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Abstract: Crop growth monitoring is an important component of agricultural information, and
suitable soil temperature (ST), soil moisture content (SMC) and soil electrical conductivity (SEC) play
a key role in crop growth. Real-time monitoring of the three soil parameters to predict the growth of
tea plantation helps tea trees grow healthily and to accurately grasp the growth trend of tea trees.
In this paper, five different models based on the polynomial model and power model were used to
construct the soil temperature, soil water content and soil conductivity and tea plantation growth
monitoring models. Experiments proved that tea plantation growth were positively correlated with
ST and negatively correlated with SMC and SEC, and among the constructed models, the ternary
cubic polynomial model was the best, and R square (R2) of the constructed models were 0.6369,
0.4510 and 0.5784, respectively, indicating that SEC was the most relevant to tea plantation growth
maximum. To improve the prediction accuracy, a model based on sum of soil temperature (SST), sum
of soil water content (SSMC) and sum of soil conductivity (SSEC) was proposed, and the experiments
also showed that the ternary cubic polynomial model was the best, with 0.9638, 0.9733 and 0.9660,
respectively. At the same time, a model incorporating three parameters such as soil temperature,
soil water content and soil conductivity was also suggested, with 0.6605 and 0.9761, respectively,
which effectively improved the prediction accuracy. Validation experiments were conducted. Twelve
data sets were utilized to verify the performance of the model. The experiments showed that the
regressions in the polynomial models achieved a better prediction effect. Finally, a long short-term
memory (LSTM) network prediction model optimized by the bald eagle search algorithm (BES)
was also constructed, and R2, root mean square error (RMSE), mean squared error (MSE), mean
absolute error (MAE) and mean absolute percentage error (MAPE) of prediction were 0.8666, 0.0629,
0.0040, 0.0436 and 10.5257, respectively, which significantly outperformed the LSTM network and
achieved better performance. The model proposed in this paper can be used to predict the actual
situation during the growing period of tea leaves, which can improve the production management of
tea plantations and also provide a scientific basis for accurate tea planting and a decision basis for
agricultural policy formulation, as well as provide technical support for the realization of agricultural
modernization.

Keywords: crop growth model; soil indicators; normalized difference vegetation index (NDVI); long
short-term memory (LSTM)

1. Introduction

Crop growth monitoring is an important element of agricultural information that
provides nondestructive access to crop growth. Crop growth is often affected by various
environmental factors, such as atmospheric temperature, soil temperature, soil moisture
content, soil electrical conductivity, rainfall, etc. Measures to monitor the environmental
parameters affecting crop growth in a timely and accurate manner can help crops grow
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healthily and can accurately grasp crop growth trends, which plays an important role in
improving crop yields, a key element of fine agricultural management.

The ground monitoring method, crop growth modeling method and remote sensing
monitoring method are the principal methods of crop growth monitoring [1]. The ground
monitoring method is a direct and rapid method based on manual observation, which
assesses the leaf area index (LAI) and height and density of crops by technicians and has
the advantages of high accuracy and good continuity but is influenced by human subjective
factors and is only suitable for small area monitoring. The growth modeling method has
become one of the most powerful tools in crop growth decision making by using crop
physiology, integrating the results of some advanced technologies such as examinations
of atmospheric and soil factors, and highlighting their advantages. The remote sensing
monitoring method, with its real-time dynamic characteristics, is helpful in monitoring
crop growth on a large scale through the study of foliar indices and biomass.

Crop growth monitoring methods are mainly direct monitoring methods, image classi-
fication methods, contemporaneous comparison methods, crop growth process monitoring
methods, crop growth modeling methods and diagnostic modeling methods [2,3]. LAI,
net primary productivity (NPP) and normalized difference vegetation index (NDVI) are
considered to be more effective indices for monitoring crop growth, among which NDVI
is the most widely used, and it can dynamically reflect the process of vegetation change.
Refs. [4–9] explored the relationship between NDVI and climate influences such as climate
temperature and rainfall. Some studies found that the normalized NDVI has some corre-
lation with soil moisture [10–12]. A positive correlation between NDVI and indices such
as precipitation and potential evapotranspiration is revealed [13]. A simulation model
is presented for wheat growth and yield under water and temperature stress conditions,
which can well predict growth and yield [14].

