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Abstract: Agroecosystem conditions limit the productivity of lowbush blueberry. Our objectives were
to investigate the effects on berry yield of agroecosystem and crop management variables, then to
develop a recommendation system to adjust nutrient and soil management of lowbush blueberry
to given local meteorological conditions. We collected 1504 observations from N-P-K fertilizer
trials conducted in Quebec, Canada. The data set, that comprised soil, tissue, and meteorological
data, was processed by Bayesian mixed models, machine learning, compositional data analysis,
and Markov chains. Our investigative statistical models showed that meteorological indices had the
greatest impact on yield. High mean temperature at flower bud opening and after fruit maturation,
and total precipitation at flowering stage showed positive effects. Low mean temperature and low
total precipitation before bud opening, at flowering, and by fruit maturity, as well as number of
freezing days (<−5 ◦C) before flower bud opening, showed negative effects. Soil and tissue tests,
and N-P-K fertilization showed smaller effects. Gaussian processes predicted yields from historical
weather data, soil test, fertilizer dosage, and tissue test with a root-mean-square-error of 1447 kg ha−1.
An in-house Markov chain algorithm optimized yields modelled by Gaussian processes from tissue
test, soil test, and fertilizer dosage as conditioned to specified historical meteorological features,
potentially increasing yield by a median factor of 1.5. Machine learning, compositional data analysis,
and Markov chains allowed customizing nutrient management of lowbush blueberry at local scale.

Keywords: blueberry; crop modeling; plant nutrition; machine learning

1. Introduction

Lowbush blueberry species (Vaccinium angustifolium Ait. and, to some extent, V. myrtilloides Michx.)
are North American wild ericaceous species growing in upland acid sandy soils. The province of Québec,
Canada, is among the world leaders in the production of lowbush blueberry [1]. Berry yields vary widely
between 0.6 [2] and 8.9 Mg ha−1 [3], indicating high risk of production failure. Lowbush blueberry is
managed over 2-year cycles where vegetative (or pruning) and fruit-bearing (or fruit-harvesting) years
alternate. Flower bud initiation occurs during the vegetative year and impacts on crop productivity
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during the fruit-bearing year [4]. Fruit set depends on the number of flowers, pollination success,
edaphic and managerial conditions, year, and clone [5], as well as nesting habitats of pollinators [6].

During the 2004–2009 period, low average yield of 1.9 Mg ha−1 impacted by adverse weather
conditions affected the economic viability of most Quebec lowbush blueberry farms [7]. Snow cover,
frost frequency, defrost and drought periods, flowering, weather variations, pollination, diseases, and
maturation dates impact on lowbush blueberry productivity. Meteorological models have thus been
developed to predict yields of lowbush blueberry and scout fields for pests [8]. Yield-impacting factors
documented in large data sets can also be integrated into machine learning models [9–12].

Fertilizer trials on lowbush blueberry have been conducted as single nutrient N, P, and K
experiments [3,13–17] as well as factorial N-P [18] and N-P-K combinations [2,19–21]. While ammonium-
phosphate interaction may promote berry yields, lowbush blueberry appeared little responsive to added
K [22]. Large variation in fertilizer dosage from 0.50 to 0.75 grower’s rate showed small impact on berry
yield [23]. Little attention has been given to other elements [24]. Fertilization dosage and timing of
application have not yet been optimized [17].

Nutrient management in lowbush blueberry production is conducted using soil and tissue tests.
Where soil and tissue tests return opposite nutrient diagnoses, tissue tests are preferred [22]. Fertilization
guidelines for lowbush blueberry are thus based mainly on tissue tests: soil tests are complementary.
Tissue diagnosis as nutrient deficiency, sufficiency or toxicity is conducted by comparing each element
to selected nutrient concentration ranges where crop productivity has been found to be adequate [25].

Regional nutrient standards derived using univariate descriptive statistical tests [26–29] may be
hazardous because

1. nutrient variables are intrinsically multivariate—compositions should be interpreted as a whole,
not as a collection of parts [30],

2. regional standards disregard local conditions [22,31–34],
3. descriptive statistical tests compare nutrient status of high and low yielders based on arbitrary

yield threshold—they are designed to test differences, not to predict optimal compositions.

Our objectives were to predict yield of lowbush blueberry from a set of investigated feature-specific
conditions and predict locally optimal fertilizer dosage, as well as optimal nutrient and soil compositions.
We hypothesized that (1) soil chemistry, tissue nutrients, weather indices, and N-P-K fertilization affect
berry yields, and (2) predictive models could optimize fertilizer dosage, as well as leaf nutrient and
soil compositions under specified weather conditions.

