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Abstract: Crop growth monitoring is an important component of agricultural information, and suit-
able soil temperature (ST), soil moisture content (SMC) and soil electrical conductivity (SEC) play a 
key role in crop growth. Real-time monitoring of the three soil parameters to predict the growth of 
tea plantation helps tea trees grow healthily and to accurately grasp the growth trend of tea trees. 
In this paper, five different models based on the polynomial model and power model were used to 
construct the soil temperature, soil water content and soil conductivity and tea plantation growth 
monitoring models. Experiments proved that tea plantation growth were positively correlated with 
ST and negatively correlated with SMC and SEC, and among the constructed models, the ternary 
cubic polynomial model was the best, and R square (R2) of the constructed models were 0.6369, 
0.4510 and 0.5784, respectively, indicating that SEC was the most relevant to tea plantation growth 
maximum. To improve the prediction accuracy, a model based on sum of soil temperature (SST), 
sum of soil water content (SSMC) and sum of soil conductivity (SSEC) was proposed, and the ex-
periments also showed that the ternary cubic polynomial model was the best, with 0.9638, 0.9733 
and 0.9660, respectively. At the same time, a model incorporating three parameters such as soil tem-
perature, soil water content and soil conductivity was also suggested, with 0.6605 and 0.9761, re-
spectively, which effectively improved the prediction accuracy. Validation experiments were con-
ducted. Twelve data sets were utilized to verify the performance of the model. The experiments 
showed that the regressions in the polynomial models achieved a better prediction effect. Finally, a 
long short-term memory (LSTM) network prediction model optimized by the bald eagle search al-
gorithm (BES) was also constructed, and R2, root mean square error (RMSE), mean squared error 
(MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of prediction were 
0.8666, 0.0629, 0.0040, 0.0436 and 10.5257, respectively, which significantly outperformed the LSTM 
network and achieved better performance. The model proposed in this paper can be used to predict 
the actual situation during the growing period of tea leaves, which can improve the production 
management of tea plantations and also provide a scientific basis for accurate tea planting and a 
decision basis for agricultural policy formulation, as well as provide technical support for the real-
ization of agricultural modernization. 

Keywords: crop growth model; soil indicators; normalized difference vegetation index (NDVI); 
long short-term memory (LSTM) 
 

1. Introduction 
Crop growth monitoring is an important element of agricultural information that 

provides nondestructive access to crop growth. Crop growth is often affected by various 
environmental factors, such as atmospheric temperature, soil temperature, soil moisture 
content, soil electrical conductivity, rainfall, etc. Measures to monitor the environmental 
parameters affecting crop growth in a timely and accurate manner can help crops grow 
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healthily and can accurately grasp crop growth trends, which plays an important role in 
improving crop yields, a key element of fine agricultural management. 

The ground monitoring method, crop growth modeling method and remote sensing 
monitoring method are the principal methods of crop growth monitoring [1]. The ground 
monitoring method is a direct and rapid method based on manual observation, which 
assesses the leaf area index (LAI) and height and density of crops by technicians and has 
the advantages of high accuracy and good continuity but is influenced by human subjec-
tive factors and is only suitable for small area monitoring. The growth modeling method 
has become one of the most powerful tools in crop growth decision making by using crop 
physiology, integrating the results of some advanced technologies such as examinations 
of atmospheric and soil factors, and highlighting their advantages. The remote sensing 
monitoring method, with its real-time dynamic characteristics, is helpful in monitoring 
crop growth on a large scale through the study of foliar indices and biomass. 

Crop growth monitoring methods are mainly direct monitoring methods, image clas-
sification methods, contemporaneous comparison methods, crop growth process moni-
toring methods, crop growth modeling methods and diagnostic modeling methods [2,3]. 
LAI, net primary productivity (NPP) and normalized difference vegetation index (NDVI) 
are considered to be more effective indices for monitoring crop growth, among which 
NDVI is the most widely used, and it can dynamically reflect the process of vegetation 
change. Refs [4–9] explored the relationship between NDVI and climate influences such 
as climate temperature and rainfall. Some studies found that the normalized NDVI has 
some correlation with soil moisture [10–12]. A positive correlation between NDVI and 
indices such as precipitation and potential evapotranspiration is revealed [13]. A simula-
tion model is presented for wheat growth and yield under water and temperature stress 
conditions, which can well predict growth and yield [14]. 