In addition to the wide coverage, timeliness, high comprehensiveness and good
economic characteristics of the method of crop monitoring using remote sensing, there are
also some problems [15]: (1) insufficient accuracy and limitations of remote sensing satellite
data for continuous real-time monitoring; (2) single structure of remote sensing data and
the lack of quantitative mathematical tool models; (3) crop monitoring model analysis is
too conventional and can only be applied to specific models, which has some limitations;
(4) lack of intelligent process monitoring instruments or equipment; (5) insufficient cross-
fertilization of remote sensing with other disciplines; (6) low monitoring effect and lack
of consideration of soil parameters, meteorological parameters and other affecting factors;
and (7) lack of professional and technical staff in remote sensing, which makes it difficult to
form characteristic monitoring techniques, and lack of corresponding support. NDVI can
be extracted from remote sensing images, which require strong expertise, and there is a
delay in NDVI acquisition, so it is necessary to use neural networks or artificial intelligence
algorithms to improve the accuracy of prediction [16].

The growth of crops is influenced by soil conditions and presents in different crop
growth characteristics. Many scholars have looked for the relationship between soil prop-
erties and crop growth. Studies have shown that soil conductivity shows a distinct rela-
tionship with crop growth or yield, and there is no uniform relationship [17]. Suitable soil
conductivity can improve soil nutrients and promote healthy crop growth [18–20].

Computational and learning models constructed by computer vision, machine learning
and deep learning also play an important advantage in crop growth [21–23]. Regression
modeling is used to identify maize longevity by combining LAI and MDA [24]. Computer
vision technology is proposed for the maize growth monitoring method, which will be
affected by the image powder rate and other environments and is difficult to apply in
practice [25]. Deep local association neural network is proposed for the maize growth
model and can effectively solve the problem of difficult recognition [26].

The models and methods described above were in a position to reveal the relationship
between climatic parameters such as temperature, rainfall, potential evaporation volume,
soil conductivity and crop growth and predicted crop growth trends through relevant
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algorithms. However, no similar solutions have been seen for integrating methods for
predicting crop growth models with multiple influencing factors in soil.

The objectives of this paper are to study the correlation between soil moisture content,
soil temperature and soil electrical conductivity and NDVI of tea plantation; to construct
a prediction model based on soil moisture content, soil temperature and soil electrical
conductivity with NDVI; to apply the LSTM network model optimized by BES to predict
the growth of tea plantation; and to verify the performance of the prediction model.

Section 1 introduces the crop growth monitoring methods and the current status of
their research; Section 2 describes the research methodology as well as the data acquisition
methods; Section 3 constructs the prediction models based on oil moisture content, soil
temperature and soil electrical conductivity with NDVI and their experimental analysis;
Section 4 constructs the models and analysis based on LSTM networks optimized by BES;
finally, conclusions and discussion are presented.

2. Research Methodology
2.1. Study Area and Subject

Liucheng County, Liuzhou city, Guangxi province, which is in the subtropical monsoon
zone, has the advantages of suitable temperature, sufficient light and abundant annual
average rainfall, but there exists an uneven distribution of quarters or months, which
often causes seasonal water shortage. The average temperature of Liucheng County is
around 20 ◦C throughout the year, and the annual rainfall is 1300–1500 mm, which is a
good climatic condition for most plants. The subject of this paper is the tea plantation of
Guangxi State-owned Fuhu Overseas Chinese Farm (109◦21′ N, 24◦82′ E), with a planting
area of roughly 58.4 ha.

2.2. Data Acquisition
2.2.1. Soil Information Data

Soil information data were collected by soil temperature sensors, soil moisture content
sensors and soil electrical conductivity sensors deployed in the tea plantation. Since the tea
plantations are mostly located in mountainous and sloping areas, which are often affected
by obstacles and increase the communication distance and quality of wireless sensor nodes,
wireless transmission and direct current (DC) line communication technology were used to
realize the dual transmission of data.

MEC20 sensors produced by Dalian Zheqin Technology Co. were adopted in the paper
to collect soil moisture content, soil electrical conductivity and soil temperature. Their
parameters are given in Table 1.

Table 1. Parameters of NECMEC20 Sensor.

Indicators Range Resolution Precision

SMC 0~50%
0~100%

0.03%
1%

2% (0~50%)
3% (50~100%)

SEC
0–5000 µs/cm
10,000 µs/cm
20,000 µs/cm

10 µs/cm
50 µs/cm
50 µs/cm

±3%
±5%
±5%

ST −40~80 ◦C 0.1 ◦C ±0.5 ◦C

According to the measurement requirements, the voltage output type sensor with
6 m line length is selected, and the range of SMC is 0–100%, and the range of SEC is
0–5000 µs/cm.