2. Materials and Methods

2.1. Experimental Setup

Experimental sites were located in Normandin (48◦50′ N, 72◦32′ W), Saint-Eugène d’Argentenay
(48◦59′ N, 72◦17′ W) and Labrecque (48◦40′ N, 71◦32′ W) in the Saguenay-Lac-Saint-Jean region,
north-central Québec, Canada. The regional climate is at the edge between Dfb (warm summer
continental or hemiboreal) and Dfc (subartic) [35]. The experimental areas were not irrigated as for most
commercial lowbush blueberry fields in Quebec. Soils were sandy to sandy loam Spodosols developed
on deltaic and eolian deposits [36]. There were 1504 observations collected from fertilizer trials
conducted during the 2001–2011 period. The N, P, and K doses varied in the range of 0–90 kg N ha−1,
0–39 kg P ha−1, and 0–75 kg K ha−1.

While stands of lowbush blueberry were mixtures of phenotypically and genotypically variable
clones [37] of Vaccinium angustifolium and V. myrtilloides, stands were dominated by V. angustifolium.
The stands were fertilized every other year after pruning during the spring of the vegetative
year to stimulate and support plant regrowth [17]. Because weeds strongly impact leaf nutrient
concentrations and fruit yield of lowbush blueberry [38], all trials were realized in weed-controlled
environments according to local recommendations [39]. Fields were managed for pests according to
regional guidelines.
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2.2. Soil and Tissue Analyses

Diagnostic tissues were collected at tip-dieback stage during the vegetative year [16,31,32,34,40].
Tissues were sampled in 50 m2 plot by combining the leaves of 25 randomly collected stems. Leaf samples
were dried at 55 ◦C, ground to less than 1 mm using a Wiley mill, and digested in a solution of H2SO4

and H2O2 [41]. Digests were analyzed for total N, P, K, Ca, Mg, B, Cu, Zn, Mn, Fe, and Al.
The N and P concentrations were quantified by automated colorimetry [Lachat Instruments (2005),
QuickChem Method 13-107-06-2-E and QuickChem Method 15-501-3], and ICP-OES (Inductively
coupled plasma-optical emission spectrometry) from Perkin Elmer (Waltham, Massachusetts) for other
elements. Soil samples (0–20 cm), collected at the same time as tissue samples, were air-dried, 2-mm
sieved, extracted using the Melhlich3 method [42], and analyzed for P, K, Ca, and Mg using ICP-OES.
While soil nitrate and ammonium were extracted for half of the data set using KCl 2N then quantified
by automated colorimetry, the present modelling was run across the whole data set excluding nitrate
and ammonium. The pH was measured in water (1:1, v:v).

2.3. Meteorological Indices

Site weather data were downloaded from the closest (<50 km) Environment Canada meteorological
stations using the weathercan R package version 0.3.4 [43]. Monthly weather indices computed from
downloaded data are presented in Figure 1.

Figure 1. Mean weather indices computed across sites from 2001 to 2011, excepting 2002 and 2008
when no data have been collected.
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2.4. Investigative Models

We conducted exploratory analyses using two investigative models. The first investigative model
considered seasonal mean temperature, total precipitations, and number of freezing days—days
with minimum mean temperature <−5 ◦C [44]—between April and August inclusively in vegetative
and fruit-bearing years. The second investigative model considered mean temperatures and total
precipitations for phenological stages described by Fournier et al. [45] and presented in Table 1.

Table 1. Phenological stages of lowbush blueberry in the Lac-St-Jean region, North-Central Quebec,
Canada. Data from [45].

Phenological Stage Julian Day Calendar Dates

Before flower bud opening [92 to 125] 1 April to 5 May
Flower bud opening [126 to 163] 5 May to 11 June

Flower open (Pollination period) [164 to 180] 12 June to 28 June
Fruit maturation [181 to 220] 29 June to 7 August

After fruit maturation (Harvest) [221 to 244] 7 August to 31 August

When conducting the predictive model, future weather is unknown. Thus, we fitted the predictive
model to mean temperature and total precipitation data for phenological stages averaged over six years
(or three crop cycles) preceding the season of observation. The phenology of Vaccinium angustifolium
Ait. has been predicted from growing degree-days (GDD) using 0 ◦C [4] or 4.4 ◦C [5] as base air
temperature from April 1st (day of the year 91). The GDD is commonly used in relation with pest
management [7]. In this study, we tested mean temperature and growing degree days (>4.4 ◦C).
After running preliminary models, we concluded that, compared to phenological stages and GDD,
mean temperature offered more meaningful gradients across the whole season.

