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Abstract: Dactylorhiza hatagirea is a terrestrial orchid listed in Appendix II of the Convention on
International Trade in Endangered Species of Wild Fauna and Flora (CITES) and classified as threat-
ened by International Union for Conservation of Nature (IUCN). It is endemic to the Hindu-Kush
Himalayan region, distributed from Pakistan to China. The main threat to its existence is climate
change and the associated change in the distribution of its suitable habitats to higher altitudes due
to increasing temperature. It is therefore necessary to determine the habitats that are suitable for
its survival and their expected distribution after the predicted changes in climate. To do this, we
use Maxent modelling of the data for its 208 locations. We predict its distribution in 2050 and 2070
using four climate change models and two greenhouse gas concentration trajectories. This revealed
severe losses of suitable habitat in Nepal, in which, under the worst scenario, there will be a 71–81%
reduction the number of suitable locations for D. hatagirea by 2050 and 95–98% by 2070. Under the
most favorable scenario, this reduction will be 65–85% by 2070. The intermediate greenhouse gas
concentration trajectory surprisingly would result in a greater reduction by 2070 than the worst-case
scenario. Our results provide important guidelines that local authorities interested in conserving this
species could use to select areas that need to be protected now and in the future.

Keywords: Dactylorhiza hatagirea; medicinal plant; Himalaya; Nepal; climate change; Orchidaceae

1. Introduction

The world is rapidly changing and, as a result, biodiversity is being affected in
various ways [1]. In addition to habitat loss, which is characterized as the greatest threat
to species [2], living creatures are also affected by the increase in human emissions of
carbon dioxide due to burning fossil fuels and other greenhouse gases, which are causing
climate change [1]. The potential effects of future climatic conditions on biodiversity
have been widely investigated and a large number of publications exist that predict these
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effects on trees [3–10], medicinal herbaceous plants and shrubs [11–17], fungi [18], invasive
plants [19,20], terrestrial orchids [21], etc.

Due to the expected increase in temperature, the suitable habitats of many species will
only be available further north or at higher altitudes e.g., [19,22–25]. Those species that are
not able to colonize these habitats before their present sites become unsuitable are likely to
become extinct, e.g., alpine plants [11]. To assess the effects of climate change on species,
the most widely used method is species distribution modelling (SDM), which links data
on species distribution with environmental data and is able to predict potentially suitable
areas and their changes over time [26,27].

It is expected that all areas in the world will be affected by climate change, but these
effects will vary spatially [1]. Mountain ecosystems, particularly those at tropical latitudes,
are considered ecologically sensitive and vulnerable to climate change [28]. The Himalayas
are predicted to experience a rise in temperature of 5–6 ◦C and increase in precipitation by
20–30% by the end of the twenty-first century [29], making them one of the most threatened
non-polar regions in the world [30]. Nepalese Himalayas are already being affected by
rapid temperature increase and other environmental changes at both regional and local
scales [30,31]. This alleviates some of the abiotic restrictions (for example, low temperature
and water availability) on the activity and distributions of species [32]. Recent work has
shown that the increasingly warmer climate conditions allow species to become established
at higher altitudes (in the nival zone), which forms a species pool for lower altitudes [33]
and may drive endemic species with restricted physiological ranges to extinction [34].

Members of the family Orchidaceae belong to the plant species expected to decline
to a lesser or greater degree. Many of these plants, especially terrestrial orchids, depend
on highly specific insect pollinators and complex mycorrhizal associations [35–38]. This
makes them more vulnerable to any ecosystem degradation and increases the likelihood of
their extinction. In addition, ignorance of these complex biological associations usually
results in an overestimation of their potential distribution area based on SDMs [39–41].

Dactylorhiza hatagirea (D.Don) Soó is a terrestrial orchid commonly known as “Pan-
chaunle” in Nepali. It is listed in Appendix II of the Convention on International Trade
in Endangered Species of Wild Fauna and Flora (CITES). It is classified as a critically
endangered species by the Conservation Assessment and Management Plan [42] and cate-
gorized as threatened by the International Union for Conservation of Nature (IUCN); [43].
Moreover, it is considered as an endangered and strictly protected species in list I of the
Government of Nepal [44]. It is endemic to the Hindu-Kush Himalayan region and dis-
tributed from Pakistan to China [45]. The species occurs patchily, in very low densities of
0.1 to 2.18 individuals/m2 [46–49].