According to the actual area of Liuzhou Tea Garden, five sensor nodes were deployed
in a distributed deployment mode, which is responsible for obtaining soil indicators for
assigned areas. The sensor should be buried approximately 4–6 inches (10–15 cm) below
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the ground surface. For a better indication of the average humidity across the root zone,
sensors can be placed at multiple depths.

Data collected from sensor nodes are sent to the gateway node through wireless
transmission or DC line communication, then forwarded by the gateway node to the remote
server through 4G wireless communication method, and finally stored in the database for
subsequent analysis of the prediction model. The ST, SMC and SEC of the tea plantation
studied in this paper were collected from 1 January 2020 to 31 December 2020, which are
presented in Table 2.

Table 2. Selected data of soil information of tea plantation.

No. ST/◦C SMC/% SEC/µs/cm Time

1 12.76 18.83 60 2020-12-31 23:51:31
2 12.85 18.87 60 2020-12-31 23:40:33
3 12.85 18.83 60 2020-12-31 23:30:30
4 12.85 18.83 60 2020-12-31 23:19:35
5 12.88 18.87 60 2020-12-31 23:08:32
6 12.88 18.83 60 2020-12-31 22:57:35
7 12.91 18.87 60 2020-12-31 22:47:32
8 12.97 18.87 60 2020-12-31 22:36:35
9 12.97 18.87 60 2020-12-31 22:26:32

10 12.97 18.87 60 2020-12-31 22:15:35

2.2.2. Tea Growth Data

LAI, NPP and NDVI are considered to be more effective indices for monitoring crop
growth, among which NDVI is the most widely used, and it can dynamically reflect the
process of vegetation change.

Sentinel-2 high-resolution multispectral imaging satellites, which cover 13 spectral
bands with a maximum resolution of 10 m, are utilized in this paper. It is the one who
contains three bands in the red-edge range and can effectively monitor the vegetation
health. NDVI is calculated from Equation (1).

NDVI =
IR − R
IR + R

(1)

where IR is the pixel value in the infrared band, and R is the pixel value in the red band.
NDVI values of tea plantation from 1 January 2020 to 31 December 2020, were extracted

using Google Earth Engine (GEE) platform, which are shown in Figure 1.

Figure 1. NDVI values.
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2.3. Experimental Platform

Google Earth Engine (GEE) platform is utilized to extract the NDVI of tea plantations.
It is a comprehensive platform for geographic information data processing and visualization
launched by Google.

EDA (Exploratory Data Analysis) and HeatMap tools were utilized to analyze the
correlation between multiple objects and multiple attributes. EDA allows the analyst to see
at a glance the patterns implied in the data and come up with model for the data. HeatMap,
as one of the most common visualization tools, is widely used in various big data analysis
scenarios because of its rich color variations and vivid and detailed information expression.

Model construction and performance validation are conducted under the MATLAB
platform.

3. Model Construction Experiments and Analysis
3.1. Data Processing

Remote sensing observations are relatively influenced by cloud cover and sensors, re-
sulting in precipitous drops in NDVI values that cannot be well utilized. It can be observed
from Figure 1 that NDVI does experience many distortions. NDVI values (72 groups a year)
extracted by GEE are filtered to achieve the reconstruction of NDVI. The main methods
of filtering are HANTS, spline interpolation, Savitzky–Golay (S–G), sliding the average
method and median filtering. Considering that the characteristics of vegetation do not
change abruptly, the maximum value of NDVI was selected for filtering by the S–G filtering
method in order to ensure information retention of the collected data [27]. The filtered
NDVI value can be obtained by Equation (2).

Y∗i =
n

∑
i=−n

WjYi+j/M (2)

where Y is the original NDVI value, Y* is the filtered NDVI value, i denotes the original
NDVI order, Wj is the weight of the jth NDVI value at the beginning of the filter window,
M is the window size (taking the value 2n + 1) and n is half the length of the window.

Combined with the harvested tea leaves, the window size of the SG filter was taken as
5, the order of the fitted polynomial was taken as 2, and the standard deviation was taken
as 0.01. Values before and after filtering are shown in Figure 2.

Figure 2. NDVI values before and after filtering.
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A total of 47,557 soil information data were gathered during the time period under
study, and the data were normalized. The soil information data were averaged according
to the time points corresponding to the collected NDVI. Sentinel-2 consists of Sentinel-2A
and Sentinel-2B. Each satellite is in an imaging period of 10 days, and the two satellites
complement each other for imaging, so the two satellites alternate, with a revisit period
of 5 days. Thus, the average window of the data is equal the first five days of the satellite
image time point. Then, correlation analysis was performed for NDVI, soil water content,
soil conductivity and soil temperature, and the results are presented in Figure 3.