2.5. Statistical Analysis

2.5.1. Isometric Log-Ratio

Raw concentration values were transformed into isometric log-ratios (ilr) to free compositional
data from their total sum constraint (closure to measurement unit), and offer a sound framework
to interpret tissue nutrient compositions [46]. Such framework is presented as a bifurcating tree or
a mobile-and-fulcrum diagram based on nutrient interactions in living tissues [47] and soils [48].
Groups of variables were sequentially split until each group contain a single part (Figure 2). A filling
value (Fv), computed by subtracting the sum of tissue elements from the total sum constrain (e.g., 100% or
1000 g kg−1), is included in balance diagrams to back-transform ilr balances to the more familiar
concentration domain. Concentration values are shown at bottom and the balances at fulcrum of the
bifurcating trees.

Figure 2. Balance diagram to transform (A) nutrients to nutrient balances and (B) soil nutrients to soil
balances. Fv is the filling value.
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There are D-1 orthonormal balances in a D-part composition [49], each balance representing one
degree of freedom [50]. Redundancy is accounted for by removing one degree of freedom producing
resonance by altering proportions of components within a closed system. At one extreme, if two
nutrients are fully synergistic or antagonistic, they carry the same information and one of them is
thus redundant. However, no such nutrients exist as fully replaceable. The isometric log-ratios or
log-contrasts between two subsets of components are computed as (1)

ilr j =

√
r js j

r j + s j
ln


g
(
c+j

)
g
(
c−j

)
, (1)

where, for the jth balance in [1 . . . D − 1], D is the number of components, rj and sj are the number
of parts on the left-hand- and right-hand side of the log contrast, respectively, cj

- and cj
+ are the

compositional vectors at the left-hand- and right-hand-side, respectively, and g() is the geometric
mean function.

Computations were performed in the R statistical computing environment version 4.0.2 [51].
Leaf and soil nutrient concentrations were transformed into orthonormal nutrient balances or isometric
log ratios [30] using the compositions package version 2.0-0 [52]. The Aitchison distance between a
given nutrient composition and its target is a metric of interest to measure nutrient imbalance [46].
The Aitchison distance is a distance in the compositional space computed as the Euclidean distance
between two equal-length compositional vectors transformed into ilr variables. The Aitchison distance
depends on the number of components in the compositional vector and should be interpreted as a
misbalance index compared to other distances computed from compositions with equal number of
parts. Additionally, the ratio between each nutrient of an observation X and its target x indicates the
direction of the misbalance.

2.5.2. Analysis and Modelling

Investigative and predictive models relate yield to uncontrollable and controllable yield-impacting
features. Yield variation could be explained by large differences in fertilization regimes, meteorological
indices, as well as soil and tissue tests. While interactions between variables were likely to occur
in excessively large numbers, they were not addressed in the present study to avoid over-fitting.
The model thus addressed combinations of variables that are unique to each observation.

In a preliminary analysis, monthly weather effects on lowbush blueberry yields over a 2-years
cycle led to model overfitting due to a too large number of features. We thus investigated the effects
of leaf nutrients, soil nutrients, soil pH, NPK dosage and weather indices in two separate models (1)
seasonal weather indices for 2-year cycle, and (2) monthly weather indices during the reproduction
year only. We fitted Bayesian linear Gaussian regressions with vague priors using the rstanarm R
package version 2.21.1 [53]. No model hierarchy (or random effects) was included to avoid over-fitting.
All explanatory variables were centered at 0 mean and scaled to unit variance, allowing comparing
slope coefficients on a common scale.

For the predictive model, the data set was split into 70% training and 30% testing subsets.
All variables (outcomes and predictors) were centered to zero mean and scaled to unit variance based
on the training set. We used a Gaussian process to predict yield, because this approach accurately
returned smooth responses and acceptable accuracy in previous research on cropping system [9]. We did
not attempt using other machine learning algorithms among the myriads available. The Gaussian
process model was fitted to data using the kernlab package version 0.9-29 [54] with the caret modelling
interface version 6.0-86 for R [55] with optimized hyper-parameters. The model fitted to training data
was used to predict yield from features, some selected as varying and some selected as fixed, a process
known as conditioning.
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On the other hand, Markov chain random walk can optimize features such as tissue concentrations,
soil analyses, and N-P-K fertilization under site-specific conditions. Markov chain is widely used in
biology to model movement [56]. We fixed historical weather conditions for sequentially extracted
combinations of randomly generated features for leaf nutrients, soil chemistry, and N-P-K dosages
returning the highest yield in the neighborhood of optimal vector delivered by the previous sequence.
This process is a Markov-chain random walk:

1. use the model to predict yield from initial conditions,
2. generate n random samples within a fixed radius around the point,
3. to avoid extrapolation, compute the Mahalanobis distance between each random sample and

the center and covariance of the training data set, then filter out random samples where the
Mahalanobis distance is higher than a critical distance,

4. use the model to predict yields from the remaining samples,
5. extract the sample returning the highest yield,
6. if yield is increased compared to the previous value, retain the current vector for the next round

and shorten the radius by a factor—else, keep the previous vector for the next round, then increase
the radius by a factor.

