

Plants 2020, 9, 1319; doi:10.3390/plants9101319 www.mdpi.com/journal/plants

Article

Plant Disease Classification: A Comparative

Evaluation of Convolutional Neural Networks

and Deep Learning Optimizers

Muhammad Hammad Saleem 1, Johan Potgieter 2 and Khalid Mahmood Arif 1,*

1 Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology,

Massey University, Auckland 0632, New Zealand; H.Saleem@massey.ac.nz
2 Massey Agritech Partnership Research Centre, School of Food and Advanced Technology,

Massey University, Palmerston North 4442, New Zealand; J.Potgieter@massey.ac.nz

* Correspondence: K.Arif@massey.ac.nz

Received: 9 September 2020; Accepted: 4 October 2020; Published: 6 October 2020

Abstract: Recently, plant disease classification has been done by various state-of-the-art deep

learning (DL) architectures on the publicly available/author generated datasets. This research

proposed the deep learning-based comparative evaluation for the classification of plant disease in

two steps. Firstly, the best convolutional neural network (CNN) was obtained by conducting a

comparative analysis among well-known CNN architectures along with modified and

cascaded/hybrid versions of some of the DL models proposed in the recent researches. Secondly,

the performance of the best-obtained model was attempted to improve by training through various

deep learning optimizers. The comparison between various CNNs was based on performance

metrics such as validation accuracy/loss, F1-score, and the required number of epochs. All the

selected DL architectures were trained in the PlantVillage dataset which contains 26 different

diseases belonging to 14 respective plant species. Keras with TensorFlow backend was used to train

deep learning architectures. It is concluded that the Xception architecture trained with the Adam

optimizer attained the highest validation accuracy and F1-score of 99.81% and 0.9978 respectively

which is comparatively better than the previous approaches and it proves the novelty of the work.

Therefore, the method proposed in this research can be applied to other agricultural applications

for transparent detection and classification purposes.

Keywords: plant disease classification; convolutional neural network; deep learning; validation

accuracy; F1-score

1. Introduction

In order to match the food demand, agricultural problems should be addressed by advanced

techniques. In this regard, the agricultural industries are focusing on artificial intelligence methods.

Several traditional machine learning (ML) algorithms have been used to perform various agricultural

operations. On top of that, deep learning (DL) produced significant developments in the agricultural

field of research. This is due to the automatic feature extraction capability of the deep learning

algorithms. Among several agricultural problems, the successful classification of plant diseases is

vital to improve the quality/quantity of agricultural products and reduce an undesirable application

of chemical sprayers such as fungicide/herbicide. Therefore, it is an emerging research topic to

advance agricultural automation. This agricultural task has a complexity due to the resemblance in

the occurrence of the plant containing diseases. In this regard, several studies have been conducted

to improve the classification of plant disease.

Plants 2020, 9, 1319 2 of 17

Many conventional machine learning (ML) models have been applied for plant disease

classification [1,2]. Similarly, advanced imaging techniques including hyperspectral [3–7] and

multispectral imaging [8] have also been used for plant/leaf disease identification. However, after the

evolution of deep learning (DL), many state-of-the-art architectures, including AlexNet [9–14], Visual

Geometry Group (VGG) [10,11,13,15,16], DenseNet [16], Inception-v4 [16] and ResNet [11,13,14,16],

got promising results for the classification of plant disease. In this regard, several studies proved the

significance of deep learning-based methods as compared to the traditional ML techniques. For

example, a well-known DL model named GoogLeNet outperformed the ML algorithms including

Support Vector Machine (SVM) and Random Forest (RF) models for the classification of disease in

tomato leaves [9]. Another research showed the effectiveness of Convolutional Neural Networks

(CNN) in comparison with the other state-of-the-art techniques such as Radial Basis Function Neural

Network (RBFNN), Particle Swarm Optimization (PSO), and SVM for the classification of defects in

mango leaves [17]. An article proposed a CNN model to identify diseases in apple leaves, which

provided higher accuracy than SVM, Back-Propagation Neural Network model (BPNN), AlexNet,

GoogLeNet, ResNet, and VGG models [18]. In [19], a CNN model was proposed to classify the disease

in the leaves of PlantVillage dataset; its performance was better than the ML techniques such as SVM,

Decision Tree (DT), Logistics Regression (LR), and K-Nearest Neighbor (KNN) models. This model

also performed better than the well-known DL architectures including AlexNet, ResNet, VGG-16,

and Inception-v3. Therefore, this article focuses on the DL-based models for the classification of plant

disease.