In addition to the wide coverage, timeliness, high comprehensiveness and good eco-
nomic characteristics of the method of crop monitoring using remote sensing, there are 
also some problems [15] : (1) insufficient accuracy and limitations of remote sensing sat-
ellite data for continuous real-time monitoring; (2) single structure of remote sensing data 
and the lack of quantitative mathematical tool models; (3) crop monitoring model analysis 
is too conventional and can only be applied to specific models, which has some limita-
tions; (4) lack of intelligent process monitoring instruments or equipment; (5) insufficient 
cross-fertilization of remote sensing with other disciplines; (6) low monitoring effect and 
lack of consideration of soil parameters, meteorological parameters and other affecting 
factors; and (7) lack of professional and technical staff in remote sensing, which makes it 
difficult to form characteristic monitoring techniques, and lack of corresponding support. 
NDVI can be extracted from remote sensing images, which require strong expertise, and 
there is a delay in NDVI acquisition, so it is necessary to use neural networks or artificial 
intelligence algorithms to improve the accuracy of prediction [16]. 

The growth of crops is influenced by soil conditions and presents in different crop 
growth characteristics. Many scholars have looked for the relationship between soil prop-
erties and crop growth. Studies have shown that soil conductivity shows a distinct rela-
tionship with crop growth or yield, and there is no uniform relationship [17]. Suitable soil 
conductivity can improve soil nutrients and promote healthy crop growth [18–20]. 

Computational and learning models constructed by computer vision, machine learn-
ing and deep learning also play an important advantage in crop growth [21–23]. Regres-
sion modeling is used to identify maize longevity by combining LAI and MDA [24]. Com-
puter vision technology is proposed for the maize growth monitoring method, which will 
be affected by the image powder rate and other environments and is difficult to apply in 
practice [25]. Deep local association neural network is proposed for the maize growth 
model and can effectively solve the problem of difficult recognition [26]. 

The models and methods described above were in a position to reveal the relation-
ship between climatic parameters such as temperature, rainfall, potential evaporation vol-
ume, soil conductivity and crop growth and predicted crop growth trends through 
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relevant algorithms. However, no similar solutions have been seen for integrating meth-
ods for predicting crop growth models with multiple influencing factors in soil. 

The objectives of this paper are to study the correlation between soil moisture con-
tent, soil temperature and soil electrical conductivity and NDVI of tea plantation; to con-
struct a prediction model based on soil moisture content, soil temperature and soil elec-
trical conductivity with NDVI; to apply the LSTM network model optimized by BES to 
predict the growth of tea plantation; and to verify the performance of the prediction 
model. 

Section 1 introduces the crop growth monitoring methods and the current status of 
their research; Section 2 describes the research methodology as well as the data acquisition 
methods; Section 3 constructs the prediction models based on oil moisture content, soil 
temperature and soil electrical conductivity with NDVI and their experimental analysis; 
Section 4 constructs the models and analysis based on LSTM networks optimized by BES; 
finally, conclusions and discussion are presented. 

2. Research Methodology 
2.1. Study Area and Subject 

Liucheng County, Liuzhou city, Guangxi province, which is in the subtropical mon-
soon zone, has the advantages of suitable temperature, sufficient light and abundant an-
nual average rainfall, but there exists an uneven distribution of quarters or months, which 
often causes seasonal water shortage. The average temperature of Liucheng County is 
around 20 °C throughout the year, and the annual rainfall is 1300–1500 mm, which is a 
good climatic condition for most plants. The subject of this paper is the tea plantation of 
Guangxi State-owned Fuhu Overseas Chinese Farm (109°21′ N, 24°82′ E), with a planting 
area of roughly 58.4 ha. 

2.2. Data Acquisition 
2.2.1. Soil Information Data 

Soil information data were collected by soil temperature sensors, soil moisture con-
tent sensors and soil electrical conductivity sensors deployed in the tea plantation. Since 
the tea plantations are mostly located in mountainous and sloping areas, which are often 
affected by obstacles and increase the communication distance and quality of wireless 
sensor nodes, wireless transmission and direct current (DC) line communication technol-
ogy were used to realize the dual transmission of data. 

MEC20 sensors produced by Dalian Zheqin Technology Co. were adopted in the pa-
per to collect soil moisture content, soil electrical conductivity and soil temperature. Their 
parameters are given in Table 1. 

Table 1. Parameters of NECMEC20 Sensor. 

Indicators Range Resolution Precision 

SMC 
0~50% 
0~100% 

0.03% 
1% 

2% (0~50%) 
3% (50~100%) 

SEC 
0–5000 us/cm 
10,000 us/cm 
20,000 us/cm 

10 us/cm 
50 us/cm 
50 us/cm 

±3% 
±5% 
±5% 

ST −40~80 °C 0.1 °C ±0.5 °C 

According to the measurement requirements, the voltage output type sensor with 6 
m line length is selected, and the range of SMC is 0–100%, and the range of SEC is 0–5000 
us/cm. 

According to the actual area of Liuzhou Tea Garden, five sensor nodes were de-
ployed in a distributed deployment mode, which is responsible for obtaining soil 
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indicators for assigned areas. The sensor should be buried approximately 4–6 inches (10–
15 cm) below the ground surface. For a better indication of the average humidity across 
the root zone, sensors can be placed at multiple depths. 