To show how this algorithm scans the multivariate space in search for higher yields, we used the
R volcano data set [57] to generate a simplistic 2D space were the highest topography, modelled by a
Gaussian process on a random sample of the data set, is approached from a starting point (white circle),
as shown in Figure 3.

Figure 3. Two-dimensional representation of the algorithm scanning XY coordinates to draw the
path to higher Z topography as a metaphor for scanning tissue nutrient balances that augment yields.
The red dot started at (42, 8) with a radius of 3 (thick white circle), moved with a decreasing radius to
reach a local optimum where radius was increased until finding another point from which it continued
scanning until the maximum of iterations was reached (thick black circle).

The optimization of leaf nutrient status was performed for each observation in our database. We
randomly selected a sample from our database and looked for optimal leaf nutrient status, soil chemistry
and fertilizer dosage under given weather conditions. Codes and data are available at git.io/JvQOa.
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3. Results

3.1. Variability of Tissue and Yield Data at Regional State

Berry yields from experimental plots ranged between 0.6 and 13.8 Mg ha−1 in our data set and
were more dispersed than lowbush blueberry yields published in other studies conducted in Maine,
Québec, the Canadian Atlantic provinces, and Estonia (Figure 4).

Figure 4. Yield ranges of lowbush blueberry reported in the literature compared to yield range in the
present study [2,3,14–21,24,38,58–60].

3.2. Investigative Models at Regional Scale

3.2.1. Effects over 2-Years Cropping Cycles

The first Bayesian linear regression with a gaussian response investigated the effects of leaf
nutrients, soil nutrients, soil pH, NPK dosage and seasonal weather indices over 2-years on yields of
lowbush blueberry. Posterior distributions of effects are shown in Figure 5.

The N and P fertilization averaged small positive effects, while K fertilization averaged marginal
negative effects on berry yield. Seasonal total precipitation during both fruit-bearing and vegetative
years increased berry yield. Seasonal mean temperature showed positive effect during the fruit-bearing
year, but negative effect during the vegetative year. The number of freezing days during the
fruit-bearing year markedly decreased yield but showed a small and uncertain effect on yield during
the vegetative year.

The most impacting leaf nutrient balances were (1) the [B | Mg, Ca, K, P, N] balance, where higher
concentrations of boron compared to macronutrients slightly decreased yield and (2) the [Fv | B, Mg,
Ca, K, P, N] balance, where nutrient accumulation in tissues increased berry yield. Soil [Fv | Mg, Ca, K,
P] and [Mg, Ca, K | P] were the most yield-impacting soil nutrient balances. The positive slope on
the soil [Fv | Mg, Ca, K, P] balance indicated that higher yields were associated with higher nutrient
levels in the soil. The negative slope of the soil [Mg, Ca, K | P] balance indicated that lower yields were
associated with higher P concentrations relatively to cations K, Ca, and Mg in the soil. Low yields
were associated with high soil pH.
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Figure 5. Posterior distributions of coefficients of scaled variables against berry yield for the 2-year
cycle model.

3.2.2. Effects during the Fruit-Bearing Year

A second investigative model substituted seasonal weather indices by weather indices at
phenological stages for the year of experimentation (Figure 6).

Figure 6. Posterior distribution of coefficients of scaled variables against berry yield for the fruit-bearing
year model.

As was the case of the 2-year cropping model, the effect of N-P-K fertilization in the fruit-bearing
model was small compared to weather variables. The effect of mean temperature depended on
developmental stage. Higher mean temperatures increased yields during the after fruit maturation
and the flower bud opening stages, but decreased yields throughout the before bud opening and the
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fruit maturation stages. The effect was uncertain during the flower open stage. Precipitation effect
also varied with the developmental stage. Higher precipitation increased yields during the flower
open stage, but decreased yields during the flower bud opening and the after fruit maturation stages,
with small and variable effects during the flower bud opening and fruit maturation stages. The number
of freezing days, recorded only for the earliest development stage, showed a negative but uncertain
effect on yield.

The [Fv | B, Al, Mg, Ca, K, P, N] leaf nutrient balance showed the most important positive effect
among leaf nutrient balances, indicating that higher nutrient concentrations increased yield. The effect
of the [B | Mg, Ca, K, N, P] balance was also positive, indicating that yield decreased with higher leaf B
concentration. The [Mg, Ca, K | N, P] balance showed positive effect, indicating that higher N and
P compared to K, Ca, and Mg leaf concentrations increased yield. While Redfield balance [P | N]
showed positive effect, the effects of [Mg, Ca | K], [Mg | Ca] and [Al | B, Mg, Ca, K, N, P] were small
and uncertain.