Different approaches have been adopted to enhance the results of plant disease classification

including modified versions of well-known DL models, various training techniques, data

augmentation techniques, cascaded versions of two successful DL architectures, etc. [6]. For example,

the famous GoogLeNet model was improved to achieve better testing accuracy for the identification

of maize leaf disease in a small period due to its lesser number of parameters [20]. Similarly, inspired

by the AlexNet model, a modified CNN architecture was proposed that had a lesser number of filters

in convolutional layers and number of nodes, which apparently reduced overall parameters as

compared to the original model and successfully identified the disease in tea leaves [21]. By using an

extended version of the PlantVillage dataset, two modified versions of MobileNet models were

proposed and their performance was compared with the original model (MobileNet), AlexNet, and

VGG models [22]. Another research proposed a cascaded version of DL architecture to classify

disease in apple leaves and it achieved better results as compared to AlexNet, GoogLeNet, VGG-16,

Inception-v3, and various versions of ResNet models [23]. Moreover, several visualization techniques

were also utilized along with DL models to highlight the disease spots in several plant species [9,24–

26]. Few studies have been conducted to further advance the research of plant disease classification

by using various training techniques. In [12], the performance of two well-known DL models

(AlexNet and GoogLeNet) was compared, which were trained from transfer learning and scratch

techniques. Reference [16] implemented ResNet, VGG, Inception-v4, and DenseNet models by using

a fine-tuning technique. Another research compared the performance of DL architectures including

AlexNet, ResNet, DenseNet, SqueezeNet, Inception-v3, and VGG by training through transfer

learning and scratch techniques [24].

The research in deep learning has been progressing with the passage of time by introducing

various methods to achieve remarkable outcomes. For example, in [27], a random search method was

proposed for tuning the hyperparameters of the neural network to reduce forecasting errors.

Similarly, various recent studies proposed the optimizations algorithms to find the optimal value of

hyperparameters of DL architectures [28]. Moreover, deep learning requires an optimization

algorithm to update the weight parameters and reduce the losses. Therefore, various deep learning

optimizers have been developed by the research community to achieve better results in image

classification tasks. These optimizers produce a significant improvement in the performance of DL

models. In the context of plant disease classification, the previous researches either focused on the

modification of state-of-the-art DL models or the deployment of various training techniques.

However, none of the previous studies has proposed an improvement in the plant disease

Plants 2020, 9, 1319 3 of 17

classification by state-of-the-art DL optimizers through a comparative study. In this regard, this

article presents a comprehensive comparative analysis to perform plant disease classification in two

steps. In the first step, the performance of 18 convolutional neural networks was evaluated: 10

famous/well-known DL architectures that were previously used for several image recognition tasks,

six recently published modified versions that were derived from the famous DL models, and two

cascaded/hybrid versions that were developed from two efficient DL algorithms; the second step was

applied to improve the performance of the best-obtained model by training with various deep

learning optimizers including RMSProp, Adam, Adadelta, Adamax, and Adagrad. For a

comprehensive evaluation, validation accuracy/loss, F1-score, and the number of epochs (required to

converge training and validation plots) were compared. The PlantVillage dataset was selected for this

research, which contains disease in 14 different plant species. The successful/better classification

results obtained in a large variety of dataset classes confirm that the method presented in this article

can also be applied to other datasets related to plant disease. Furthermore, the better results obtained

by this research will be useful for future studies regarding the real-time classification and detection

of plant disease in a single framework. Moreover, the proposed methodology could also be adopted

to other agricultural applications.

The rest of the paper is organized as follows: Section 2 presents the details of the dataset,

hardware/software specifications, DL architectures, DL optimizers, and specifications required to

train the DL models. Section 3 presents the results to indicate the performance of all the well-known,

modified, and cascaded/hybrid versions of DL models along with the improvement in the

performance of best-obtained models by using various deep learning optimizers, and finally, Section

4 describes the concluding remarks along with some future recommendations.

2. Materials and Methods

The Convolutional Neural Networks (CNNs) are mostly used for image classification tasks.

Therefore, in this research, the performance of many state-of-the-art CNN architectures was

evaluated for the classification of plant diseases. The modified and cascaded versions of DL

architectures were also considered, which were recently published in prominent research articles

related to plant disease classification. Figure 1 shows all the 18 DL architectures considered for this

research. These models were divided into three categories: well-known, modified/improved, and

cascaded/hybrid versions. An overall methodology of this research is presented in Figure 2. Firstly,

the Stochastic Gradient Descent (SGD) with momentum optimizer was selected to train the CNN

models due to its fast convergence ability [24]. Then, 18 CNN architectures were trained on the

PlantVillage dataset and their convergence to the final training/validation values was observed to

update the hyperparameters. Next, the CNN models were compared in terms of training and

validation accuracy/loss, and F1-score. This led us to apply the DL optimization algorithms for further

improvement in the performance of those CNN architectures, which achieved the highest F1-score in

their particular category. The novelty of the work is proved by getting the most suitable combination

of the CNN model and DL optimizer, which provided considerably better result as compared to the

previous researches.

Plants 2020, 9, 1319 4 of 17

Figure 1. Three categories of DL architectures: well-known, improved/modified, and cascaded/hybrid

versions. MLCNN: Multi-label Convolutional Neural Network, VGG: Visual Geometry Group.

Figure 2. The methodology of this research. CNN: Convolutional Neural Network, SGD: Stochastic

Gradient Descent.

Well-known

AlexNet

OverFeat

ZFNet

MobileNet

Inception ResNet-v2
Inception-v4

ResNet-50

VGG-16

DenseNet

Improved
GoogLeNet

Improved
Cifar-10

LeafNet

MLCNN

Modified
MobileNet

Reduced
MobileNet

AlexNet with
GoogLeNet

Xception

AlexNet with
VGG

SGD with momentum

Train with Well
Known CNN models

Train with Modified
CNN models

Train with
Cascaded CNN

models

Model
Converged?