Data collected from sensor nodes are sent to the gateway node through wireless 
transmission or DC line communication, then forwarded by the gateway node to the re-
mote server through 4G wireless communication method, and finally stored in the data-
base for subsequent analysis of the prediction model. The ST, SMC and SEC of the tea 
plantation studied in this paper were collected from 1 January 2020 to 31 December 2020, 
which are presented in Table 2. 

Table 2. Selected data of soil information of tea plantation. 

No. ST/°C SMC/% SEC/μs/cm Time 
1 12.76 18.83 60 2020-12-31 23:51:31 
2 12.85 18.87 60 2020-12-31 23:40:33 
3 12.85 18.83 60 2020-12-31 23:30:30 
4 12.85 18.83 60 2020-12-31 23:19:35 
5 12.88 18.87 60 2020-12-31 23:08:32 
6 12.88 18.83 60 2020-12-31 22:57:35 
7 12.91 18.87 60 2020-12-31 22:47:32 
8 12.97 18.87 60 2020-12-31 22:36:35 
9 12.97 18.87 60 2020-12-31 22:26:32 

10 12.97 18.87 60 2020-12-31 22:15:35 

2.2.2. Tea Growth Data 
LAI, NPP and NDVI are considered to be more effective indices for monitoring crop 

growth, among which NDVI is the most widely used, and it can dynamically reflect the 
process of vegetation change. 

Sentinel-2 high-resolution multispectral imaging satellites, which cover 13 spectral 
bands with a maximum resolution of 10 m, are utilized in this paper. It is the one who 
contains three bands in the red-edge range and can effectively monitor the vegetation 
health. NDVI is calculated from Equation (1). 

NDVI =
IR - R
IR + R

 (1) 

where IR is the pixel value in the infrared band, and R is the pixel value in the red band. 
NDVI values of tea plantation from 1 January 2020 to 31 December 2020, were ex-

tracted using Google Earth Engine (GEE) platform, which are shown in Figure 1. 
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Figure 1. NDVI values. 

2.3. Experimental Platform 
Google Earth Engine (GEE) platform is utilized to extract the NDVI of tea plantations. 

It is a comprehensive platform for geographic information data processing and visualiza-
tion launched by Google. 

EDA (Exploratory Data Analysis) and HeatMap tools were utilized to analyze the 
correlation between multiple objects and multiple attributes. EDA allows the analyst to 
see at a glance the patterns implied in the data and come up with model for the data. 
HeatMap, as one of the most common visualization tools, is widely used in various big 
data analysis scenarios because of its rich color variations and vivid and detailed infor-
mation expression. 

Model construction and performance validation are conducted under the MATLAB 
platform. 

3. Model Construction Experiments and Analysis 
3.1. Data Processing 

Remote sensing observations are relatively influenced by cloud cover and sensors, 
resulting in precipitous drops in NDVI values that cannot be well utilized. It can be ob-
served from Figure 1 that NDVI does experience many distortions. NDVI values (72 
groups a year) extracted by GEE are filtered to achieve the reconstruction of NDVI. The 
main methods of filtering are HANTS, spline interpolation, Savitzky–Golay (S–G), sliding 
the average method and median filtering. Considering that the characteristics of vegeta-
tion do not change abruptly, the maximum value of NDVI was selected for filtering by the 
S–G filtering method in order to ensure information retention of the collected data [27]. 
The filtered NDVI value can be obtained by Equation (2). 

*
i

i

/
n

j i j
n

Y WY M+
=−

= ∑  (2) 

where Y is the original NDVI value, Y* is the filtered NDVI value, i denotes the original 
NDVI order, Wj is the weight of the jth NDVI value at the beginning of the filter window, 
M is the window size (taking the value 2n + 1) and n is half the length of the window. 

Combined with the harvested tea leaves, the window size of the SG filter was taken 
as 5, the order of the fitted polynomial was taken as 2, and the standard deviation was 
taken as 0.01. Values before and after filtering are shown in Figure 2. 
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Figure 2. NDVI values before and after filtering. 

A total of 47,557 soil information data were gathered during the time period under 
study, and the data were normalized. The soil information data were averaged according 
to the time points corresponding to the collected NDVI. Sentinel-2 consists of Sentinel-2A 
and Sentinel-2B. Each satellite is in an imaging period of 10 days, and the two satellites 
complement each other for imaging, so the two satellites alternate, with a revisit period of 
5 days. Thus, the average window of the data is equal the first five days of the satellite 
image time point. Then, correlation analysis was performed for NDVI, soil water content, 
soil conductivity and soil temperature, and the results are presented in Figure 3. 

  
(a) (b) 

Figure 3. Correlation of soil information data and NDVI. (a) soil information data, (b) soil infor-
mation data (Summation). 