The effect of soil nutrient balances was also smaller than the effect of meteorological features.
The most positive balances were greater soil nutrient supply capacity expressed as the [Fv | Mg, Ca,
K, P], and higher K level in the cationic balance expressed as [Mg, Ca | K]. The most negative soil
balance was [Mg, Ca, K | P], indicating excessive P level in the soil or insufficient concentrations of K,
Ca, and Mg cations. Low berry yields were associated with high soil pH.

3.3. Predictive Model at Local Scale

While freezing days appeared to be important in both investigative models, they were not
informative in the predictive model. Indeed, data exploration in Data Availability shows that the
number of freezing days was inconsistent from year to year, making the 6-year average unreliable
for yield prediction. The number of freezing days in April and May were thus removed from the
predictive model.

The Gaussian process regression model returned root-mean-square-errors (RMSEs) of 1047 kg ha−1

in training and 1447 kg ha−1 in testing (Figure 7). Lower yields were predicted accurately while
higher yields showed systematic deviation from the straight line. The classification mode could be
useful to secure profitability above yield cut-off of 5000 kg ha−1. The accuracy of our model used in
classification mode reached 83% on the testing set. The detection of low yielders was 91% accurate
(positive predictive rate) compared to 53% for high yielders accurate (negative predictive rate). The low
negative predictive rate is attributable to the large number of false positive specimens.

Figure 7. Performance of the predictive Gaussian process model shown as prediction against observed
in training and testing data sets.
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3.4. Portrait of Optimal Leaf Nutrients at Regional Scale

Because nutrient concentration ranges were feature-specific, we fixed no a priori optima for
soil and tissue nutrient levels and looked for feature-specific optima. The Markov-chain algorithm
applied to all weather conditions in the data set provided an overall portrait of predicted optimal
leaf nutrient concentrations, which differed from concentration ranges suggested in the Canadian
literature [16,21,32,33] (Figure 8). Note that the K range reported by Bouchard and Gagnon [33] for the
same region was much lower than the distribution modelled from our data set.

Figure 8. Distributions of optimal concentrations in leaf tissue of blueberry in the present study
compared to ranges reported in the Canadian literature [16,21,32,33].

Distributions of Aitchison distance and expected yield improvement by optimizing leaf nutrient
levels are shown in Figure 9. The median Aitchison distance between nutrient balances of diagnosed
tissue composition and optimal nutrient status was 0.50. Yield difference (potential yield minus initial
yield) obtained where leaf nutrient compositions were perturbed from their initial composition to their
optimal status varied widely with median value of 1773 kg ha−1, 1.5 times the yield of the diagnosed
specimen for the specified combination of features. Expected yields reported in the data set for the
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specified combination of features were locally realistic compared to the arbitrarily expected high yields
suggested at a regional scale.

Figure 9. Distributions of (A) optimal Aitchison distances and (B) computed yield improvements by
optimizing leaf nutrient status.

The path to manage features returning the highest yield given a fixed set of local features was
initiated by randomly sampling a low yielder (yield < 3000 kg ha−1, sample no. 1269), fixing weather
features, then sequentially altering leaf nutrient levels, soil nutrient levels, pH and N-P-K dosage using
the Markov chain algorithm. At each iteration of the Markov chain, we back-transformed leaf and soil
nutrient levels from ilr variables to raw concentration values. We followed an optimal multivariate
path towards optimum yield considering fixed historical weather conditions (Figure 10).

Figure 10. Cont.
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Figure 10. Cont.
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Figure 10. Markov chain searching for (A) N-P-K dosage (B) tissue concentration ranges and (C) soil
chemistry matching the highest yield (shown in (A)) under given historical weather conditions of the
randomly selected sample no. 1269. Constrained paths represent minimum and maximum values in
the training data set and avoid modelling extrapolations.

The Aitchison distance between the observed composition and the targeted composition obtained
at the end of the Markov chain was 0.68 for leaf nutrients and 0.87 for soil nutrients. We also measured
the size of the perturbation of nutrient composition between the observed leaf and soil nutrient
compositions and the reference composition provided by the Markov chain algorithm as ratios their
respective concentrations. The observed/target concentration ratios in Figure 11 show that leaf K,
Al, and Mg concentrations appeared in relative excess in the diagnosed specimen compared to the
successful specimen selected by the Markov chain algorithm, while B, P, and N appeared in relative
shortage. Soils nutrients K, P, and Mg appeared in relative shortage while soil Ca and soil pH were
near optimum.
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Figure 11. Ratio between leaf nutrients in sample no. 963 and the optimal composition found at the
end of the Markov chain algorithm.