Dactylorhiza hatagirea grows in the pastures in the sub-alpine and alpine zones at
altitudes of 2800–4200 m [50]. It is considered to be highly valuable medicinal species
in Nepal. The tubers of this orchid are used for treating diabetes, dysentery, colic pain,
seminal weakness, and diarrhea, and as an aphrodisiac [51–53]. More recent findings
indicate that D. hatagirea also has anti-cancerous properties [54].

Due to its medicinal properties, this species has been heavily exploited. Over-
exploitation, illegal trade, habitat destruction, and climate change are thus major threats
to its survival [46]. D. hatagirea is also a good indicator of environmental quality [55].
This indicates the need to establish areas where this species will be able to survive, thus
enhancing its conservation and restoration [56,57]. Therefore, information about its habitats
is particularly important for ensuring its proper management and protection.

In Nepal, only a few studies have focused on the abundance, density, and conservation
of D. hatagirea [46,47,58], and only one on suitable habitat modelling [59]. Possible effects of
climate change on its distribution have yet to be explored. Kunwar et al. [59] use bioclimatic
variables and slope as predictors for identifying suitable habitats. However, they rely
mostly on herbarium data, not on data collected directly in the field. In addition, they
ignore geological substrate and soil properties, which are important factors determining
habitat suitability for terrestrial orchids [60]. Finally, they make only an analysis of the
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current state and make no predictions for the future potential distribution of D. hatagirea
under climate change.

Our study differs from Kunwar et al. [59] by:

(a) using recent data from field excursions;
(b) mapping the potential suitable habitat using more predictors than Kunwar et al. [59] by

adding geological substrate and soil properties, which makes the predictions more realistic;
(c) making predictions about how the current potential distribution of this species will

change under future climate change scenarios.

This is a large step forward compared to the stage set by Kunwar et al. [59]. Our
results will help local authorities to effectively manage the conservation of the endangered
D. hatagirea.

2. Results
2.1. Environmental Variables Associated with the Localities Where D. hatagirea Currently Occurs

Although the initial dataset contained a large number of localities for D. hatagirea
(208 microsites), only 44 grid cells were occupied. This number of locations and grid cells is
sufficient for almost all modelling techniques. In general, a sample size of c. 40–50 records
(grids) provides robust models. Moreover, Maxent model produced good models even
with smaller sample sizes [61,62].

The values of Pearson’s correlation coefficients between the bioclimatic variables are
presented in Table 1. After omitting the variables with a high intercorrelation (r > |0.80|),
those included in the Maxent software were the annual mean temperature (BIO1), the mean
diurnal range (BIO2), the temperature seasonality (BIO4), the annual precipitation (BIO12),
the precipitation seasonality (BIO15), the precipitation in the driest quarter (BIO17), and
the precipitation in the coldest quarter (BIO19).

Table 1. Pearson’s correlation coefficients among the 19 bioclimatic variables (correlations with r ≥ |0.80| are shown in bold).

Bio1 Bio2 Bio3 Bio4 Bio5 Bio6 Bio7 Bio8 Bio9 Bio10 Bio11 Bio12 Bio13 Bio14 Bio15 Bio16 Bio17 Bio18 Bio19