Figure 3a shows moderate to high correlation between the NDVI on one hand and 
ST, SMC and SEC on the other, both around 0.5. NDVI was significantly correlated with 
ST and negatively correlated with SMC and SEC. 

Since ST, SMC and SEC are cumulative for crops, daily data of ST, SMC and SEC 
above the value of 0 were cumulative (respectively as SST, SSMC and SSEC), and correla-
tion analysis was performed with NDVI [28]. Figure 3b shows the high correlation be-
tween the NDVI on one hand and SST, SSMC and SSEC on the other, both around 0.9, 
which indicates that they are under a high correlation, both being positively proportional. 

3.2. Evaluation Indicators 
Four evaluation indicators are used to evaluate the performance of the model. They 

are the sum of squared error (SSE), R-square (R2), adjusted r-square (AR) and root mean 
square error (RMSE). They can be calculated by Equations (3)–(6). 
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where n represents the number of samples, p represents the number of features, 𝑦𝑦� repre-
sents the predicted value, 𝑦𝑦� represents mean of the measured value and y represents the 
measured value. 

3.3. Model Construction of Tea Growth 
An experimental approach is used to construct the model. First, 60 sets of 72 data sets 

were used for model construction, and the remaining 12 sets were used to validate the 
performance of the model. 

3.3.1. Model Prediction of Temperature and Tea Growth 
Figures 4 and 5 show the effect of ST and SST fitted with NDVI, respectively. The 

polynomial model and power model are applied for model construction, and the expo-
nents of polynomials are chosen as 1, 2 and 3, while the number of terms in the power 
model is chosen as 1 and 2, and the models are named as Y1, Y2, Y3, Y4 and Y5, respec-
tively. 

Y1 models show that as the temperature increases, NDVI value increases gradually. 
The ST is commensurate with NDVI, which is consistent with the analysis results in Figure 
3. 

Table 3 presents the results of the evaluation indicators for the temperature construc-
tion model. From Table 3, we can see that the coefficients of determination are all rela-
tively low, indicating that the correlation is low. R2 of Y1–Y5 ST models were only 0.5673, 
0.5723, 0.6369, 0.5672 and 0.5690, respectively. The SSE, RMSE and AR of Y1–Y5 models 
do not differ much, but it can be observed that the Y3 model is the best. 
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Figure 4. ST and NDVI model results. 

 
Figure 5. SST and NDVI model results. 

The 2R  of Y1–Y5 SST models were 0.9286, 0.9476, 0.9638, 0.8945 and 0.9357, respec-
tively, all around 0.8, which indicates that the model has good performance. SSE and 
RMSE of all models are also relatively small, indicating that the data fit dispersion is small, 
and the AR indicators are both above 0.8, indicating that the fitted model is better. It also 
can be seen that the Y3 model is the best. 

It also can be seen from Figure 5 that the higher SST is in a certain range, the higher 
the NDVI value will be, but when the SST increases to a certain value, the NDVI value 
gradually decreases when the SST is larger, which is consistent with the growth of tea 
leaves. In the process of tea growth, the increase of temperature plays a role in promoting 
the growth of tea, so NDVI value will also increase; when the temperature increases fur-
ther, it will lead to soil water shortage due to high temperature, and even tea roots will be 
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burned, affecting the growth rate, or may even die [29]. This is consistent with the crop 
physiological process. 

Table 3. Evaluation of the temperature construction model. 

Item Model SSE RMSE 2R  AR 

ST 

Y1 0.6730 0.1077 0.5673 0.5599 
Y2 0.6654 0.1080 0.5723 0.5573 
Y3 0.5649 0.1004 0.6369 0.6173 
Y4 0.6732 0.1077 0.5672 0.5598 
Y5 0.6704 0.1085 0.5690 0.5539 

SST 

Y1 0.1111 0.0438 0.9286 0.9274 
Y2 0.0815 0.0378 0.9476 0.9458 
Y3 0.0563 0.0317 0.9638 0.9619 
Y4 0.1642 0.0532 0.8945 0.8926 
Y5 0.1000 0.0419 0.9357 0.9334 

3.3.2. Model Prediction of Soil Moisture Content and Tea Growth 
Figures 6 and 7 show the effect of SMC and SSMC fitted with NDVI, respectively. 
As the SMC increased, NDVI value also gradually decreased. SMC was inversely as-

sociated with NDVI value, but the SSMC was positively related to NDVI value, which is 
consistent with the analysis results in Figure 3. 

 
Figure 6. SMC and NDVI model results. 
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Figure 7. SSMC and NDVI model results. 

In Table 4, for the SMC model, R2 of Y1–Y5 models were only 0.3464, 0.3830, 0.4510, 
0.3647 and 0.3653, respectively. The SSE, RMSE and AR of Y1–Y5 models do not differ 
much, but it can be seen that the Y3 model is the best. For the SSMC model, R2 of all models 
reached above 0.8, indicating that there is a positive relationship between cumulative soil 
water content and NDVI, and the Y3 model is the best. 