4. Discussion

4.1. Model Features

Agroecosystems viewed as Humboldtian agricultural production units [12] require assembling
local features to make reliable predictions on system’s performance. Indeed, the concept of optimum
nutrient management under heroic assumptions of otherwise optimum conditions [61] may fail at
local scale where genetic and environmental conditions may vary widely [62]. We used leaf nutrients,
soil nutrients, pH, and weather data as features to predict yields of lowbush blueberry for stand
mixtures of Vaccinium angustifolium and V. myrtilloides, using a Gaussian process machine learning
model. By conditioning the model on the selected uncontrollable features such as weather historical
data, and allowing other features related to plant nutrition management to vary, we could elaborate
crop management recommendations at local scale. Where the model was conditioned on weather
features, the localized model predicted that optimized plant nutrition and soil chemistry at local scale
could increase berry yields substantially (Figure 9B).

4.2. Weather Indices

For the 2-year cycles and fruit-bearing year models (results presented in Figures 5 and 6), weather
features dominated largely yield potential of lowbush blueberry in Quebec. Developmental stages were
sensitive to precipitation. While total precipitation at flowering stage showed positive effect, heavy
precipitation may decrease pollination activities and increase the incidence of plant fungal diseases [63].
Nevertheless, plant-pollinator networks are impacted by rainfall patterns [6]. Heavy precipitation
affects pollinators’ success through nectar dilution, pollen degradation, volatile removal, etc. At the
other extreme, where precipitation is too low, irrigation is required to avoid shifting from reproductive
to vegetative growth [64]. While favorable weather conditions for pollination activities during the
month following pollination (July) are critical to reach maximum yield of lowbush blueberry, yield
predictions were inconsistent based on meteorological features alone [63]. Adding soil and tissue
nutrient features and phenological stages, our predictive reached a RMSE of 1447 kg ha−1 in testing.
The acceptability of this precision is a professional decision considering risks of committing errors.
The most comparable metric found in the literature is a classification accuracy: once used as a
classification model with a yield cutoff of 5000 Mg ha−1, our model reached an accuracy of 83%, a value
comparable to model accuracy for other fruit crops [65].
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4.3. Fertilization

Response of lowbush blueberry to N, P, and K fertilization was small. Nevertheless, lowbush
blueberry may respond positively to added N and P [18,66–68]. The weak negative response to K
fertilization is attributable in part to antagonism between cationic macronutrients [69]. As wild species,
in contrast with domesticated species, lowbush blueberry responds slowly to nutrient supply [34] and
could constrain its growth rate to available resources [70]. Moreover, nutrient accumulation in reserve
tissues could be remobilized during the following years, as reported for fruit trees [71] and vines [72].

While regional N recommendation averaged 45 kg N ha−1 [38], nitrogen dosage appeared to be
highly site-specific. A fertilizer trial in Nova Scotia, Canada, indicated optimum dosage of 35 kg N ha−1,
40 kg P ha−1, and 30 kg K ha−1 [68]. Predicted fertilizer dosage for the low-fertility soil in our case study
(Figure 10A, 61 N ha−1, 14 kg P ha−1 and 32 kg K ha−1) departed from current ranges of 25–60 kg N ha−1,
7 to 9 kg P ha−1 and 16–20 kg K ha−1 [73]. The N requirement up to 61 kg N ha−1 could be split between
the spring of the vegetative year and the spring of the fruit-bearing year [73]. It should be emphasized
that N fertilization may decrease berry quality, as shown by linear decrease of total polyphenols upon
N additions of 0, 30 and 60 kg ha−1 to highbush blueberry [74]. The response to added N may also be
modulated by competition with weeds [38].

In contrast with N, the response to P fertilization was found to be small [75]. The fact that
the soil [Mg, Ca, K | P] balance impacted negatively on berry yield indicated that feature-specific
corrective measures should be adopted to re-establish the soil P balance (a notion different than P
budget) and avoid excessive soil P accumulation. The P fixation by oxy-hydroxides of Fe and Al at
low pH values reduces P fertilizer-use efficiency in the acidic P-fixing podzolic soils used for lowbush
blueberry production [76]. However, making P fertilizer application based on soil P fixing capacity
alone can result in wrong decisions [77]. Soil pH values exceeding 5.2 can decrease the yield of lowbush
blueberry [73].