Bio1 0 −0.04 0.62 −0.69 0.99 0.99 −0.58 0.98 0.96 0.99 0.99 0.78 0.84 −0.16 0.78 0.83 −0.06 0.69 −0.66
Bio2 0 0 0.19 0.32 0.05 −0.13 0.54 −0.03 −0.04 0.003 −0.08 −0.18 −0.10 −0.33 0.01 −0.11 −0.15 −0.24 −0.03
Bio3 0 0 0 −0.81 0.56 0.67 −0.68 0.55 0.49 0.56 0.67 0.55 0.51 0.10 0.32 0.54 0.15 0.51 −0.47
Bio4 0 0 0 0 −0.59 −0.78 0.95 −0.61 −0.57 −0.61 −0.75 −0.65 −0.57 −0.25 −0.31 −0.60 −0.20 −0.63 0.49
Bio5 0 0 0 0 0 0.96 −0.46 0.97 0.96 0.99 0.97 0.77 0.82 −0.23 0.81 0.81 −0.11 0.66 −0.66
Bio6 0 0 0 0 0 0 −0.69 0.96 0.93 0.97 0.99 0.82 0.83 −0.08 0.73 0.82 −0.01 0.72 −0.64
Bio7 0 0 0 0 0 0 0 −0.51 −0.47 −0.50 −0.65 −0.60 −0.51 −0.33 −0.25 −0.54 −0.26 −0.60 0.36
Bio8 0 0 0 0 0 0 0 0 0.95 0.98 0.96 0.79 0.83 −0.18 0.81 0.82 −0.09 0.69 −0.65
Bio9 0 0 0 0 0 0 0 0 0 0.97 0.94 0.76 0.81 −0.22 0.78 0.79 −0.13 0.65 −0.61
Bio10 0 0 0 0 0 0 0 0 0 0 0.98 0.79 0.83 −0.21 0.81 0.82 −0.09 0.67 −0.65
Bio11 0 0 0 0 0 0 0 0 0 0 0 0.81 0.83 −0.11 0.74 0.82 −0.03 0.71 −0.66
Bio12 0 0 0 0 0 0 0 0 0 0 0 0 0.97 −0.03 0.74 0.98 −0.10 0.95 −0.61
Bio13 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.14 0.84 0.99 −0.18 0.91 −0.64
Bio14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.41 −0.13 0.81 −0.03 0.54
Bio15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.82 −0.38 0.67 −0.67
Bio16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.18 0.94 −0.66
Bio17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.19 0.67
Bio18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.63
Bio19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Abbreviations: Bio1 = annual mean temperature; Bio2 = mean diurnal range; Bio3 = isothermality; Bio4 = temperature seasonality;
Bio5 = maximum temperature in the warmest month; Bio6 = minimum temperature in the coldest month; Bio7 = temperature annual
range; Bio8 = mean temperature in the wettest quarter; Bio9 = mean temperature in the driest quarter; Bio10 = mean temperature in the
warmest quarter; Bio11 = mean temperature in the coldest quarter; Bio12 = annual precipitation; Bio13 = precipitation of the wettest month;
Bio14 = precipitation of the driest month; Bio15 = precipitation seasonality; Bio16 = precipitation of the wettest quarter; Bio17 = precipitation
of the driest quarter; Bio18 =precipitation of the warmest quarter; Bio19 = precipitation of the coldest quarter.

The jackknife test indicated that annual mean temperature (BIO1), precipitation season-
ality (BIO15), and annual precipitation (BIO12) are the most significant variables, whereas
temperature seasonality (BIO4) and the mean diurnal range (BIO2) were the least sig-
nificant. The precipitation in the driest quarter (BIO17), the precipitation in the coldest
quarter (BIO19), and the environmental layer of the parent material, as generated from the
Soil and Terrain Database (SOTER) of Nepal, were of intermediate significance (Figure 1).
Omitting precipitation seasonality (BIO15) from the model causes the largest loss in the
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explanatory power of the model, compared with omitting any of the remaining variables.
Mean diurnal range (BIO2) and temperature seasonality (BIO4) by themselves are not
useful for estimating the distribution of D. hatagirea.
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Figure 1. Results of the jackknife test of the importance of the environmental variables to be used in the development of
the Maxent model of Dactylorhiza hatagirea. The length of the dark-blue bar indicates the size of the impact of the selected
variable, and the length of light-blue bar shows how much of the explanatory power of the model would be lost if the
corresponding factor were excluded from the analysis. See Table 1 for full names of the variables on the y-axis.