Figure 3. Correlation of soil information data and NDVI. (a) soil information data, (b) soil information
data (Summation).

Figure 3a shows moderate to high correlation between the NDVI on one hand and ST,
SMC and SEC on the other, both around 0.5. NDVI was significantly correlated with ST
and negatively correlated with SMC and SEC.

Since ST, SMC and SEC are cumulative for crops, daily data of ST, SMC and SEC above
the value of 0 were cumulative (respectively as SST, SSMC and SSEC), and correlation
analysis was performed with NDVI [28]. Figure 3b shows the high correlation between the
NDVI on one hand and SST, SSMC and SSEC on the other, both around 0.9, which indicates
that they are under a high correlation, both being positively proportional.

3.2. Evaluation Indicators

Four evaluation indicators are used to evaluate the performance of the model. They
are the sum of squared error (SSE), R-square (R2), adjusted r-square (AR) and root mean
square error (RMSE). They can be calculated by Equations (3)–(6).

SSE =
n

∑
i=1

ωi

(
yi −

∧
yi

)2

(3)

RMSE =

√
1
n

n

∑
i=1

(
yi −

∧
yi

)2
(4)

R2 =

n
∑

i=1
ωi

(∧
yi −

−
y i

)2

n
∑

i=1
ωi

(
yi −

−
yi

)2 (5)

R2 =

n
∑

i=1
ωi

(∧
yi −

−
y i

)2

n
∑

i=1
ωi

(
yi −

−
yi

)2 (6)
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where n represents the number of samples, p represents the number of features, ŷ represents
the predicted value, y represents mean of the measured value and y represents the measured
value.

3.3. Model Construction of Tea Growth

An experimental approach is used to construct the model. First, 60 sets of 72 data
sets were used for model construction, and the remaining 12 sets were used to validate the
performance of the model.

3.3.1. Model Prediction of Temperature and Tea Growth

Figures 4 and 5 show the effect of ST and SST fitted with NDVI, respectively. The
polynomial model and power model are applied for model construction, and the exponents
of polynomials are chosen as 1, 2 and 3, while the number of terms in the power model is
chosen as 1 and 2, and the models are named as Y1, Y2, Y3, Y4 and Y5, respectively.

Y1 models show that as the temperature increases, NDVI value increases gradually.
The ST is commensurate with NDVI, which is consistent with the analysis results in Figure 3.

Table 3 presents the results of the evaluation indicators for the temperature construc-
tion model. From Table 3, we can see that the coefficients of determination are all relatively
low, indicating that the correlation is low. R2 of Y1–Y5 ST models were only 0.5673, 0.5723,
0.6369, 0.5672 and 0.5690, respectively. The SSE, RMSE and AR of Y1–Y5 models do not
differ much, but it can be observed that the Y3 model is the best.

The R2 of Y1–Y5 SST models were 0.9286, 0.9476, 0.9638, 0.8945 and 0.9357, respectively,
all around 0.8, which indicates that the model has good performance. SSE and RMSE of all
models are also relatively small, indicating that the data fit dispersion is small, and the AR
indicators are both above 0.8, indicating that the fitted model is better. It also can be seen
that the Y3 model is the best.

It also can be seen from Figure 5 that the higher SST is in a certain range, the higher
the NDVI value will be, but when the SST increases to a certain value, the NDVI value
gradually decreases when the SST is larger, which is consistent with the growth of tea
leaves. In the process of tea growth, the increase of temperature plays a role in promoting
the growth of tea, so NDVI value will also increase; when the temperature increases further,
it will lead to soil water shortage due to high temperature, and even tea roots will be
burned, affecting the growth rate, or may even die [29]. This is consistent with the crop
physiological process.

Figure 4. ST and NDVI model results.
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Figure 5. SST and NDVI model results.

Table 3. Evaluation of the temperature construction model.

Item Model SSE RMSE R2 AR

ST

Y1 0.6730 0.1077 0.5673 0.5599
Y2 0.6654 0.1080 0.5723 0.5573
Y3 0.5649 0.1004 0.6369 0.6173
Y4 0.6732 0.1077 0.5672 0.5598
Y5 0.6704 0.1085 0.5690 0.5539

SST

Y1 0.1111 0.0438 0.9286 0.9274
Y2 0.0815 0.0378 0.9476 0.9458
Y3 0.0563 0.0317 0.9638 0.9619
Y4 0.1642 0.0532 0.8945 0.8926
Y5 0.1000 0.0419 0.9357 0.9334

3.3.2. Model Prediction of Soil Moisture Content and Tea Growth

Figures 6 and 7 show the effect of SMC and SSMC fitted with NDVI, respectively.
As the SMC increased, NDVI value also gradually decreased. SMC was inversely

associated with NDVI value, but the SSMC was positively related to NDVI value, which is
consistent with the analysis results in Figure 3.