In our study, increasing the [B | Mg, Ca, K, P, N] tissue balance increased berry yield (Figures 5
and 6). Since 2000 in Quebec, shoot tip abortion is prevented by applying 0.7 kg of B ha−1 at each crop
cycle [73]. While boron application is recommended to avoid boron shortage in blueberry plants [78,79],
boron over-fertilization may reach toxicity levels. Indeed, leaf B concentration may increase by 4–5 folds
with B application over control [80]. Because B has the narrowest range between deficiency and toxicity,
cells are highly permeable to boron and boron is highly soluble at low soil pH values, excessive boron
supply may be detrimental [81]. Boron is managed to reach optimal growth conditions based on leaf
analysis and proper nutrient balances to avoid excessive B applications.

Soil test B using hot water as extracting solution (Bwater) is not commonly conducted for routine
soil analysis in Quebec. However, the relationship between Mehlich3-B and hot-water B was found to
be close (R2 = 0.98) after adding soil pH in water and organic carbon in the equation [82]. Suggested
soil fertility classification for Bwater in Quebec was as follows: 0.00–0.23 mg Bwater kg−1 for low fertility
class, 0.23–0.58 mg Bwater kg−1 for medium class, and 0.50–3.70 mg Bwater kg−1 for high fertility class.
In comparison, Brdar-Jokanović [81] reported (1) boron shortage in soils containing less than 0.5 mg
Bwater kg−1, optimal level of 0.7 mg Bwater kg−1 and threshold toxicity level of 1.5 mg Bwater kg−1

for sensitive plants, and (2) 0.0–0.2 mg Bwater kg−1 for low fertility class, 0.21–0.6 mg Bwater kg−1 for
medium class, 0.61–1.1 mg Bwater kg−1 as high soil test B, 1.2–3.0 mg Bwater kg−1 as very high soil test
B, and >3.0 mg Bwater kg−1 as toxic soil test B. The Mehlich3 method is commonly used in Quebec
routine laboratories [83]. The BMehlich3 soil fertility classes corresponding to the Bwater fertility classes
were found to be 0.00–0.65, 0.65–1.03, and 1.03–12.70 mg BMehlich3 kg−1, respectively [82]. A survey of
50 blueberry farms of the Lac-St-Jean region showed soil test BMehlich3 values varying in the range of
0.2 to 0.9 mg BMehlich3 kg−1, mostly located within the medium BMehlich3 fertility class. Although soil
test BMehlich3 has not been conducted during the present study because only tissue tests have been
used to diagnose nutrient problems in the lowbush blueberry production by that time. Tissue test
integrates all factors that regulated plant nutrition [25]. Soil test BMehlich3 classification [82] could be
useful to avoid B over-fertilization of blueberry stands.
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The Al concentration in plant tissues may be problematic in acid soils due to high Al toxicity [84].
Blueberry soils of the region were found to contain 893-1430 mg AlMehlich3 kg−1 [75], within the range of
496–2424 mg AlMehlich3 kg−1 reported for Quebec soils [83]. The leaf Al concentration may also depend
on soil pH because (1) Al tends to be mobilized in soils at pH lower than 5.5 [84,85] and even more at
pH values less than 5.0 [86], and (2) lower pH is associated with higher berry yields. Foliar tissues of
lowbush blueberry normally contains 50–110 [32], up to 400 [87] mg Al kg−1 compared to 400–760 mg
Al kg−1 in rhizomes [87], indicating genetic control on Al translocation from the belowground to the
aboveground plant parts. In Al-tolerant species, Al may stimulate growth by preventing Cu, Mn and P
toxicity and acting as fungicide against certain types of root rot [69]. In our study, the Markov chain
random walk indicated optimum foliar Al concentration of 45 mg Al kg−1 (Figure 10B) in a locally
diagnosed specimen where simulated optimal pH was 4.6—an Al level close to the median value of its
distribution in our data set (51 mg Al kg−1, Figure 8).

4.4. Agronomic Features Optimisation

Open ecosystems have several site-specific unexplained or uncontrollable sources of variation.
While the R2 of the Gaussian process regression was rather low (R2 = 0.46, root-mean-square-error of
1447 kg ha−1) in testing, accuracy reached 83% in classification mode, a value comparable to other
fruit crops [10,47,88–90]. The regression mode can compare current yields to modelled yields under
optimized nutrient management. The classification mode can customize yield targets at field scale.
In this paper, we challenged currently used regional tissue nutrient concentration ranges for the
following reasons.

1. Regional guidelines deny the importance of local conditions on plant epigenetics.
2. A collection of reference ranges relies on the assumption that the space of successful nutrient

dosage and leaf and soil compositions have the shape of hypercube. As illustrated by Parent [46],
the shape of such space is irregular and blob- or cloud-like.