2.2. Distribution and Habitat Suitability of D. hatagirea under Current Climate and Various
Future Climate Change Scenarios

The current potential distribution predicted by the Maxent model is shown in Figure 2.
Grid cells with habitat suitability values for D. hatagirea below the lowest presence threshold
(LPT = 0.335) are unsuitable areas (blue and green colors). Under current climate conditions,
the potentially suitable habitats are located in the districts Darchula, Bhajang, Dolpa, Magdi,
Mustang, Manang, Kaski, Gorkha, Rasuwa, Sindhupalchok, Dolakha, Sholukhumbu,
and Sankhuwasabha in Nepal. That is, there is an area of 10,839 km2 with a suitability
index larger than 0.2 (Figure 2). In Kunwar et al. [59], some additional areas, covering
25,479 km2, are reported as being suitable: Bajung, Kalikot, Humla, Mugu, Jumla, Rukum,
and Taplejung. Under future climate scenarios (Figures 3–5), it is expected that suitable
habitats will only remain in Dolpa region. However, the suitable areas will then include the
districts Mugu and Humla (Figures 3–5) and the total range of very highly suitable areas
covers c. 1700 grid cells under RCP4.5 in 2070 under the BCC-CSM1-1 model (Figure 3).
All of the suitable habitats (both current and new) will be collapsed in the HadGEMM2-ES
model (Figure 6).
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2.3. Numbers of Suitable Grid Cells of D. hatagirea under Current Climate vs. Those under
Different Future Climate Change Scenarios

Under current climatic conditions, the habitat suitability values of 7731 grid cells
were above the lowest presence threshold (LPT = 0.335) (Figure 7), whereas under the
future climate scenarios, the number of grid cells with potentially suitable habitats falls
dramatically, reaching a maximum of ca. 1700 grid cells in 2070 under BCC-CSM1-1
(RCP4.5) scenario (Figures 3 and 8b). Contrary to other climate change models, the Hadley
Earth System Model (HadGEM2-ES) predicts the collapse of almost all suitable habitats
under all four types of climate change scenarios (Figures 6 and 8).

In RCP4.5, the numbers of grid cells containing suitable habitats ranged from 0 to
1596 in 2050 and from 0 to 1696 in 2070 in all four models of the climate change scenario
considered here. In RCP8.5, this range was 0 to 949 in 2050 and 0 to 1043 in 2070. On
average, there were less than 1600 grid cells containing suitable habitats in 2050 and 1700
in 2070.
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2.4. Percentage Change in Habitat Suitability of D. hatagirea under Current Climate and under
Different Future Climate Change Scenarios

Considering coverage of suitable habitats, the studied species will lose all preferred
niches by 2070 in HadGEM2-ES RCP4.5 and RCP8.5 scenarios. Based on CCSM4 simulation,
it will lose 71–81% of its niches by 2050 and 95–98% by 2070 (Table 2, Figures 9 and 10). The
most favorable for D. hatagirea is the BCC-CSM1-1 model. However, even in this scenario
the orchid will lose 65–85% of its suitable habitats (Table 2). Surprisingly, the RCP.4.5
pathway seems to be more harmful for D. hatagirea occurrence in 2070 than RCP8.5.

Table 2. Change in the coverage (km2) of suitable niches of D. hatagirea in response to various climate change scenarios.

Model Year RCP
Pathway

−1 (Range
Expansion)

0 (Absence
in Both)

1 (Present in
Both)

2 (Range
Contraction)