In Table 4, for the SMC model, R2 of Y1–Y5 models were only 0.3464, 0.3830, 0.4510,
0.3647 and 0.3653, respectively. The SSE, RMSE and AR of Y1–Y5 models do not differ
much, but it can be seen that the Y3 model is the best. For the SSMC model, R2 of all models
reached above 0.8, indicating that there is a positive relationship between cumulative soil
water content and NDVI, and the Y3 model is the best.

In a certain range, the higher the SSMC, the higher the NDVI value, but when the
SSMC increases to a certain value, the NDVI value gradually decreases as the SSMC
becomes larger, which is consistent with the growth of tea. During the growth of tea,
moderate moisture is especially important for tea growth. Tea will be influenced by too
much or too little water. This is also in line with the crop physiological process.
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Figure 6. SMC and NDVI model results.

Figure 7. SSMC and NDVI model results.

Table 4. Evaluation of the soil moisture content construction model.

Item Model SSE RMSE R2 AR

SMC

Y1 1.0757 0.1249 0.3916 0.3828
Y2 1.0684 0.1253 0.3958 0.3780
Y3 0.7455 0.1055 0.5784 0.5595
Y4 1.1734 0.1304 0.3364 0.3268
Y5 1.0757 0.1258 0.3916 0.3738

SSMC

Y1 0.1959 0.0533 0.8892 0.8876
Y2 0.1803 0.0515 0.8980 0.8950
Y3 0.0601 0.0300 0.9660 0.9645
Y4 0.2711 0.0627 0.8467 0.8445
Y5 0.1946 0.0535 0.8900 0.8867
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3.3.3. Model Prediction of Soil Electrical Conductivity and Tea Growth

Figures 8 and 9 show the effect of SEC and SSEC fitted with NDVI value, respectively.
With the increase of SEC, NDVI value gradually decreases, i.e., SEC was inversely related
to NDVI value, but SSEC was positively related to NDVI value, which is consistent with
the analysis results in Figure 3.

Figure 8. SEC and NDVI model results.

Figure 9. SSEC and NDVI model results.

As can be seen from Table 5, Y3 model has the best R2 at 0.5784, while for the SSEC
model, the R2 of all models is above 0.8, indicating a positive relationship between cumula-
tive soil conductivity and NDVI.
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Table 5. Evaluation of the soil electrical conductivity construction model.

Item Model SSE RMSE R2 AR

SEC

Y1 1.0757 0.1249 0.3916 0.3828
Y2 1.0684 0.1253 0.3958 0.3780
Y3 0.7455 0.1055 0.5784 0.5595
Y4 1.1734 0.1304 0.3364 0.3268
Y5 1.0757 0.1258 0.3916 0.3738

SSEC

Y1 0.1959 0.0533 0.8892 0.8876
Y2 0.1803 0.0515 0.8980 0.8950
Y3 0.0601 0.0300 0.9660 0.9645
Y4 0.2711 0.0627 0.8467 0.8445
Y5 0.1946 0.0535 0.8900 0.8867

Moderate SEC is an important condition. If the SEC is too high (too much salt) it will
make the tea inhibit the synthesis of chlorophyll, which is not conducive to growth; if it is
too low, it will make the tea not absorb enough nutrients and water, which greatly affects
the growth of tea [29]. This is also in line with the physiological process of the crop.

3.3.4. Model Prediction of Tea Growth with Multiparameter Fusion

Figures 10 and 11 show the effect of integration of multiple parameters (IMP) and sum
of integration of multiple parameters (SIMP) with NDVI fit, respectively.

In Table 6, the R2 of the IMP and SIMP are improved, and the best ones reach above
0.6. The coefficients of the models after fusing the three parameters (cumulative) all reach
above 0.9, and the best one reaches 0.9761, which indicates that the prediction effect is more
satisfactory.

For IMP model, Y3 model has the best performance. For SIMP model, Y2 model has
the best performance. The trend of NDVI is well represented in both models.

Figure 10. IMP and NDVI model results.
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Figure 11. SIMP and NDVI model results.

Table 6. Evaluation of the integration of multiple parameters model.