No

Yes

Select the best
model

Tune hyperparameters
of SGD

Adam

Adamax

Adagrad

Adadelta

RMSProp

Apply five DL
Optimizers to
the best CNN

model obtained
from each of

 the three
categories

Final combination of CNN model and DL
optimizer obtained

Performance
Improvement?

Yes

No
Tune hyperparameters
of each DL Optimizer

Plants 2020, 9, 1319 5 of 17

2.1. Dataset

All the DL models were trained on a publicly available dataset called PlantVillage [29], which

contains a total of 54,306 images containing 38 different healthy/diseased leaves related to their 14

plant species (some of the plant diseases are shown in Figure 3). The size of the images was changed

to 224 × 224 × 3 and normalization was considered by dividing the values of pixel by 255 for making

it suitable for the initial values of the models. The dataset was divided by 70%, 20%, and 10% into

three categories to avoid overfitting: training, validation, and testing datasets, respectively [22].

Figure 3. Some of the plant diseases from the PlantVillage dataset [29].

2.2. Software and Hardware Specifications

The DL architectures were programmed in Python language due to the availability of very useful

libraries and DL frameworks. Keras with TensorFlow backend was utilized to build the architectures.

CuDNN library was installed as it increases the speed of training and works with TensorFlow. All

the experiments were carried out on a Graphical Processing Unit (NVIDIA Quadro K2200) having

the specifications: 4GB memory, 640 CUDA cores, 1045 MHz core clock, and 80 GB/sec memory

bandwidth.

2.3. Deep Learning Architectures

After the development of the AlexNet architecture, a revolutionary period of state-of-the-art

CNN architectures was started for many image classification tasks. Therefore, in this article, we

considered very popular and successful CNN models such as AlexNet [30], OverFeat [31], VGG-16

[32], ZFNet [33], ResNet-50 [34], Inception ResNet-v2 [35], Inception-v4 [35], MobileNet [36],

DenseNet-121 [37] and Xception [38].

Some researchers proposed improved/modified versions of state-of-the-art DL architectures to

achieve better/more results for classifying the diseases of plant species. Among them, we have

considered improved GoogLeNet [20], inspired by the famous GoogLeNet model [39], Cifar-10 [20],

LeafNet [23], a multilayer convolutional neural network (MLCNN) [17] derived from the AlexNet

model [30], and modified and reduced MobileNet [22] inspired by the MobileNet model [36]. Some

cascaded/hybrid versions of DL architectures have also been considered in this article such as a

cascaded form of the well-known AlexNet with GoogLeNet models as described in [18] and a hybrid

DL architecture of AlexNet with VGG models (AgroAVNET) as proposed in [40].

Plants 2020, 9, 1319 6 of 17

2.4. Deep Learning Optimizers

The Stochastic Gradient Descent (SGD) was used to train all the DL models during the first step

of the proposed method. After getting the best DL architecture, an improvement in the classification

of plant disease was also attempted. In this regard, we used five state-of-the-art deep learning

optimizers to train those DL models which attained the highest validation accuracy and F1-score in

the first step of the analysis. Few characteristics of these optimizers are provided as under:

 SGD: This is one of the simplest deep learning optimizers. A static learning rate for all the

parameters requires in the duration of whole training and it has a fast convergence ability [41].

 Adagrad: This optimizer uses different learning rates for every parameter in the model. It

updates the learning rate according to the frequency of the update of each parameter [42].

 RMSProp: To reduce the training time observed in Adagrad, the RMSProp optimizing functions

were proposed and its learning rate decays exponentially [43].

 Adadelta: This is an extended version of Adagrad optimizer and accumulates the previous

gradients over a fixed time window which ultimately ensures the continuation of learning even

after many iterations. Adadelta used Hessian approximation to ensure the update direction in

the negative gradient and eliminated the learning rate from update rule [44].

 Adam: The Adaptive moment estimation method (Adam) evaluates adaptive learning rates from

the first and second moments of gradients for various parameters [45]. It has combined

advantages of two extended versions of the SGD method that are Adagrad and RMSProp. In

contrast with the RMSProp, it calculates the average of the second moment of gradient and it

also utilizes the previous gradients to speed up learning [45].

 Adamax: A different version of Adam was also proposed in [45] which is based on the infinity

norm and could be useful for sparse parameter updates like word embeddings.

2.5. Training Specifications

All the DL models were trained from scratch on the PlantVillage dataset. The hyperparameters

were tuned by the random search method [46]. The internal covariate shift problem occurs on the

neural network because of the variation in the distribution of input data due to a change in the

number of parameters in the previous layer. This problem was addressed by Batch Normalization

which is a very useful technique for a high learning rate [47]. For training all the DL models, the ReLU

activation function was used as it is computationally efficient [24,30] and reduces the possibility of

the gradient vanishing. The specifications of all the DL optimizers are summarized in Table 1.

Table 1. Hyperparameters of the deep learning optimizers.