Coverage
Change

BCC-CSM1-1

2050
4.5 2,085,974 136,487,198 3805 8,143,194 −74.35%

8.5 1,133,826 137,439,346 12,366 8,134,633 −85.93%

2070
4.5 2,818,395 135,754,777 15,219 8,131,780 −65.22%

8.5 1,890,028 136,683,145 12,366 8,134,633 −76.65%

CCSM4

2050
4.5 2,330,432 136,242,741 3805 8,143,194 −71.35%

8.5 1,502,891 137,070,282 1902 8,145,096 −81.53%

2070
4.5 91,315 138,481,858 0951 8,146,048 −98.87%

8.5 389,991 138,183,182 5707 8,141,292 −95.14%

HadGEM2-ES

2050
4.5 4756 138,568,416 0 8,146,999 −99.94%

8.5 0 138,573,172 0 8,146,999 −100.00%

2070
4.5 0 138,573,172 0 8,146,999 −100.00%

8.5 0 138,573,172 0 8,146,999 −100.00%

MIROC5

2050
4.5 1,776,835 136,796,337 3805 8,143,194 −78.14%

8.5 1,385,893 137,187,279 8561 8,138,438 −82.88%

2070
4.5 605,912 137,967,260 3805 8,143,194 −92.52%

8.5 1,122,412 137,450,760 16,170 8,130,828 −86.02%
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towards higher altitudes, reaching up to 6000 m a.s.l., whereas the average altitude will 
be ca. 5000 m (Figure 12).  
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RCP8.5 (B,D,F,H) climate change scenarios. (A,B), BCC-CSM1-1 model; (C,D), CCSM4 model; (E,F), HadGEM2-ES model;
(G,H), MIROC5 model.

2.5. Change in Altitude of Potential Suitable Areas of D. hatagirea under Current Climate and
under Different Future Climate Change Scenarios

Under the current climatic conditions, the potentially suitable areas for D. hatagirea
are located between 2300 and 5000 m. a.s.l., whereas the average altitude is at ca. 4000 m
(Figure 11). Under future climate change scenarios, it is expected that D. hatagirea will shift
towards higher altitudes, reaching up to 6000 m a.s.l., whereas the average altitude will be
ca. 5000 m (Figure 12).
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3. Discussion

The export of medicinal species from Nepal to China began in the late 1990s, and
continues today [63]. Although orchids in Nepal are protected according to local legal acts
(Forest Act 1993, Forest Regulations 1995, and amendment in 2001), contradicting its own
policies, the Government of Nepal published a notification on 14th April 2008 permitting
collection of wild orchids for trade [64]. The absence of clear regulations on sustainable
harvesting and insufficient implementation of policies recently caused an increase in
the illegal trade of orchids [64,65]. In addition to the direct destruction of D. hatagirea
populations for commerce, Bhattarai et al. [46] found grazing, trampling, number of cattle,
and distance to settlement as the main anthropogenic factors negatively affecting the
population condition of this orchid. As indicated in our study, the survival chances of the
orchid will be further reduced by climate change. Our analyses indicate severe habitat loss
in Nepal and, in the worst-case scenario, all suitable niches of D. hatagirea will disappear.



Plants 2021, 10, 467 13 of 21

Current suitable habitats for D. hatagirea suggested by Kunwar et al. [59] are greater
than ours. This is most likely because Kunwar et al. [59] used only a subset of the predicting
variables used here. Although climatic factors are not the only factors determining habitat
suitability [66], Kunwar et al. [59] did not consider soil properties (identified as being of
intermediate significance here).

The other result of our analyses is a predicted change in altitudinal distribution of
D. hatagirea. Based on the environmental predictors used in the analyses (bioclimatic vari-
ables, soil type), the distribution of D. hatagirea was found to be mainly climate driven
because the total gain of Maxent model was greatly influenced by temperature and pre-
cipitation. Thus, it is expected that D. hatagirea will shift towards areas of higher altitude.
Specifically, the currently observed average vertical range of this species is 4000 m, whereas
in the future the average altitude of the studied orchid will be elevated to 5000 m. This
trend of moving uphill was already found in other plants inhabiting mountain slopes [67].
However, it is important to notice that species abundance can also change and lead to
altered dynamics in the plant communities in the plant communities [68]. This might also
be the case of D. hatagirea, which—like all orchids—is also sensitive to the increased compe-
tition. Thus, climate change may also affect D. hatagirea indirectly, through the change in the
competition equilibrium (e.g., expansion of forest into grasslands, expansion of tall grasses).
The tree-lines of the Himalaya are mainly formed by Abies spp., Betula utilis, Juniperus
spp., Pinus wallichiana, Larix spp., Rhododendron campanulatum, and Sorbus spp. Field-based
studies [69,70] have revealed an increase in tree density that is stable but with potential for
shifting, in addition to upward shifting of the tree-line in the Nepalese Himalayas.