Item Model SSE RMSE R2 AR

IMP

Y1 0.6619 0.1050 0.5745 0.5672
Y2 0.5401 0.0949 0.6528 0.6468
Y3 0.5281 0.0938 0.6605 0.6547
Y4 0.5750 0.0979 0.6305 0.6241

SIMP

Y1 0.0695 0.0340 0.9553 0.9545
Y2 0.0372 0.0249 0.9761 0.9757
Y3 0.0435 0.0269 0.9720 0.9715
Y4 0.0676 0.0336 0.9565 0.9558

3.3.5. Model Prediction Performance Validation

Validation experiments were performed on the model mentioned above. Its perfor-
mance was experimented on each model using 12 sets of data. Indicators for the evaluation
of the model are MSE, RMSE, R2 and AR.

Tables 7–10 show the results of the validation experiments.

Table 7. Validation evaluation of the temperature construction model.

Item Model MSE RMSE R2 AR

ST

Y1 0.0745 0.2730 0.8907 0.8785
Y2 0.0741 0.2722 0.8918 0.8798
Y3 0.0837 0.2893 0.8281 0.8090
Y4 0.0738 0.2717 0.8906 0.8785
Y5 0.0742 0.2724 0.8912 0.8791

SST

Y1 0.0299 0.1728 0.9902 0.9891
Y2 0.0097 0.0986 0.9906 0.9896
Y3 0.0005 0.0226 0.9739 0.9710
Y4 0.0098 0.0989 0.9907 0.9897
Y5 0.0217 0.1472 0.9904 0.9893

In Table 7, the R2 of each model is greater than 0.8 when the model input is ST and
above 0.95 when the input is SST. The performance of the Y3 model is the worst among all
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the models. Furthermore, in Table 8, the Y3 model predicts best when the model input is
SMC, while the Y2 model predicts best when the model input is SSMC.

Table 8. Validation evaluation of the soil moisture content construction model.

Item Model MSE RMSE R2 AR

SMC

Y1 0.0295 0.1718 0.5410 0.4900
Y2 0.1230 0.3507 0.5559 0.5066
Y3 0.0504 0.2244 0.6218 0.5798
Y4 0.1347 0.3671 0.5757 0.5286
Y5 0.1123 0.3351 0.5706 0.5229

SSMC

Y1 0.0075 0.0867 0.9749 0.9721
Y2 0.0027 0.0522 0.9858 0.9842
Y3 0.00006 0.0080 0.9341 0.9268
Y4 0.0036 0.0599 0.9768 0.9743
Y5 0.0058 0.0764 0.9757 0.9729

In Table 9, the Y3 model has the best prediction performance when the model input is
SEC, and the R2 of the model is 0.8059, while the R2 of the model prediction is above 0.95
when the model input is SSEC, which indicates a better prediction performance.

Table 9. Validation evaluation of the soil electrical conductivity construction model.

Item Model SSE RMSE R2 AR

SEC

Y1 0.0033 0.0571 0.6807 0.6452
Y2 0.0046 0.0680 0.6879 0.6532
Y3 0.0002 0.0126 0.8059 0.7843
Y4 0.0055 0.0739 0.7352 0.7058
Y5 0.0033 0.0575 0.6812 0.6458

SSEC

Y1 0.0056 0.0747 0.9778 0.9753
Y2 0.0033 0.0575 0.9798 0.9776
Y3 0.0003 0.0192 0.9532 0.9479
Y4 0.0027 0.0517 0.9788 0.9764
Y5 0.0051 0.0713 0.9779 0.9755

In Table 10, when the model input is IMP, R2 of Y1 and Y3 model are 0.8179 and 0.8051,
which is obviously better than other models. When the model input is SIMP, R2 of Y1 and
Y4 model are 0.8017 and 0.9308, which is obviously better than Y2 and Y3 models.

Table 10. Validation evaluation of the integration of multiple parameters model.

Item Model MSE RMSE R2 AR

IMP

Y1 0.0266 0.1630 0.8179 0.8148
Y2 0.0078 0.0885 0.7149 0.7100
Y3 0.0237 0.1540 0.8051 0.8017
Y4 0.0298 0.1727 0.3282 0.3166

SIMP

Y1 0.0053 0.0727 0.8017 0.7983
Y2 0.0002 0.0168 0.6594 0.6535
Y3 0.0057 0.0752 0.2617 0.2492
Y4 0.0103 0.1013 0.9308 0.9296

This is because the short duration of the experiment and the inconsistent details of
the collection of soil and NDVI data can affect the results obtained. The impact of the
mathematical manipulation of the data to obtain the final regressions in the polynomial
models may also be relevant. Therefore, the performance of the constructed model and the
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model validation performance need to be considered together to determine which model is
more suitable.