Optimizers Specifications

SGD
learning rate = 0.001, weight decay = 0.0005, momentum = 0.9, nesterov

= False

Adagrad learning rate = 0.001, epsilon = 1 × 10−7

RMSProp learning rate = 0.001, rho = 0.9, epsilon = 1 × 10−7

Adadelta learning rate = 1.0, rho=0.95, epsilon= 1 × 10−6

Adam
learning rate = 0.001, beta1 = 0.9, beta2 = 0.999, epsilon = 1 × 10−8,

amsgrad = False

Adamax learning rate = 0.002, beta1 = 0.9, beta2 = 0.999, epsilon = 1 × 10−8

3. Results and Discussion

This section first presents the comparative analysis of DL architectures to select the best model

which leads to the results obtained regarding the improvement in the performance of the best-suited

models by using various DL optimization algorithms. All the results were evaluated in terms of

training, validation accuracy/loss, and F1-score. The F1-score is considered an important performance

metric especially for the case when there is an uneven distribution in the classes just such as the

Plants 2020, 9, 1319 7 of 17

PlantVillage dataset (for example, the Potato healthy class contains the least number of images (152),

whereas, the Citrus greening has the highest number of images (5507) [29]). Therefore, the

model/optimizer that attained the highest F1-score was considered the most suitable architecture for

the classification of plant disease. The performances of all DL architectures are represented by line

graphs (Figure 4–Figure 6), and it was empirically observed that they required 60 epochs (an epoch

is a complete cycle of training on each image sample in the training dataset) at which

training/validation accuracy and loss were converged. The overall performance of DL architectures

is also summarized in Table 2.

3.1. Step-1: Comparative Analysis of Deep Learning Architectures

3.1.1. Performance of Well-Known CNN Architectures

The performance of well-known CNN architectures is presented in Figure 4, and it indicates that

there is no sign of underfitting (the problem occurs during the training of deep learning models

according to which the model does not train accurately if training loss does not change or it

continuously decreases) and overfitting (the problem at which the model does not perform

appropriately for new data/validation dataset or validation loss decreases to some extent then

suddenly increases for the remaining epochs). Overall, 10 well-known CNN architectures were

considered. A few important observations from Figure 4 and Table 2 were made:

 The Xception model attained the highest validation accuracy, F1-score, and lowest validation

loss among all the well-known CNN models. Therefore, this model can be undoubtedly

considered as the best CNN architecture to classify plant disease on the PlantVillage dataset. It

implies that the concept of a modified version of depth-wise separable convolution [38] in the

Xception model is a useful way to obtain higher classification results. Moreover, this DL model

converged to its final value at the 34th epoch which is the least number of epochs as compare to

all the other DL architectures. On the other hand, it required a significant amount of time to

complete one epoch (around 3400 sec). Therefore, future studies should propose another version

of DL architecture that can achieve Xception-level accuracy and require smaller training time for

each epoch.

 The second highest F1-score/validation accuracy was attained by ZFNet architecture. Hence, a

smaller filter size and the increased number of activation maps used in ZFNet architectures (as

compared to AlexNet) improved its performance.

 Then, MobileNet, DenseNet, and AlexNet architectures have also achieved a good F1-score

followed by Inception-v4, ResNet-50, and Inception ResNet-v2 architectures. The MobileNet is

a comparatively more preferable model due to its lower number of parameters which reduced

its computation time significantly. The depthwise and pointwise convolutional layers helped to

achieve a better classification result. Therefore, a CNN model could be proposed in future

research based on the MobileNet architecture. Moreover, this model required a lower number

of epochs to achieve its final accuracy and loss as compare to DenseNet and AlexNet models (as

shown in Table 2).

 From Table 2, it is also noticed that the DL models, such as Inception-v4, Inception ResNet-v2,

OverFeat, and VGG-16, required 58-59 number of epochs to converge training/validation plots

(also shown in Figure 4), which significantly increased their training time.

 The VGG-16 and OverFeat were found unsuitable models for plant disease classification as they

achieved lower validation accuracy/F1-score and higher validation loss as compared to the other

well-known DL architectures. The smaller filter size of the VGG model degraded its

performance. However, the larger filter size of the OverFeat model significantly reduced its

training time but they were not enough to provide a noticeable classification performance.

Additionally, they had a higher number of parameters (in millions) which slow down their

training time effectively.

Plants 2020, 9, 1319 8 of 17

3.1.2. Performance of Modified CNN Architectures

In this article, six modified/improved versions of CNN architectures were also considered. Their

performance is presented in Figure 5 from which the following points are discussed:

 The improved GoogLeNet architecture achieved the best performance in terms of validation

accuracy/loss and F1-score among all the modified versions of CNN architectures by utilizing

the concept of the Inception module from the original GoogLeNet model. Moreover, it got the

final value of accuracy and loss in 53 epochs which is the least as compared to other

modified/improved versions of the DL models considered in this article, but it required more

training time to complete one epoch as compared to the models like Modified and Reduced

MobileNet.

 The MLCNN architecture provided a good F1-score due to the inclusion of a dropout layer after

each max pooling layer and a reduction in the number of filters of the starting convolution layers

in the original AlexNet architecture. However, due to a higher number of parameters, this

modified DL architecture required considerably higher training time per epoch.

 The two versions of MobileNet named Modified and Reduced MobileNet models achieved an

acceptable F1-score closed to each other. These modified versions of DL architecture used

depthwise separable convolutional layers, which helped to attain a good classification result,

and they had six times fewer parameters than the original MobileNet model which reduced their

training time per epoch.