Although geological substrate and soil properties are key factors determining the
distribution of several terrestrial orchids, at least at the regional and local levels, the
importance of these factors differs between species [60]. For example, variation in the
preferences of bedrock type was found for alpine Dactylorhiza sambucina [60]. This is
because the occurrence of high-montane species is generally more dependent on climate,
especially temperature [71]. D. hatagirea can occur in a number of geological substrates.
Parent material (soil properties) was identified as the only factor of intermediate importance
for the occurrence of D. hatagirea in our study and therefore cannot be ignored.

In addition to abiotic factors, the potential distribution of D. hatagirea can be shaped
by its interaction with other plant or animal species (e.g., plant-pollinator or/and plant-
mycorrhizal fungi interactions). Bhattarai et al. [46] claim that the distribution of D. hatagirea
is associated with the occurrence of other plant species, such as Anemone demissa, Bistorta
macrophylla, Chesneya nubigena, Morina nepalensis, and Morina polyphylla. At present, we
are not able to predict how climate change will affect these plants and how the potential
changes in the local flora will disturb distribution of the studied orchid. Moreover, D. hata-
girea is self-compatible but it is not capable of selfing [72]. The reproduction requires an
animal pollen vector (probably insects, similar to other Dactylorhiza species), however, to
date no data on specific insects transferring pollinia have been reported. Due to the lack
of information on the specific composition of D. hatagirea pollinators, we were not able
to analyze the impact of climate change on studied orchid pollen vectors, as has been
done for rare European orchids [40,41]. Because pollinators are also severely threatened by
climate change and habitat destruction [73], all factors that will affect their distribution or
activity can be potentially considered as serious threats for D. hatagirea. The other question
regards the influence of climate change on mycorrhizal fungi, which are crucial for seedling
development in all orchids. At present, we do not know how specific are the relationships
of D. hatagirea with symbiotic fungi and the species composition of its mycorrhizal associa-
tions. Further studies are required not only to evaluate the future distribution of orchid
symbionts, but also to improve possible reintroduction of this species.

Conservation efforts should be focused on areas that will be suitable for D. hatagirea
occurrence in the future, as indicated in our study. Among suitable areas in 13 districts
under current climate conditions, only the Dolpa region will be unchanged under future
climate change. However, the new suitable areas will be extended towards Mugu and
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Humla districts. The local scale genetic diversity is also equally important in order to
determine which areas host rare genotypes or high genetic variability, and are therefore
especially worth of preservation [74]. D. hatagirea is a strictly protected species in Nepal and
banned to local collection, trade, and processing [44]. Intensive ex situ mass propagation is
likely to reduce the rhizome collection from nature and simultaneously meet the economic
demand, and together with the now supported massive reintroductions might promote the
survival of D. hatagirea [75].

In general, species distribution models identify a portion of a species’ fundamental
niche, which is determined by the specific set of environmental predictors used in the
analyses [76]. However, the actual distribution is always determined by complex biotic
and abiotic interactions (e.g., competition, symbioses), in addition to biogeographical
limitations (e.g., dispersal ability, historical factors). In our case, we used a 1 × 1 km grid.
Thus, orchids may be able to survive even in areas that were identified as non-suitable in
the scale we used. This might be caused by the existence of suitable micro-sites that cannot
be identified when using coarser spatial resolution.

In contrast, in some cases, the outputs of species distribution models may overestimate
the species distribution, which may be attributed to a poor set of predictors. Other factors
that could cause such inconsistences are related to the vegetation succession. Even if
vegetation types or formations are also expected to change due to climate change [69,70],
predictions of these changes are very difficult and cannot be taken into consideration when
we explore the effects of climate change on the distribution of a specific species. Moreover,
the importance of vegetation succession is low in cases when the effects of climate change
in grassland species (such as D. hatagirea) are considered, because forest establishment in
an area is a much slower process compared to the upward shift of a grassland herbaceous
plant [69,70]. Contrary to the grassland species, such changes would be very important in
the case of plant species occurring within forests, as such species are expected to decline or
become extinct if forests change or become smaller.