Table 4. Evaluation of the soil moisture content construction model. 

Item Model SSE RMSE 2R  AR 

SMC 

Y1 1.0757 0.1249 0.3916 0.3828 
Y2 1.0684 0.1253 0.3958 0.3780 
Y3 0.7455 0.1055 0.5784 0.5595 
Y4 1.1734 0.1304 0.3364 0.3268 
Y5 1.0757 0.1258 0.3916 0.3738 

SSMC 

Y1 0.1959 0.0533 0.8892 0.8876 
Y2 0.1803 0.0515 0.8980 0.8950 
Y3 0.0601 0.0300 0.9660 0.9645 
Y4 0.2711 0.0627 0.8467 0.8445 
Y5 0.1946 0.0535 0.8900 0.8867 

In a certain range, the higher the SSMC, the higher the NDVI value, but when the 
SSMC increases to a certain value, the NDVI value gradually decreases as the SSMC be-
comes larger, which is consistent with the growth of tea. During the growth of tea, mod-
erate moisture is especially important for tea growth. Tea will be influenced by too much 
or too little water. This is also in line with the crop physiological process. 

3.3.3. Model Prediction of Soil Electrical Conductivity and Tea Growth 
Figures 8 and 9 show the effect of SEC and SSEC fitted with NDVI value, respectively. 

With the increase of SEC, NDVI value gradually decreases, i.e., SEC was inversely related 
to NDVI value, but SSEC was positively related to NDVI value, which is consistent with 
the analysis results in Figure 3. 
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Figure 8. SEC and NDVI model results. 

 
Figure 9. SSEC and NDVI model results. 

As can be seen from Table 5, Y3 model has the best R2 at 0.5784, while for the SSEC 
model, the R2 of all models is above 0.8, indicating a positive relationship between cumu-
lative soil conductivity and NDVI. 

Moderate SEC is an important condition. If the SEC is too high (too much salt) it will 
make the tea inhibit the synthesis of chlorophyll, which is not conducive to growth; if it is 
too low, it will make the tea not absorb enough nutrients and water, which greatly affects 
the growth of tea [29]. This is also in line with the physiological process of the crop. 

  



Plants 2022, 11, 262 12 of 20 
 

 

Table 5. Evaluation of the soil electrical conductivity construction model. 

Item Model SSE RMSE 2R  AR 

SEC 

Y1 1.0757 0.1249 0.3916 0.3828 
Y2 1.0684 0.1253 0.3958 0.3780 
Y3 0.7455 0.1055 0.5784 0.5595 
Y4 1.1734 0.1304 0.3364 0.3268 
Y5 1.0757 0.1258 0.3916 0.3738 

SSEC 

Y1 0.1959 0.0533 0.8892 0.8876 
Y2 0.1803 0.0515 0.8980 0.8950 
Y3 0.0601 0.0300 0.9660 0.9645 
Y4 0.2711 0.0627 0.8467 0.8445 
Y5 0.1946 0.0535 0.8900 0.8867 

3.3.4. Model Prediction of Tea Growth with Multiparameter Fusion 
Figures 10 and 11 show the effect of integration of multiple parameters (IMP) and 

sum of integration of multiple parameters (SIMP) with NDVI fit, respectively. 
In Table 6, the R2 of the IMP and SIMP are improved, and the best ones reach above 

0.6. The coefficients of the models after fusing the three parameters (cumulative) all reach 
above 0.9, and the best one reaches 0.9761, which indicates that the prediction effect is 
more satisfactory. 

For IMP model, Y3 model has the best performance. For SIMP model, Y2 model has 
the best performance. The trend of NDVI is well represented in both models. 

 
Figure 10. IMP and NDVI model results. 
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Figure 11. SIMP and NDVI model results. 

Table 6. Evaluation of the integration of multiple parameters model. 

Item Model SSE RMSE 2R  AR 

IMP 

Y1 0.6619 0.1050 0.5745 0.5672 
Y2 0.5401 0.0949 0.6528 0.6468 
Y3 0.5281 0.0938 0.6605 0.6547 
Y4 0.5750 0.0979 0.6305 0.6241 

SIMP 

Y1 0.0695 0.0340 0.9553 0.9545 
Y2 0.0372 0.0249 0.9761 0.9757 
Y3 0.0435 0.0269 0.9720 0.9715 
Y4 0.0676 0.0336 0.9565 0.9558 

3.3.5. Model Prediction Performance Validation 
Validation experiments were performed on the model mentioned above. Its perfor-

mance was experimented on each model using 12 sets of data. Indicators for the evalua-
tion of the model are MSE, RMSE, R2 and AR. 

