6 

Adam 
learning rate = 0.001, beta1 = 0.9, beta2 = 0.999, epsilon = 1 × 10−8, 

amsgrad = False  

Adamax learning rate = 0.002, beta1 = 0.9, beta2 = 0.999, epsilon = 1 × 10−8 

3. Results and Discussion 

This section first presents the comparative analysis of DL architectures to select the best model 

which leads to the results obtained regarding the improvement in the performance of the best-suited 

models by using various DL optimization algorithms. All the results were evaluated in terms of 

training, validation accuracy/loss, and F1-score. The F1-score is considered an important performance 

metric especially for the case when there is an uneven distribution in the classes just such as the 



Plants 2020, 9, 1319 7 of 17 

 

PlantVillage dataset (for example, the Potato healthy class contains the least number of images (152), 

whereas, the Citrus greening has the highest number of images (5507) [29]). Therefore, the 

model/optimizer that attained the highest F1-score was considered the most suitable architecture for 

the classification of plant disease. The performances of all DL architectures are represented by line 

graphs (Figure 4–Figure 6), and it was empirically observed that they required 60 epochs (an epoch 

is a complete cycle of training on each image sample in the training dataset) at which 

training/validation accuracy and loss were converged. The overall performance of DL architectures 

is also summarized in Table 2. 

3.1. Step-1: Comparative Analysis of Deep Learning Architectures  

3.1.1. Performance of Well-Known CNN Architectures 

The performance of well-known CNN architectures is presented in Figure 4, and it indicates that 

there is no sign of underfitting (the problem occurs during the training of deep learning models 

according to which the model does not train accurately if training loss does not change or it 

continuously decreases) and overfitting (the problem at which the model does not perform 

appropriately for new data/validation dataset or validation loss decreases to some extent then 

suddenly increases for the remaining epochs). Overall, 10 well-known CNN architectures were 

considered. A few important observations from Figure 4 and Table 2 were made: 

 The Xception model attained the highest validation accuracy, F1-score, and lowest validation 

loss among all the well-known CNN models. Therefore, this model can be undoubtedly 

considered as the best CNN architecture to classify plant disease on the PlantVillage dataset. It 

implies that the concept of a modified version of depth-wise separable convolution [38] in the 

Xception model is a useful way to obtain higher classification results. Moreover, this DL model 

converged to its final value at the 34th epoch which is the least number of epochs as compare to 

all the other DL architectures. On the other hand, it required a significant amount of time to 

complete one epoch (around 3400 sec). Therefore, future studies should propose another version 

of DL architecture that can achieve Xception-level accuracy and require smaller training time for 

each epoch. 

 The second highest F1-score/validation accuracy was attained by ZFNet architecture. Hence, a 

smaller filter size and the increased number of activation maps used in ZFNet architectures (as 

compared to AlexNet) improved its performance. 

 Then, MobileNet, DenseNet, and AlexNet architectures have also achieved a good F1-score 

followed by Inception-v4, ResNet-50, and Inception ResNet-v2 architectures. The MobileNet is 

a comparatively more preferable model due to its lower number of parameters which reduced 

its computation time significantly. The depthwise and pointwise convolutional layers helped to 

achieve a better classification result. Therefore, a CNN model could be proposed in future 

research based on the MobileNet architecture. Moreover, this model required a lower number 

of epochs to achieve its final accuracy and loss as compare to DenseNet and AlexNet models (as 

shown in Table 2).   

 From Table 2, it is also noticed that the DL models, such as Inception-v4, Inception ResNet-v2, 

OverFeat, and VGG-16, required 58-59 number of epochs to converge training/validation plots 

(also shown in Figure 4), which significantly increased their training time.  

 The VGG-16 and OverFeat were found unsuitable models for plant disease classification as they 

achieved lower validation accuracy/F1-score and higher validation loss as compared to the other 

well-known DL architectures. The smaller filter size of the VGG model degraded its 

performance. However, the larger filter size of the OverFeat model significantly reduced its 

training time but they were not enough to provide a noticeable classification performance. 

Additionally, they had a higher number of parameters (in millions) which slow down their 

training time effectively. 
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3.1.2. Performance of Modified CNN Architectures 

In this article, six modified/improved versions of CNN architectures were also considered. Their 

performance is presented in Figure 5 from which the following points are discussed: 

 The improved GoogLeNet architecture achieved the best performance in terms of validation 

accuracy/loss and F1-score among all the modified versions of CNN architectures by utilizing 

the concept of the Inception module from the original GoogLeNet model. Moreover, it got the 

final value of accuracy and loss in 53 epochs which is the least as compared to other 

modified/improved versions of the DL models considered in this article, but it required more 

training time to complete one epoch as compared to the models like Modified and Reduced 

MobileNet. 

 The MLCNN architecture provided a good F1-score due to the inclusion of a dropout layer after 

each max pooling layer and a reduction in the number of filters of the starting convolution layers 

in the original AlexNet architecture. However, due to a higher number of parameters, this 

modified DL architecture required considerably higher training time per epoch.  