4. Materials and Methods
4.1. Study Area

The study areas were in 14 locations of 3 conservation areas, 4 protected areas, and
two districts which were outside of the protected areas (Figure 13). We recorded the
D. hatagirea in Api Nampa Conservation Area (Chamelia Valley of Darchula), Khaptad
National Park (Khaptad valley), Rara National Park (Rara lake), Jumla district (Depalgaun,
Patamara, and Chhumchaur), Shey Phoksundo National Park (Lower Dolpa), Annapurna
Conservation Area (Lower Mustang, Upper Mustang, Upper Manang, Ghandruk-Deurali),
Manang district (Bhimtang), Manaslu Conservation Area (Samagaun), and Sagarmatha
National Park (Phortse). All of these locations are located in sub-alpine and alpine climates
of the high mountains (3000–5000 m). The major forest consists of subalpine conifer
forests (<3000 m), sub-alpine mixed forest dominated by Abies spectabilis and Betula utilis
(>3500–4000 m), and alpine shrub and meadows dominated by dwarf rhododendrons and
alpine herbs and grass (3000–5000 m).
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4.2. Sampling and GPS Presence Locations

Dactylorhiza hatagirea is a well-known medicinal plant which is commonly collected
by local people [51–53]. Based on information obtained from collectors of this medicinal
herb, we travelled along main trails used by people and herder trails in pasturelands in the
14 locations of the studied area with altitudinal range between 2200 and 5500 m to locate
the presence of Dactylorhiza hatagirea. Once we recorded the presence areas, all presence
GPS locations were recorded using a handheld device GARMIN GPSMAP. Moreover, we
used distribution data of our research team obtained during field excursions conducted
over the past 15 years. The main aim of our sampling was to record D. hatagirea in as many
areas as possible. This is because our modelling analysis (described below) is based on
ecological information obtained from a number of different sites and these data are used to
predict the potential distribution of a species by calculating the habitat suitability across
the landscape.

4.3. Predictive Distribution Model

To explore the potentially suitable area for Dactylorhiza hatagirea in Nepal under current
and future climatic conditions, we applied ecological niche models generated by Maxent
software version 3.4.1 [77,78].

Previous studies have used a variety of techniques and statistical methods have
been used for the species distribution modelling [79–83]. They are based on resource
selection function [84,85], generalized linear models [86], algorithmic modelling based on
machine learning [87], and a maximum entropy model called Maxent [78]. Among these,
currently the most often used method is Maxent because of its efficiency to handle complex
interactions between response and predictor variables, and possibility to be integrated
with GIS techniques [11].
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Maxent is used in modelling species distributions and is characterized by a high
predictive performance, even in the case of very small sample sizes [61,62,88,89]. The
model uses presence-only occurrence data and a set of environmental variables, and by
using the maximum entropy principle it computes habitat suitability values over the entire
study area.

The distribution data used for the model were based on the sampling mentioned
above. As the first step, we used 20 environmental explanatory variables. Nineteen of these
were bioclimatic variables and one corresponded to the soil properties of the study area.
The bioclimatic variables were downloaded from the WorldClim database [90] in a 30-sec
resolution (approximately 1 km2), whereas the environmental layer corresponding to the
soil properties was derived from the soil and terrain database (SOTER) for Nepal at a scale
of 1:1,000,000 [91]. Although SOTER for Nepal was in vector format, the layer containing
information about the parent material was converted to raster format at the same resolution
and extent with the layers of the bioclimatic variables. Because specific bioclimatic variables
are usually highly intercorrelated with others, we used ENMTools package [92] to calculate
Pearson correlation coefficients for all pairwise interactions. To eliminate highly correlated
variables, only one (i.e., the one with the higher percent contribution and training gain)
was selected among any pair of those with a correlation coefficient r > |0.80| [5,9].