Tables 7–10 show the results of the validation experiments. 
In Table 7, the R2 of each model is greater than 0.8 when the model input is ST and 

above 0.95 when the input is SST. The performance of the Y3 model is the worst among 
all the models. Furthermore, in Table 8, the Y3 model predicts best when the model input 
is SMC, while the Y2 model predicts best when the model input is SSMC. 

Table 7. Validation evaluation of the temperature construction model. 

Item Model MSE RMSE 2R  AR 

ST 

Y1 0.0745 0.2730 0.8907 0.8785 
Y2 0.0741 0.2722 0.8918 0.8798 
Y3 0.0837 0.2893 0.8281 0.8090 
Y4 0.0738 0.2717 0.8906 0.8785 
Y5 0.0742 0.2724 0.8912 0.8791 

SST Y1 0.0299 0.1728 0.9902 0.9891 
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Y2 0.0097 0.0986 0.9906 0.9896 
Y3 0.0005 0.0226 0.9739 0.9710 
Y4 0.0098 0.0989 0.9907 0.9897 
Y5 0.0217 0.1472 0.9904 0.9893 

Table 8. Validation evaluation of the soil moisture content construction model. 

Item Model MSE RMSE 2R  AR 

SMC 

Y1 0.0295 0.1718 0.5410 0.4900 
Y2 0.1230 0.3507 0.5559 0.5066 
Y3 0.0504 0.2244 0.6218 0.5798 
Y4 0.1347 0.3671 0.5757 0.5286 
Y5 0.1123 0.3351 0.5706 0.5229 

SSMC 

Y1 0.0075 0.0867 0.9749 0.9721 
Y2 0.0027 0.0522 0.9858 0.9842 
Y3 0.00006 0.0080 0.9341 0.9268 
Y4 0.0036 0.0599 0.9768 0.9743 
Y5 0.0058 0.0764 0.9757 0.9729 

In Table 9, the Y3 model has the best prediction performance when the model input 
is SEC, and the R2 of the model is 0.8059, while the R2 of the model prediction is above 0.95 
when the model input is SSEC, which indicates a better prediction performance. 

Table 9. Validation evaluation of the soil electrical conductivity construction model. 

Item Model SSE RMSE 2R  AR 

SEC 

Y1 0.0033 0.0571 0.6807 0.6452 
Y2 0.0046 0.0680 0.6879 0.6532 
Y3 0.0002 0.0126 0.8059 0.7843 
Y4 0.0055 0.0739 0.7352 0.7058 
Y5 0.0033 0.0575 0.6812 0.6458 

SSEC 

Y1 0.0056 0.0747 0.9778 0.9753 
Y2 0.0033 0.0575 0.9798 0.9776 
Y3 0.0003 0.0192 0.9532 0.9479 
Y4 0.0027 0.0517 0.9788 0.9764 
Y5 0.0051 0.0713 0.9779 0.9755 

In Table 10, when the model input is IMP, R2 of Y1 and Y3 model are 0.8179 and 
0.8051, which is obviously better than other models. When the model input is SIMP, R2 of 
Y1 and Y4 model are 0.8017 and 0.9308, which is obviously better than Y2 and Y3 models. 

Table 10. Validation evaluation of the integration of multiple parameters model. 

Item Model MSE RMSE 2R  AR 

IMP 

Y1 0.0266 0.1630 0.8179 0.8148 
Y2 0.0078 0.0885 0.7149 0.7100 
Y3 0.0237 0.1540 0.8051 0.8017 
Y4 0.0298 0.1727 0.3282 0.3166 

SIMP 

Y1 0.0053 0.0727 0.8017 0.7983 
Y2 0.0002 0.0168 0.6594 0.6535 
Y3 0.0057 0.0752 0.2617 0.2492 
Y4 0.0103 0.1013 0.9308 0.9296 
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This is because the short duration of the experiment and the inconsistent details of 
the collection of soil and NDVI data can affect the results obtained. The impact of the 
mathematical manipulation of the data to obtain the final regressions in the polynomial 
models may also be relevant. Therefore, the performance of the constructed model and 
the model validation performance need to be considered together to determine which 
model is more suitable. 

3.3.6. Summary 
A tea tree growth monitoring model was constructed. Prediction models based on 

soil temperature, soil moisture content and soil electrical conductivity with NDVI were 
constructed. Five prediction models were constructed using the polynomial model and 
the power function model, among which the cubic polynomial fit was the best and the 
evaluation parameters were optimal, which were consistent with the physiological pro-
cess of tea tree growth. The performance of various models with different input charac-
teristics of the model is analyzed. A novel idea of tea tree growth monitoring model con-
struction is given. The short experimental period and the disparity of detail in the collec-
tion of soil and NDVI data may affect the results obtained. 