3.3.6. Summary

A tea tree growth monitoring model was constructed. Prediction models based on
soil temperature, soil moisture content and soil electrical conductivity with NDVI were
constructed. Five prediction models were constructed using the polynomial model and
the power function model, among which the cubic polynomial fit was the best and the
evaluation parameters were optimal, which were consistent with the physiological process
of tea tree growth. The performance of various models with different input characteristics
of the model is analyzed. A novel idea of tea tree growth monitoring model construction is
given. The short experimental period and the disparity of detail in the collection of soil and
NDVI data may affect the results obtained.

4. LSTM Networks Model Optimized by BES
4.1. LSTM

LSTM network is a special form of Recurrent Neural Network (RNN) [30], which
mainly consists of the forgetting phase, selecting memory phase and output phase, with
strong generalization ability. It can effectively solve the gradient disappearance and gradi-
ent explosion problems during the training of long sequences and performs better in the
prediction of nonlinear long sequences. The LSTM structure is shown in Figure 12, where
⊗ is matrix multiplication, ⊕ is matrix summation; zi, z f and zo are the gate control signal;
z is a transformed value using the tanh activation function (takes values in the range [−1,
1]); and Ht−1, ct−1, Ht and ct are the previous moment state value and the current moment
state value of the two transmission states. σ is the sigmoid activation function, Xt is input
signal and Yt is output signal. They are calculated by Equations (7)–(13).

z = tanh(W, Xt, Ht−1) (7)

zi = σ(Wi, Xt, Ht−1) (8)

z f = σ(W f , Xt, Ht−1) (9)

zo = σ(Wo, Xt, Ht−1) (10)

ct = z f ⊗ ct−1 ⊕ zi ⊗ z (11)

Ht = zo ⊗ tanh
(
ct) (12)

Yt = σ
(
W ′Ht) (13)

Figure 12. LSTM structure.
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4.2. BES

BES is an algorithm that has powerful global search capability and can effectively
solve various complex numerical optimization problems. It consists of three phases, which
are the selection phase, search phase and prey phase [31,32].

In the selection phase, the bald eagle first selects the area at random and then looks
for the best position by judging the prey population. At this stage, the position of the
main bald eagle is determined primarily by experience and position change parameters, as
shown in Equation (14).

Pi,new = Pbest + α× γ× (Pmean − Pi) (14)

where α represents the position change control parameter that takes a value between 1.5
and 2, γ is a random number between 0 and 1, Pbest represents when the bald eagle has the
best search position identified during its previous search, Pmean indicates that these eagles
have used up all information from the previous points and Pi is the position of the i-th bald
eagle.

In the search phase, the bald eagle is in search of prey to speed up the search process
and find the best swooping location. At this point, the best position for the eagle is
determined by Equation (15).

Pi,new = Pi + x(i)× (Pi − Pmean) + y(i)× (Pi − Pi+1)

x(i) = xr(i)
max(|xr|) y(i) =

yr(i)
max(|yr|)

xr(i) = r(i)× sin(θ(i)) yr(i) = r(i)× cos(θ(i))
r(i) = θ(i) + R× rand θ(i) = a× π × rand

(15)

where θ(i) and r(i) represent the polar angle and polar diameter of the spiral equation; ϕ is
a parameter determining the corner between the point search in the central point, which
takes a value between 5 and 10; R is a parameter determining the number of search cycles
that takes a value between 0.5 and 2; rand is a random number from 0 to 1; and x(i) and
y(i) indicate the position of the bald eagle in polar coordinates.

In the swooping stage, bald eagles swoop quickly from the best spots in the search
space to the target, while individuals from other species move to the best spots and attack
the prey. The position of the bald eagle at this point is calculated using Equation (16).

Pi,new = rand× Pbest + x1(i)× (Pi − c1× Pmean) + y1(i)× (Pi − c2× Pbest)

x1(i) = xr(i)
max(|xr|) y1(i) = yr(i)

max(|yr|)
xr(i) = r(i)× sin h(θ(i)) yr(i) = r(i)× cos h(θ(i))

θ(i) = a× π × rand r(i) = θ(i)

(16)

where c1 and c2 represent the exercise intensity of the bald eagle to the best and center
position that takes the value between 1 and 2.