In total, ten models were run with Maxent, and as suggested by Phillips and Dudík [71],
we used the auto-features mode and the default settings. Maxent models were run using
80% of the sample point data and tested against the remainder. Because of the rather small
number of occurrences of D. hatagirea, bootstrapping was used as a form of replication
(test samples chosen randomly by sampling with replacement). We assessed model per-
formance in the ENMTools package [92] using the Akaike information criterion (AICc)
because it greatly outperforms BIC and AUC based methods, especially when sample size
is small [93].

The future potential distribution of D. hatagirea and its habitat suitability in Nepal was
predicted using 16 climate change scenarios, corresponding to the years 2050 (average for
2041–2060) and 2070 (average for 2061–2080). Specifically, for each period (2050 and 2070),
four climate change models were chosen under the fifth Coupled Model Intercomparison
Project (CMIP5). We chose the following climate change models: (a) the Hadley Earth
System Model (HadGEM2-ES), (b) the Community Change System Model (CCSM4), (c)
the Beijing Climate Centre Climate System Model (BCC-CSM1-1), and (d) the Model
for Interdisciplinary Research on Climate (MIROC5). Two Representative Concentration
Pathways (RCPs) were used for each period and each climate change model. The four
different pathways that are available differ in the amounts of greenhouse gases that are
expected to be emitted in the future. Beginning from the RCP2.6 to the RCP8.5, the
emissions increase and thus RCP2.6 is a low emission scenario, whereas the RCP8.5 is
a maximum emission scenario. The other two emission scenarios (RCP4.5 and RCP6.0)
fall between these two extremes. In our analyses, we used the maximum greenhouse
gas emission scenario (RCP8.5) and one out of the two medium greenhouse gas emission
scenarios. Following Jiang et al. [94], and their results for China, the RCP4.5 was preferred
instead of the other medium gas emission scenario (RCP6.0).

The outcome of the species distribution models is a continuous suitability map, which
is usually converted into presence/absence data [76]. In the present study, the lowest
presence threshold (equaling the minimum training presence) was used because it provides
a reliable distribution of the studied species and can be better interpreted ecologically [95].

SDMtoolbox 2.3 for ArcGIS [96] was used to visualize changes in the distribution of
suitable niches of the studied orchid and its pollinators caused by climate change in RCP4.5
and RCP8.5 climate change scenarios. To compare distribution models created for current
climatic conditions with future models, all SDMs were converted into binary rasters and
projected using the Goode homolosine projection. The presence threshold was set as equal
to the minimum training presence.
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5. Conclusions

We evaluated the effect of predicted climate changes on the distribution of an en-
dangered plant, D. hatagirea, in Nepal, which is already seriously threatened by illegal
harvesting. The annual mean temperature (BIO1), seasonal nature of the precipitation
(BIO15), and annual precipitation (BIO12) were identified as the most significant variables
affecting the distribution of D. hatagirea. As indicated by our analyses, climate change
constitutes a severe threat for this orchid. Our research predicts severe habitat loss in
Nepal and, in the worst-case scenario, there are no suitable habitats for D. hatagirea. The
coverage of suitable habitat will be zero by 2070 based on the HadGEM2-ES RCP4.5 and
RCP8.5 scenarios. Based on the CCSM4 simulation, the decrease will be 71–81% by 2050
and 95–98% by 2070. The most favorable scenario is that predicted by the BCC-CSM1-1
model, which predicts a reduction of 65–85%. Surprisingly, the prediction of the occurrence
of D. hatagirea based on the RCP.4.5 is lower in 2070 than that based on RCP8.5.

Other factors that could affect the future distribution of D. hatagirea are ecological
interactions between this and other species, especially specific pollinators and mycorrhizal
fungi. Alterations in the distributions of the orchid’s insect pollinators could decrease
its reproductive success and climate change may adversely affect its association with
mycorrhizal fungi, resulting in poor seedling development.

In our opinion, conservation should focus on areas that this study indicates will be
suitable for D. hatagirea in the future.
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