 The two versions of MobileNet named Modified and Reduced MobileNet models achieved an 

acceptable F1-score closed to each other. These modified versions of DL architecture used 

depthwise separable convolutional layers, which helped to attain a good classification result, 

and they had six times fewer parameters than the original MobileNet model which reduced their 

training time per epoch.  

 Moreover, there were some models like Improved Cifar-10 and LeafNet models that had a lower 

number of parameters which increased their speed of training per epoch. The Improved Cifar-

10 model achieved a noticeable F1-score, but the reduced parameters of the LeafNet model were 

not enough to obtain a good F1-score/validation accuracy. Therefore, it is not a suitable model 

to classify diseases in the selected dataset. It is also observed that these two models required a 

higher number of epochs as compare to other modified versions of DL architectures. Hence, 

future research could comprise of proposing a DL model such as Improved Cifar-10 and LeafNet 

for reducing the training time, but some convolutional layers should be added to attain 

acceptable validation/testing accuracy. 

3.1.3. Performance of Cascaded/Hybrid CNN Architectures 

Figure 6 presents the performance of cascaded/hybrid version of CNN models as explained 

below: 

 The cascaded AlexNet with GoogLeNet architecture outperformed all the DL models in terms 

of validation accuracy; moreover, except for the Xception architecture, this model achieved the 

highest F1-score among all the DL architectures considered in this research (as shown in Table 

2). Although it required almost 57 epochs to reach its final accuracy/loss values (as shown in 

Figure 6), but it completed one epoch in a smaller period, which clearly shows its effectiveness 

in terms of training time. There were a few important modifications in the original AlexNet 

model, which helped to extract the features of plants containing disease including smaller 

convolution kernel in different layers, the inclusion of max-pooling layer, cascading the 

Inception module with the modified AlexNet layers, and convolutional layers after Inception to 

replace two fully connected layers [18]. 

 Moreover, a hybrid version of AlexNet with VGG architectures has also been studied, and it 

provided good performance in terms of validation accuracy (as shown in Figure 6) and F1-score, 

but it had the highest number of parameters which significantly increased its training time to 

complete each epoch. This model performed well due to the utilization of concepts such as 

normalization and selection of filter depth from AlexNet and VGG models, respectively [40]. 
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Figure 4. Performance plots of well-known CNN architectures. (a), (b) provide training and validation 

accuracy/loss of VGG-16, OverFeat, AlexNet, ResNet-50 and Inception-v4 architectures. (c), (d) 

provide training and validation accuracy/loss of ZFNet, Inception ResNet-v2, DenseNet-121, 

MobileNet and Xception architectures. 
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Figure 5. Performance plots of modified versions of CNN architectures. (a) Provides training and 

validation accuracy, (b) provides training and validation loss. 
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Figure 6. Performance plots of cascaded/hybrid versions of CNN architectures. (a) Provides training 

and validation accuracy, (b) provides training and validation loss. 
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dataset but different approaches [12,16,19,24]. Therefore, the methodology proposed in this 

article could be used for various other agricultural operations. 

 The cascaded AlexNet with GoogLeNet and improved GoogLeNet models achieved their best 

classification results by using the Adadelta and Adam optimizers, respectively.  

 However, a degradation in the performance has also been observed when optimizing functions 

were changed from SGD to Adagrad and RMSProp for Xception and cascaded models, 

respectively.  

 It is also noticed that the Improved GoogLeNet showed its lowest validation accuracy/F1-score 

when it was trained by the SGD optimizer.
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Table 2. Training and validation accuracy/loss, precision, recall, and F1-score along with the number of parameters, training time, and epochs required to train deep 

learning architectures (in the order of the lowest to the highest F1-score).

Deep Learning 

Architectures 

Parameters 

(in 

Millions) 

Epochs 

Required to 

Train the Model 

Training 

Time (in 

Hours) 

Training 

Accuracy 

Validation 

Accuracy 

Training 

Loss 

Validation 

Loss 
Precision Recall 

F1-

score 

LeafNet 0.324 M 59 5.95 0.8590 0.7961 0.4563 0.6658 0.7946 0.7971 0.7958 

VGG-16 138 M 59 38.13 0.8339 0.8189 0.5328 0.5651 0.8182 0.8194 0.8188 

OverFeat 141.8 M 58 6.75 0.8995 0.8603 0.3201 0.4330 0.8592 0.8628 0.8610 

Improved Cifar-10 2.43 M 58 6.08 0.9256 0.8974 0.2628 0.3205 0.8944 0.8960 0.8952 