 Moreover, there were some models like Improved Cifar-10 and LeafNet models that had a lower

number of parameters which increased their speed of training per epoch. The Improved Cifar-

10 model achieved a noticeable F1-score, but the reduced parameters of the LeafNet model were

not enough to obtain a good F1-score/validation accuracy. Therefore, it is not a suitable model

to classify diseases in the selected dataset. It is also observed that these two models required a

higher number of epochs as compare to other modified versions of DL architectures. Hence,

future research could comprise of proposing a DL model such as Improved Cifar-10 and LeafNet

for reducing the training time, but some convolutional layers should be added to attain

acceptable validation/testing accuracy.

3.1.3. Performance of Cascaded/Hybrid CNN Architectures

Figure 6 presents the performance of cascaded/hybrid version of CNN models as explained

below:

 The cascaded AlexNet with GoogLeNet architecture outperformed all the DL models in terms

of validation accuracy; moreover, except for the Xception architecture, this model achieved the

highest F1-score among all the DL architectures considered in this research (as shown in Table

2). Although it required almost 57 epochs to reach its final accuracy/loss values (as shown in

Figure 6), but it completed one epoch in a smaller period, which clearly shows its effectiveness

in terms of training time. There were a few important modifications in the original AlexNet

model, which helped to extract the features of plants containing disease including smaller

convolution kernel in different layers, the inclusion of max-pooling layer, cascading the

Inception module with the modified AlexNet layers, and convolutional layers after Inception to

replace two fully connected layers [18].

 Moreover, a hybrid version of AlexNet with VGG architectures has also been studied, and it

provided good performance in terms of validation accuracy (as shown in Figure 6) and F1-score,

but it had the highest number of parameters which significantly increased its training time to

complete each epoch. This model performed well due to the utilization of concepts such as

normalization and selection of filter depth from AlexNet and VGG models, respectively [40].

Plants 2020, 9, 1319 9 of 17

(a)

(b)

(c)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

VGG-16 VGG-16
OverFeat OverFeat
AlexNet AlexNet
ResNet-50 ResNet-50
Inception-v4 Inception-v4

Training accuracy

Vali

Epochs

A
cc

u
ra

cy

Validation accuracy

0

0.5

1

1.5

2

2.5

3

3.5

4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

VGG-16 VGG-16
OverFeat OverFeat
AlexNet AlexNet
ResNet-50 ResNet-50
Inception-v4 Inception-v4

Epochs

T

Validation loss

Lo
ss

Training loss

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

ZFNet ZFNet
Inception resNet-v2 inception ResNet-v2
Densenet-121 DenseNet-121
MobileNet MobileNet
Xception Xception

Epochs

Training accuracy Validation accuracyA
cc

u
ra

cy

Plants 2020, 9, 1319 10 of 17

(d)

Figure 4. Performance plots of well-known CNN architectures. (a), (b) provide training and validation

accuracy/loss of VGG-16, OverFeat, AlexNet, ResNet-50 and Inception-v4 architectures. (c), (d)

provide training and validation accuracy/loss of ZFNet, Inception ResNet-v2, DenseNet-121,

MobileNet and Xception architectures.

(a)

(b)

Figure 5. Performance plots of modified versions of CNN architectures. (a) Provides training and

validation accuracy, (b) provides training and validation loss.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

ZFNet ZFNet
Inception ResNet-v2 Inception ResNet-v2
DenseNet-121 Densenet-121
MobileNet MobileNet
Xception Xception

Epochs

Training loss Validation loss

Lo
ss

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

LeafNet LeafNet
Improved Cifar-10 Improved Cifar-10
MLCNN MLCNN
Improved GoogLeNet Improved GoogLeNet
Reduced MobileNet Reduced MobileNet
Modified MobileNet Modified MobileNet

Epochs

Training accuracy Validation accuracyA
cc

u
ra

cy

0

0.6

1.2

1.8

2.4

3

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

LeafNet LeafNet
Improved Cifar-10 Improved Cifar-10
MLCNN MLCNN
Improved GoogLeNet Improved GoogLeNet
Reduced MobileNet Reduced MobileNet
Modified MobileNet Modified MobileNet

Epochs

Training loss Validation loss

Lo
ss

Plants 2020, 9, 1319 11 of 17

(a)

(b)

Figure 6. Performance plots of cascaded/hybrid versions of CNN architectures. (a) Provides training

and validation accuracy, (b) provides training and validation loss.

3.2. Step-2: Improvement in Classification Results by Deep Learning Optimizers

In this article, an improvement in the performance of CNN architectures has also been attempted

by training the best models (obtained from the previous step) through different deep learning

optimization functions. In this regard, the best DL model was selected from each of the three

categories such as the Xception, Improved GoogLeNet, and cascaded version of AlexNet with

GoogLeNet models. Table 3 summarizes the results obtained by using various optimization

algorithms. Some important observations can be made as follows:

 Considerable changes were observed in training/validation accuracy, loss, precision, recall, and

F1-score by training the DL models through various deep learning optimizers.

 Adam and Adadelta were the most successful optimizers for all the three selected DL

architectures.