4. LSTM Networks Model Optimized by BES 
4.1. LSTM 

LSTM network is a special form of Recurrent Neural Network (RNN) [30], which 
mainly consists of the forgetting phase, selecting memory phase and output phase, with 
strong generalization ability. It can effectively solve the gradient disappearance and gra-
dient explosion problems during the training of long sequences and performs better in the 
prediction of nonlinear long sequences. The LSTM structure is shown in Figure 12. 

 
Figure 12. LSTM structure. 

where ⊗  is matrix multiplication, ⊕  is matrix summation; 𝑧𝑧𝑖𝑖, 𝑧𝑧𝑓𝑓 and 𝑧𝑧𝑜𝑜 are the gate 
control signal; z is a transformed value using the tanh activation function (takes values in 
the range [−1, 1]); and  𝐻𝐻𝑡𝑡−1, 𝑐𝑐𝑡𝑡−1, 𝐻𝐻𝑡𝑡  and 𝑐𝑐𝑡𝑡 are the previous moment state value and 
the current moment state value of the two transmission states. 𝜎𝜎 is the sigmoid activation 
function, 𝑋𝑋𝑡𝑡 is input signal and 𝑌𝑌𝑡𝑡  is output signal. They are calculated by Equations (7)–
(13). 

1
tanh( , , )t

t
z W X H −=  (7) 

1
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1
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z W X Hσ −=  (9) 
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1t f t ic z c z z−= ⊗ ⊕ ⊗  (11) 

( )tanht o tH z c= ⊗  (12) 

( )'t tY W Hσ=  (13) 

4.2. BES 
BES is an algorithm that has powerful global search capability and can effectively 

solve various complex numerical optimization problems. It consists of three phases, which 
are the selection phase, search phase and prey phase [31,32]. 

In the selection phase, the bald eagle first selects the area at random and then looks 
for the best position by judging the prey population. At this stage, the position of the main 
bald eagle is determined primarily by experience and position change parameters, as 
shown in Equation (14). 

,
( )

i new best mean i
P P P Pα γ= + × × −  (14) 

where 𝛼𝛼  represents the position change control parameter that takes a value between 1.5 
and 2, 𝛾𝛾 is a random number between 0 and 1, 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  represents when the bald eagle has 
the best search position identified during its previous search, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 indicates that these 
eagles have used up all information from the previous points and 𝑃𝑃𝑖𝑖  is the position of the 
i-th bald eagle. 

In the search phase, the bald eagle is in search of prey to speed up the search process 
and find the best swooping location. At this point, the best position for the eagle is deter-
mined by Equation (15). 

( ) ( ) ( ) ( ), 1i new i i mean i i
P P x i P P y i P P += + × − + × −  

( ) ( )
( )

x

max

r i
x i

xr
=  ( ) ( )

( )
y

max

r i
y i

yr
=  

( ) ( ) ( )( )sinxr i r i iθ= ×  ( ) ( ) ( )( )cosyr i r i iθ= ×  

( ) ( )ir i R randθ= + ×  ( ) ai randθ π= × ×  

(15) 

where 𝜃𝜃(𝑖𝑖) and 𝑟𝑟(𝑖𝑖) represent the polar angle and polar diameter of the spiral equation; 
𝜑𝜑 is a parameter determining the corner between the point search in the central point, 
which takes a value between 5 and 10; R is a parameter determining the number of search 
cycles that takes a value between 0.5 and 2; rand is a random number from 0 to 1; and 
𝑥𝑥(𝑖𝑖)  and 𝑦𝑦(𝑖𝑖) indicate the position of the bald eagle in polar coordinates. 

In the swooping stage, bald eagles swoop quickly from the best spots in the search 
space to the target, while individuals from other species move to the best spots and attack 
the prey. The position of the bald eagle at this point is calculated using Equation (16). 

( ) ( ) ( ) ( ),
rand 1 1 1 2

i new best i mean i best
P P x i P c P y i P c P= × + × − × + × − ×  

( ) ( )
( )

1
max

xr i
x i

xr
=  ( ) ( )

( )
1

max

yr i
y i

yr
=  

(16) 
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( ) ( ) ( )( )sin hxr i r i iθ= ×  ( ) ( ) ( )( )cos hyr i r i iθ= ×  

( ) ( ) ( )ai rand r i iθ π θ= × × =  

where c1 and c2 represent the exercise intensity of the bald eagle to the best and center 
position that takes the value between 1 and 2. 