Inception ResNet 

v2 
54.3 M 58 32.83 0.9551 0.9091 0.1530 0.3047 0.9075 0.9105 0.9089 

Reduced 

MobileNet 
0.5 M 55 11.72 0.9570 0.9278 0.1860 0.2442 0.9269 0.9267 0.9268 

Modified 

MobileNet 
0.5 M 53 6.38 0.9534 0.9297 0.1632 0.2385 0.9278 0.9265 0.9271 

ResNet-50 23.6 M 55 26.33 0.9873 0.9423 0.0468 0.1923 0.9351 0.9358 0.9354 

MLCNN 78 M 57 67.33 0.9583 0.9402 0.1335 0.1820 0.9386 0.9411 0.9398 

Inception v4 41.2 M 59 52.92 0.9586 0.9489 0.1410 0.1828 0.9410 0.9466 0.9438 

Improved 

GoogLeNet 
6.8 M 53 9.67 0.9829 0.9521 0.0522 0.1038 0.9528 0.9539 0.9533 

AlexNet 60 M 54 6.10 0.9689 0.9578 0.1046 0.1298 0.9563 0.9570 0.9566 

DenseNet-121 7.1 M 56 28.75 0.9826 0.9580 0.0758 0.1323 0.9581 0.9569 0.9575 

MobileNet 3.2 M 47 14.70 0.9764 0.9632 0.0903 0.1090 0.9624 0.9612 0.9618 

Hybrid AlexNet 

with VGG 

(AgroAVNET) 

238 M 54 49.90 0.9841 0.9649 0.0546 0.1078 0.9626 0.9674 0.9650 

ZFNet 58.5 M 47 6.47 0.9752 0.9717 0.0746 0.1139 0.9746 0.9751 0.9748 

Cascaded AlexNet 

and GoogLeNet 
5.6 M 57 6.5 0.9931 0.9818 0.0229 0.0592 0.9749 0.9751 0.9750 

Xception 22.8 M 34 56.28 0.9990 0.9798 0.0140 0.0621 0.9764 0.9767 0.9765 
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Table 3. Performance of deep learning optimizers applied to train cascaded AlexNet with GoogLeNet, 

Improved GoogLeNet, and Xception models. 

4. Conclusions and Future Recommendations 

In this article, a comprehensive comparative analysis has been performed between various state-

of-the-art deep learning architectures divided into three categories namely well-known, modified, 

and cascaded versions. Moreover, the performance of the best-obtained models was further 

improved by using various deep learning optimization algorithms. It was found that the Xception, 

Improved GoogLeNet and cascaded version of AlexNet with GoogLeNet models obtained the 

highest validation accuracy and F1-score in their respective category. When these three DL models 

were trained by using various deep learning optimizers, the Xception model trained by the Adam 

optimizer achieved the highest F1-score of 0.9978 which suggests that this combination of the CNN 

model and the optimization algorithm is the most suitable way to classify the plant disease. This 

research provided us some interesting future directions for upcoming research given as follows: 

 Various deep learning optimizers such as Adam, and Adadelta, can also be used to enhance 

research on other agricultural applications, such as crop/weed discrimination, classification of 

weeds, plant recognition, etc.  

 The classification performance of the other datasets related to plant disease could also be improved 

by adopting the methodology proposed in this research. 

 Furthermore, although the Xception model provided the best results according to the analysis 

provided in this article, it required a significant amount of time to complete each epoch. 

Optimizers 
Training 

Accuracy 

Validation 

Accuracy 

Training 

Loss 

Validation 

Loss 
Precision Recall 

F1-

score 

Cascaded AlexNet with GoogLeNet  

SGD 0.9931 0.9818 0.0229 0.0592 0.9749 0.9751 0.9750 

RMSProp 0.9894 0.9757 0.0482 0.1479 0.9746 0.9613 0.9679 

Adagrad 0.9956 0.9824 0.0153 0.0547 0.9815 0.9782 0.9798 

Adamax 0.9990 0.9859 0.0029 0.0574 0.9828 0.9795 0.9811 

Adam 0.9989 0.9857 0.0039 0.0750 0.9836 0.9836 0.9836 

Adadelta 0.9993 0.9873 0.0024 0.0696 0.9846 0.9856 0.9851 

Improved GoogLeNet 

SGD 0.9829 0.9521 0.0522 0.1038 0.9528 0.9539 0.9533 

RMSProp 0.9723 0.9685 0.1780 0.2272 0.9692 0.9666 0.9679 

Adagrad 0.9889 0.9718 0.0350 0.0930 0.9651 0.9618 0.9634 

Adamax 0.9998 0.9847 
8.782 × 

10−4 
0.0875 0.9792 0.9826 0.9809 

Adam 0.9992 0.9904 0.0026 0.0434 0.9859 0.9872 0.9864 

Adadelta 0.9991 0.9905 0.0022 0.0567 0.9828 0.9879 0.9861 

Xception 

SGD 0.9990 0.9798 0.0140 0.0621 0.9764 0.9767 0.9765 

RMSProp 0.9998 0.9924 
6.922 × 

10−4 
0.0433 0.9877 0.9920 0.9900 

Adagrad 0.9987 0.9621 0.0164 0.1460 0.9682 0.9505 0.9593 

Adamax 1.0000 0.9889 0.0012 0.0415 0.9902 0.9874 0.9888 

Adam 1.0000 0.9981 
6.890 × 

10−4 
0.0178 0.9981 0.9975 0.9978 

Adadelta 1.0000 0.9906 
8.407 × 

10−4 
0.0364 0.9926 0.9887 0.9906 
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Therefore, an attempt should be made to achieve an Xception level accuracy with small training 

time. 
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