 The Xception model trained with the Adam optimizer achieved the highest validation accuracy

and F1-score of 99.81% and 0.9978, respectively, which clearly show the effectiveness of the

proposed approach. Moreover, these results are better than previous studies that used the same

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

AlexNet with GoogLeNet AlexNet with GoogLeNet

AlexNet with VGG (AgroAVNET) AlexNet with VGG (AgroAVNET)

Epochs

Training accuracy Validation accuracy

A
cc

u
ra

cy

0

0.2

0.4

0.6

0.8

1

1.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

AlexNet with GoogLeNet AlexNet with GoogLeNet

AlexNet with VGG (AgroAVNET) AlexNet with VGG (AgroAVNET)

Epochs

T V

Lo
ss

Validation lossTraining loss

Plants 2020, 9, 1319 12 of 17

dataset but different approaches [12,16,19,24]. Therefore, the methodology proposed in this

article could be used for various other agricultural operations.

 The cascaded AlexNet with GoogLeNet and improved GoogLeNet models achieved their best

classification results by using the Adadelta and Adam optimizers, respectively.

 However, a degradation in the performance has also been observed when optimizing functions

were changed from SGD to Adagrad and RMSProp for Xception and cascaded models,

respectively.

 It is also noticed that the Improved GoogLeNet showed its lowest validation accuracy/F1-score

when it was trained by the SGD optimizer.

Plants 2020, 9, 1319 13 of 17

Table 2. Training and validation accuracy/loss, precision, recall, and F1-score along with the number of parameters, training time, and epochs required to train deep

learning architectures (in the order of the lowest to the highest F1-score).

Deep Learning

Architectures

Parameters

(in

Millions)

Epochs

Required to

Train the Model

Training

Time (in

Hours)

Training

Accuracy

Validation

Accuracy

Training

Loss

Validation

Loss
Precision Recall

F1-

score

LeafNet 0.324 M 59 5.95 0.8590 0.7961 0.4563 0.6658 0.7946 0.7971 0.7958

VGG-16 138 M 59 38.13 0.8339 0.8189 0.5328 0.5651 0.8182 0.8194 0.8188

OverFeat 141.8 M 58 6.75 0.8995 0.8603 0.3201 0.4330 0.8592 0.8628 0.8610

Improved Cifar-10 2.43 M 58 6.08 0.9256 0.8974 0.2628 0.3205 0.8944 0.8960 0.8952

Inception ResNet

v2
54.3 M 58 32.83 0.9551 0.9091 0.1530 0.3047 0.9075 0.9105 0.9089

Reduced

MobileNet
0.5 M 55 11.72 0.9570 0.9278 0.1860 0.2442 0.9269 0.9267 0.9268

Modified

MobileNet
0.5 M 53 6.38 0.9534 0.9297 0.1632 0.2385 0.9278 0.9265 0.9271

ResNet-50 23.6 M 55 26.33 0.9873 0.9423 0.0468 0.1923 0.9351 0.9358 0.9354

MLCNN 78 M 57 67.33 0.9583 0.9402 0.1335 0.1820 0.9386 0.9411 0.9398

Inception v4 41.2 M 59 52.92 0.9586 0.9489 0.1410 0.1828 0.9410 0.9466 0.9438

Improved

GoogLeNet
6.8 M 53 9.67 0.9829 0.9521 0.0522 0.1038 0.9528 0.9539 0.9533

AlexNet 60 M 54 6.10 0.9689 0.9578 0.1046 0.1298 0.9563 0.9570 0.9566

DenseNet-121 7.1 M 56 28.75 0.9826 0.9580 0.0758 0.1323 0.9581 0.9569 0.9575

MobileNet 3.2 M 47 14.70 0.9764 0.9632 0.0903 0.1090 0.9624 0.9612 0.9618

Hybrid AlexNet

with VGG

(AgroAVNET)

238 M 54 49.90 0.9841 0.9649 0.0546 0.1078 0.9626 0.9674 0.9650

ZFNet 58.5 M 47 6.47 0.9752 0.9717 0.0746 0.1139 0.9746 0.9751 0.9748

Cascaded AlexNet

and GoogLeNet
5.6 M 57 6.5 0.9931 0.9818 0.0229 0.0592 0.9749 0.9751 0.9750

Xception 22.8 M 34 56.28 0.9990 0.9798 0.0140 0.0621 0.9764 0.9767 0.9765

Plants 2020, 9, 1319 14 of 17

Table 3. Performance of deep learning optimizers applied to train cascaded AlexNet with GoogLeNet,

Improved GoogLeNet, and Xception models.

4. Conclusions and Future Recommendations

In this article, a comprehensive comparative analysis has been performed between various state-

of-the-art deep learning architectures divided into three categories namely well-known, modified,

and cascaded versions. Moreover, the performance of the best-obtained models was further

improved by using various deep learning optimization algorithms. It was found that the Xception,

Improved GoogLeNet and cascaded version of AlexNet with GoogLeNet models obtained the

highest validation accuracy and F1-score in their respective category. When these three DL models

were trained by using various deep learning optimizers, the Xception model trained by the Adam

optimizer achieved the highest F1-score of 0.9978 which suggests that this combination of the CNN

model and the optimization algorithm is the most suitable way to classify the plant disease. This

research provided us some interesting future directions for upcoming research given as follows:

 Various deep learning optimizers such as Adam, and Adadelta, can also be used to enhance

research on other agricultural applications, such as crop/weed discrimination, classification of

weeds, plant recognition, etc.

 The classification performance of the other datasets related to plant disease could also be improved

by adopting the methodology proposed in this research.