3. Arbitrarily delimiting the contours of a prosperous or successful region [10,91,92] should
be avoided.

4. According to Parent [46], interpreting a perturbation between a nutritionally imbalanced specimen
and its optimum or successful target “should be done with a multivariate and compositional data
perspective in mind. This implies that (1) a univariate or an incomplete multivariate perspective
(e.g., focusing on extreme excesses and deficiencies) could miss a high yield region (a parachutist
adjusting her fall following only one axis will likely miss the enchanting island and fall into
the sea) and (2) changes of concentrations in a closed system are relative, i.e., increasing the
concentration of a component will inevitably decrease the concentration of at least another one”.

Instead of diagnosing ranges of leaf nutrients, soil test values and fertilizer dosage at high-yield
level, as for the agronomic interpretation methods used so far, we followed a Markov chain random
walk towards optimal values conditioned by local weather features to customize critical ranges at
local scale. Those results emphasize the need to focus on crop management at local scale, regularly
updating the data set with experimental and observational data.

5. Conclusions

Our investigative models related berry yields to soil and tissue tests, weather indices, and N-P-K
fertilization. Relative P excess in the soil, too high soil pH, and relative B excess in the tissue mass
impacted berry yield negatively. The Gaussian process model predicted yield from leaf nutrient
composition, soil tests, fertilizer dosage, and weather conditions. We elaborated a novel in-house
Markov chain algorithm to follow a path from current cropping environment to an environment that
maximizes yield along improving leaf nutrient compositions, soil chemistry, and fertilizer dosage
given historical weather indices. Such a modelling approach is the first ever to optimize soil and tissue
compositions and fertilizer dosage simultaneously, while providing realistic yield expectations at local
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scale. Obviously, present nutrient management concepts supported by soil and tissue tests alone such
as regional tissue nutrient standards, buildup and maintenance, cation saturation ratios, or nutrient
sufficiency levels should be revisited to optimize not only crop yields, but also product quality and
environmental impacts by making economically- and environmentally-wise fertilization decisions at
local scale. Large data sets can be processed using machine learning and Markov-chain optimization
to develop reliable solutions at local scale under varying scenarios of feature combinations, including
climate change.

Unlike tissue concentration ranges and soil fertility classification based on descriptive statistics
and dichotomous decisions, machine learning models can predict yield from specified combinations of
features that are documented in large data sets. The lowbush blueberry data set could be augmented
and updated regularly to tackle the source of yield variation and implement means to sustain production
of lowbush blueberry by rebalancing nutrients at local rather than regional scale. Because growers
collect large amounts of local data such as soil and tissue tests and berry yield and quality data, and as
more soil and climatic data become accessible, the lowbush blueberry data sets can grow up rapidly.
Models conditioned to local features for predicting yield, crop quality, and ecological impacts should
be adopted where sufficient data are available.
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74. Ochmian, I.; Oszmiański, J.; Jaśkiewicz, B.; Szczepanek, M. Soil and highbush blueberry responses to
fertilization with urea phosphate. Folia Hortic. 2018, 30, 295–305. [CrossRef]

75. Lafond, J.; Ziadi, N. Biodisponibilité de l’azote et du phosphore dans les sols de bleuetières du Québec. Can.
J. Soil Sci. 2013, 93, 33–44. [CrossRef]

76. Lafond, J.; Ziadi, N. Phosphorus mobility in acidic wild blueberry soils in Québec, Canada. 2018. Available
online: https://digitalcommons.library.umaine.edu/nabrew2018/proceedingpapers/proceedingpapers/17/

(accessed on 15 October 2020).
77. Nowaki, R.H.D.; Parent, S.-É.; Cecílio Filho, A.B.; Rozane, D.E.; Meneses, N.B.; dos Santos da Silva, J.A.;

Natale, W.; Parent, L.E. Phosphorus Over-Fertilization and Nutrient Misbalance of Irrigated Tomato Crops
in Brazil. Front. Plant Sci. 2017, 8. [CrossRef]

78. Eaton, L.J.; Ju, H.-Y.; Sanderson, K.R. Effects of summer and fall applications of foliar boron on fruit bud
winter injury in wild blueberry (Vaccinium angustifolium Ait.). Can. J. Plant Sci. 2007, 87, 923–925. [CrossRef]

79. Wang, N.; Yang, C.; Pan, Z.; Liu, Y.; Peng, S. Boron deficiency in woody plants: Various responses and
tolerance mechanisms. Front. Plant Sci. 2015, 6. [CrossRef]

80. Smagula, J.M. Evaluation of the leaf boron standard for Vaccinium angustifolium Ait. Acta Hortic. 2006,
365–370. [CrossRef]
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