4.3. Algorithm Optimization

The initialization parameters directly affect prediction performance the LSTM net-
works, and parameter optimization is of particular important. The learning rate and the
number of hidden layers are important parameters in LSTM networks, which are optimized
by taking advantage of the optimization ability, convergence ability and convergence speed
of the BES algorithm to avoid the influence of human empirical differences. The tuning
steps are as follows:

(1) Process the data and split it into training set and test set.
(2) Initializing the parameters of the BES and the LSTM networks.
(3) Obtain the best parameters using the BES to set up the LSTM network.
(4) The RMSE of the model is used as the fitness, and the fitness of each population in the

BES is calculated, and the minimum value is taken as the optimal solution result.
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(5) Iterate the operation and update the parameters of the LSTM using the BES algorithm.
(6) Repeat (4)–(5) until the end of the condition.
(7) Prediction of the LSTM network using the final optimized parameters.

4.4. Evaluation Indicators

The indicators used for the model predictions are R2, RMSE, MSE, MAE and MAPE.

4.5. Experimental Analysis

The first 50 sets of data were used as the training set, and the remaining 21 sets were
used as the test set. Then, the LSTM network and BES–LSTM were used for training and
testing, and the results are shown in Figure 13 and Table 11.

Figure 11 shows that the values provided for in the BES–LSTM network all capture
the trend of NDVI values. The R2, RMSE, MSE, MAE and MAPE of the LSTM model are
0.5299, 0.1642, 0.0270, 0.1518 and 36.8900, respectively, while the evaluation indicators of
the BES–LSTM model are 0.8666, 0.0629, 0.0040, 0.0436 and 10.5257, respectively. The BES–
LSTM model is significantly better than the LSTM network, indicating that the BES–LSTM
is a better-performing model.

Figure 13. LSTM model prediction results.

Table 11. Evaluation of LSTM model and BES–LSTM model.

Model R2 RMSE MSE MAE MAPE

LSTM 0.5299 0.1642 0.0270 0.1518 36.8900
BES-LSTM 0.8666 0.0629 0.0040 0.0436 10.5257

4.6. Summary

A tea tree growth monitoring model based on LSTM optimized by BES was con-
structed. The principles of LSTM and BES algorithm were explained, the learning rate
and the number of hidden layers of the LSTM network were optimized using the BES
algorithm and the optimized BES–LSTM network was used to build a tea tree growth
monitoring model, which effectively improved the performance of the network prediction.
In this model, the parameters such as soil temperature, soil moisture content and soil
electrical conductivity were used as input values, and NDVI was used as output value,
which could effectively capture the trend of NDVI. The R2, RMSE, MSE, MAE and MAPE
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of the LSTM model were 0.5299, 0.1642, 0.0270, 0.1518 and 36.8900, respectively, while those
of the BES–LSTM model were 0.8666, 0.0629, 0.0040, 0.0436 and 10.5257, respectively, which
indicates that the performance of BES–LSTM is far better than that of LSTM.

5. Conclusions

Our work is summarized in the present section. A tree growth monitoring model
constructed with soil indicators was proposed. The correlation of soil temperature, soil
moisture content and soil electrical conductivity with the tea tree growth parameter (NDVI)
was discussed. The results showed that the NDVI value was positively correlated with soil
temperature, while it was inversely correlated with soil moisture content and soil electrical
conductivity. The results also showed that it was positively correlated with sum of soil
temperature, sum of soil moisture content and sum of soil electrical conductivity.

The final regression results in the polynomial model with discrete input characteristics
are discussed, which proposes an innovative method for a tea tree growth monitoring
model. The performance of the model was further verified. The experiments showed that
the tea tree growth monitoring model achieved a better prediction effect.

A prediction model based on the LSTM model optimized by arithmetic optimization
algorithm (AOA) was investigated, providing a new idea for tea growth monitoring. In
this model, parameters such as soil temperature, soil moisture content and soil electrical
conductivity were used as input values, and NDVI was used as output value. The exper-
iments show that the AOA–LSTM model predicts a value of 0.8666, which has a certain
advantage over the performance of other models. The model proposed in this chapter
provides a different idea for tea growth monitoring.

Some issues in the paper need to be further discussed:

(1) The tea tree growth monitoring model needs to be strengthened. As tea tree growth
monitoring is more influenced by other factors in the environment, it has yet to be
further studied in depth. The relationship between tea tree growth monitoring and
the influence of meteorological parameters, atmosphere, etc., should be effectively
studied and integrated into the model to achieve better results.

(2) More effective network model applications are expected. Since the impact of each
parameter in the soil information is also mutual, more complex networks need to be
used to build models that can better predict and improve the accuracy of prediction.

(3) Data samples need to be increased. The remote sensing data used in this study are
only of one year, and only 72 remote sensing images can be extracted to extract NDVI,
this making the data applied to the experiment obviously less. More NDVI data
should be obtained, and the period of the experiment should be extended, so that the
accuracy and applicability of the prediction model can be improved.
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