 Furthermore, although the Xception model provided the best results according to the analysis

provided in this article, it required a significant amount of time to complete each epoch.

Optimizers
Training

Accuracy

Validation

Accuracy

Training

Loss

Validation

Loss
Precision Recall

F1-

score

Cascaded AlexNet with GoogLeNet

SGD 0.9931 0.9818 0.0229 0.0592 0.9749 0.9751 0.9750

RMSProp 0.9894 0.9757 0.0482 0.1479 0.9746 0.9613 0.9679

Adagrad 0.9956 0.9824 0.0153 0.0547 0.9815 0.9782 0.9798

Adamax 0.9990 0.9859 0.0029 0.0574 0.9828 0.9795 0.9811

Adam 0.9989 0.9857 0.0039 0.0750 0.9836 0.9836 0.9836

Adadelta 0.9993 0.9873 0.0024 0.0696 0.9846 0.9856 0.9851

Improved GoogLeNet

SGD 0.9829 0.9521 0.0522 0.1038 0.9528 0.9539 0.9533

RMSProp 0.9723 0.9685 0.1780 0.2272 0.9692 0.9666 0.9679

Adagrad 0.9889 0.9718 0.0350 0.0930 0.9651 0.9618 0.9634

Adamax 0.9998 0.9847
8.782 ×

10−4
0.0875 0.9792 0.9826 0.9809

Adam 0.9992 0.9904 0.0026 0.0434 0.9859 0.9872 0.9864

Adadelta 0.9991 0.9905 0.0022 0.0567 0.9828 0.9879 0.9861

Xception

SGD 0.9990 0.9798 0.0140 0.0621 0.9764 0.9767 0.9765

RMSProp 0.9998 0.9924
6.922 ×

10−4
0.0433 0.9877 0.9920 0.9900

Adagrad 0.9987 0.9621 0.0164 0.1460 0.9682 0.9505 0.9593

Adamax 1.0000 0.9889 0.0012 0.0415 0.9902 0.9874 0.9888

Adam 1.0000 0.9981
6.890 ×

10−4
0.0178 0.9981 0.9975 0.9978

Adadelta 1.0000 0.9906
8.407 ×

10−4
0.0364 0.9926 0.9887 0.9906

Plants 2020, 9, 1319 15 of 17

Therefore, an attempt should be made to achieve an Xception level accuracy with small training

time.

Author Contributions: Conceptualization, M.H.S. and K.M.A.; methodology, M.H.S. and K.M.A.; investigation,

M.H.S. and K.M.A.; writing—original draft preparation, M.H.S. and K.M.A.; writing—review and editing,

M.H.S. and K.M.A.; visualization, M.H.S. and K.M.A.; supervision, J.P. and K.M.A.; project administration, J.P.

and K.M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Business, Innovation and Employment (MBIE), New

Zealand, Science for Technological Innovation (SfTI) National Science Challenge.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review.

Sensors 2018, 18, 2674.

2. Römer, C.; Bürling, K.; Hunsche, M.; Rumpf, T.; Noga, G.; Plümer, L. Robust fitting of fluorescence spectra

for pre-symptomatic wheat leaf rust detection with support vector machines. Comput. Electron. Agric. 2011,

79, 180–188.

3. Chen, T.; Zhang, J.; Chen, Y.; Wan, S.; Zhang, L. Detection of peanut leaf spots disease using canopy

hyperspectral reflectance. Comput. Electron. Agric. 2019, 156, 677–683.

4. Coops, N.; Stanford, M.; Old, K.; Dudzinski, M.; Culvenor, D.; Stone, C. Assessment of Dothistroma needle

blight of Pinus radiata using airborne hyperspectral imagery. Phytopathology 2003, 93, 1524–1532.

5. Leucker, M.; Mahlein, A.-K.; Steiner, U.; Oerke, E.-C. Improvement of lesion phenotyping in Cercospora

beticola–sugar beet interaction by hyperspectral imaging. Phytopathology 2015, 106, 177–184.

6. Saleem, M.H.; Potgieter, J.; Mahmood Arif, K. Plant Disease Detection and Classification by Deep Learning.

Plants 2019, 8, 468.

7. Xie, C.; Yang, C.; He, Y. Hyperspectral imaging for classification of healthy and gray mold diseased tomato

leaves with different infection severities. Comput. Electron. Agric. 2017, 135, 154–162.

8. Kobayashi, T.; Kanda, E.; Kitada, K.; Ishiguro, K.; Torigoe, Y. Detection of rice panicle blast with

multispectral radiometer and the potential of using airborne multispectral scanners. Phytopathology 2001,

91, 316–323.

9. Brahimi, M.; Boukhalfa, K.; Moussaoui, A. Deep learning for tomato diseases: Classification and symptoms

visualization. Appl. Artif. Intel. 2017, 31, 299–315.

10. Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric.

2018, 145, 311–318.

11. Fuentes, A.; Yoon, S.; Kim, S.; Park, D. A robust deep-learning-based detector for real-time tomato plant

diseases and pests recognition. Sensors 2017, 17, 2022.

12. Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection.

Front. Plant Sci. 2016, 7, 1419.

13. TÜRKOĞLU, M.; Hanbay, D. Plant disease and pest detection using deep learning-based features. Turk. J.

Electr. Eng. Comput. Sci. 2019, 27, 1636–1651.