4.3. Algorithm Optimization 
The initialization parameters directly affect prediction performance the LSTM net-

works, and parameter optimization is of particular important. The learning rate and the 
number of hidden layers are important parameters in LSTM networks, which are opti-
mized by taking advantage of the optimization ability, convergence ability and conver-
gence speed of the BES algorithm to avoid the influence of human empirical differences. 
The tuning steps are as follows: 
(1) Process the data and split it into training set and test set. 
(2) Initializing the parameters of the BES and the LSTM networks. 
(3) Obtain the best parameters using the BES to set up the LSTM network. 
(4) The RMSE of the model is used as the fitness, and the fitness of each population in 

the BES is calculated, and the minimum value is taken as the optimal solution result. 
(5) Iterate the operation and update the parameters of the LSTM using the BES algo-

rithm. 
(6) Repeat (4)–(5) until the end of the condition. 
(7) Prediction of the LSTM network using the final optimized parameters. 

4.4. Evaluation Indicators 

The indicators used for the model predictions are 2R , RMSE, MSE, MAE and MAPE. 

4.5. Experimental Analysis 
The first 50 sets of data were used as the training set, and the remaining 21 sets were 

used as the test set. Then, the LSTM network and BES–LSTM were used for training and 
testing, and the results are shown in Figure 13 and Table 11. 

Figure 11 shows that the values provided for in the BES–LSTM network all capture 
the trend of NDVI values. The R2, RMSE, MSE, MAE and MAPE of the LSTM model are 
0.5299, 0.1642, 0.0270, 0.1518 and 36.8900, respectively, while the evaluation indicators of 
the BES–LSTM model are 0.8666, 0.0629, 0.0040, 0.0436 and 10.5257, respectively. The BES–
LSTM model is significantly better than the LSTM network, indicating that the BES–LSTM 
is a better-performing model. 
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Figure 13. LSTM model prediction results. 

Table 11. Evaluation of LSTM model and BES–LSTM model. 

Model 2R  RMSE MSE MAE MAPE 
LSTM 0.5299 0.1642 0.0270 0.1518 36.8900 

BES-LSTM 0.8666 0.0629 0.0040 0.0436 10.5257 

4.6. Summary 
A tea tree growth monitoring model based on LSTM optimized by BES was con-

structed. The principles of LSTM and BES algorithm were explained, the learning rate and 
the number of hidden layers of the LSTM network were optimized using the BES algo-
rithm and the optimized BES–LSTM network was used to build a tea tree growth moni-
toring model, which effectively improved the performance of the network prediction. In 
this model, the parameters such as soil temperature, soil moisture content and soil electri-
cal conductivity were used as input values, and NDVI was used as output value, which 
could effectively capture the trend of NDVI. The R2, RMSE, MSE, MAE and MAPE of the 
LSTM model were 0.5299, 0.1642, 0.0270, 0.1518 and 36.8900, respectively, while those of 
the BES–LSTM model were 0.8666, 0.0629, 0.0040, 0.0436 and 10.5257, respectively, which 
indicates that the performance of BES–LSTM is far better than that of LSTM. 

5. Conclusions 
Our work is summarized in the present section. A tree growth monitoring model 

constructed with soil indicators was proposed. The correlation of soil temperature, soil 
moisture content and soil electrical conductivity with the tea tree growth parameter 
(NDVI) was discussed. The results showed that the NDVI value was positively correlated 
with soil temperature, while it was inversely correlated with soil moisture content and 
soil electrical conductivity. The results also showed that it was positively correlated with 
sum of soil temperature, sum of soil moisture content and sum of soil electrical conduc-
tivity. 

The final regression results in the polynomial model with discrete input characteris-
tics are discussed, which proposes an innovative method for a tea tree growth monitoring 
model. The performance of the model was further verified. The experiments showed that 
the tea tree growth monitoring model achieved a better prediction effect. 
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A prediction model based on the LSTM model optimized by arithmetic optimization 
algorithm (AOA) was investigated, providing a new idea for tea growth monitoring. In 
this model, parameters such as soil temperature, soil moisture content and soil electrical 
conductivity were used as input values, and NDVI was used as output value. The exper-
iments show that the AOA–LSTM model predicts a value of 0.8666, which has a certain 
advantage over the performance of other models. The model proposed in this chapter 
provides a different idea for tea growth monitoring. 

Some issues in the paper need to be further discussed: 
(1) The tea tree growth monitoring model needs to be strengthened. As tea tree 

growth monitoring is more influenced by other factors in the environment, it has yet to be 
further studied in depth. The relationship between tea tree growth monitoring and the 
influence of meteorological parameters, atmosphere, etc., should be effectively studied 
and integrated into the model to achieve better results. 

(2) More effective network model applications are expected. Since the impact of each 
parameter in the soil information is also mutual, more complex networks need to be used 
to build models that can better predict and improve the accuracy of prediction. 

(3) Data samples need to be increased. The remote sensing data used in this study are 
only of one year, and only 72 remote sensing images can be extracted to extract NDVI, this 
making the data applied to the experiment obviously less. More NDVI data should be 
obtained, and the period of the experiment should be extended, so that the accuracy and 
applicability of the prediction model can be improved. 
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