14. Zhang, K.; Wu, Q.; Liu, A.; Meng, X. Can Deep Learning Identify Tomato Leaf Disease? Adv. Multimed.

2018, 2018, doi:10.1155/2018/6710865.

15. Oppenheim, D.; Shani, G.; Erlich, O.; Tsror, L. Using Deep Learning for Image-Based Potato Tuber Disease

Detection. Phytopathology 2019, 109, 1083–1087.

16. Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A comparative study of fine-tuning deep learning models for

plant disease identification. Comput. Electron. Agric. 2019, 161, 272–279.

17. Singh, U.P.; Chouhan, S.S.; Jain, S.; Jain, S. Multilayer Convolution Neural Network for the Classification

of Mango Leaves Infected by Anthracnose Disease. IEEE Access 2019, 7, 43721–43729.

18. Liu, B.; Zhang, Y.; He, D.; Li, Y. Identification of apple leaf diseases based on deep convolutional neural

networks. Symmetry 2018, 10, 11.

19. Geetharamani, G.; Pandian, A. Identification of plant leaf diseases using a nine-layer deep convolutional

neural network. Comput. Electr. Eng. 2019, 76, 323–338.

20. Zhang, X.; Qiao, Y.; Meng, F.; Fan, C.; Zhang, M. Identification of maize leaf diseases using improved deep

convolutional neural networks. IEEE Access 2018, 6, 30370–30377.

Plants 2020, 9, 1319 16 of 17

21. Chen, J.; Liu, Q.; Gao, L. Visual Tea Leaf Disease Recognition Using a Convolutional Neural Network

Model. Symmetry 2019, 11, 343.

22. Kamal, K.; Yin, Z.; Wu, M.; Wu, Z. Depthwise separable convolution architectures for plant disease

classification. Comput. Electron. Agric. 2019, 165, 104948.

23. Jiang, P.; Chen, Y.; Liu, B.; He, D.; Liang, C. Real-Time Detection of Apple Leaf Diseases Using Deep

Learning Approach Based on Improved Convolutional Neural Networks. IEEE Access 2019, 7, 59069–59080.

24. Brahimi, M.; Arsenovic, M.; Laraba, S.; Sladojevic, S.; Boukhalfa, K.; Moussaoui, A. Deep learning for plant

diseases: Detection and saliency map visualisation. In Human and Machine Learning; Springer: Berlin,

Germany, 2018; pp. 93–117.

25. Brahimi, M.; Mahmoudi, S.; Boukhalfa, K.; Moussaoui, A. Deep interpretable architecture for plant diseases

classification. arXiv 2019, arXiv:1905.13523.

26. DeChant, C.; Wiesner-Hanks, T.; Chen, S.; Stewart, E.L.; Yosinski, J.; Gore, M.A.; Nelson, R.J.; Lipson, H.

Automated identification of northern leaf blight-infected maize plants from field imagery using deep

learning. Phytopathology 2017, 107, 1426–1432.

27. Torres, J.F.; Gutiérrez-Avilés, D.; Troncoso, A.; Martínez-Álvarez, F. Random hyper-parameter search-

based deep neural network for power consumption forecasting. In Proceedings of the International Work-

Conference on Artificial Neural Networks (IWANN 2019), Gran Canaria, Spain, 12–14 June 2019; pp. 259–

269.

28. Martínez-Álvarez, F.; Asencio-Cortés, G.; Torres, J.F.; Gutiérrez-Avilés, D.; Melgar-García, L.; Pérez-

Chacón, R.; Rubio-Escudero, C.; Riquelme, J.; Troncoso, A. Coronavirus optimization algorithm: A

bioinspired metaheuristic based on the COVID-19 propagation model. Big Data 2020, 8, 308–322.

29. Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of

mobile disease diagnostics. arXiv 2015, arXiv:1511.08060.

30. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural

networks. In Proceedings of the Advances in neural information processing systems (NIPS 2012), Lake

Tahoe, Nevada, USA, 3–6 December 2012; pp. 1097–1105.

31. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition,

localization and detection using convolutional networks. arXiv 2013, arXiv:1312.6229.

32. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv

2014, arXiv:1409.1556.

33. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the

European conference on computer vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 818–833.

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of 2016 IEEE

conference on computer vision and pattern recognition (CVPR), Las Vegas, Nevada, USA, 26 June - 1 July

2016; pp. 770-778.

35. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual

connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence

(AAAI-17), San Francisco, CA, USA, 4–9 February 2017; pp. 4278–4284.

36. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.

Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017,

arXiv:1704.04861.

37. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In

Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii

Convention Center, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

38. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii Convention Center, Honolulu,

HI, USA, 21–26 July 2017; pp. 1251–1258.

39. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.

Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9.

40. Chavan, T.R.; Nandedkar, A.V. AgroAVNET for crops and weeds classification: A step forward in

automatic farming. Comput. Electron. Agric. 2018, 154, 361–372.

41. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.

Plants 2020, 9, 1319 17 of 17

42. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic

optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159.

43. Hinton, G.; Srivastava, N.; Swersky, K. Neural networks for machine learning. Available online:

http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf (accessed on 5 October 2020).

44. Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.

45. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

46. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–

305.

47. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal

covariate shift. arXiv 2015, arXiv:1502.03167.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

