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Abstract: The obligate hemiparasite Striga hermonthica is one of the major global biotic threats to
agriculture in sub-Saharan Africa, causing severe yield losses of cereals. The germination of Striga
seeds relies on host-released signaling molecules, mainly strigolactones (SLs). This dependency
opens up the possibility of deploying SL analogs as “suicidal germination agents” to reduce the
accumulated seed bank of Striga in infested soils. Although several synthetic SL analogs have been
developed for this purpose, the utility of these compounds in realizing the suicidal germination
strategy for combating Striga is still largely unknown. Here, we evaluated the efficacy of three potent
SL analogs (MP3, MP16, and Nijmegen-1) under laboratory, greenhouse, and farmer’s field conditions.
All investigated analogs showed around a 50% Striga germination rate, equivalent to a 50% reduction
in infestation, which was comparable to the standard SL analog GR24. Importantly, MP16 had the
maximum reduction of Striga emergence (97%) in the greenhouse experiment, while Nijmegen-1
appeared to be a promising candidate under field conditions, with a 43% and 60% reduction of Striga
emergence in pearl millet and sorghum fields, respectively. These findings confirm that the selected
SL analogs appear to make promising candidates as simple suicidal agents both under laboratory
and real African field conditions, which may support us to improve suicidal germination technology
to deplete the Striga seed bank in African agriculture.

Keywords: germination stimulant; witchweed; methyl phenlactonoates (MPs); Nijmegen-1; weed

1. Introduction

Cereal crops, particularly maize (Zea mays), sorghum (Sorghum bicolor), and pearl
millet (Pennisetum glaucum), are important nutrient and livelihood sources for people in the
region of sub-Saharan Africa [1]. However, the average yield of these cereals in Africa is
very low, as compared to the world average. Increasing the per hectare yield of crops is one
of the major challenges to alleviate hunger and poverty in sub-Saharan Africa [2]. Indeed,
the agriculture practiced by the majority of smallholder farmers in Africa is facing a wide
range of threats, such as low soil fertility, recurrent drought, and many biotic constraints,
particularly parasitic weeds. One of the most troublesome and noxious weeds is Striga
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hermonthica (Striga), which hinders crop production and causes more than 50% cereal yield
losses in sub-Saharan Africa [3,4].

Striga hermonthica (also known as purple witchweed) is an obligate and hemiparasitic
plant that parasitizes the root systems of cereals. It is now even becoming a persistent
threat to crop production in sub-Saharan Africa, the Middle East, and parts of Asia [5–8].
It is estimated that Striga causes more than 50% cereal yield losses in sub-Saharan Africa
and has already infested up to 40% (approximately 50 million hectares) of cropland in this
region [9–11], thus building a large reservoir for further propagation and spreading of this
weed. Although Striga has infested several regions of Africa, the most severely infested
countries are Burkina Faso, Gambia, Mali, Niger, Nigeria, Senegal, Togo (West Africa),
Ethiopia, Eritrea, Kenya, Mozambique, Malawi, Somalia, Tanzania (East Africa), and Sudan.
Beyond those, Striga infestation is gradually spreading to other African countries, such
as Cameron, Rwanda, Congo, Burundi, Zambia, and Zimbabwe. The ever-increasing
Striga problem incurs an annual loss of US $7–10 billion per annum to the livelihoods
of African farmers, and its elevated levels in vast areas will further worsen situations of
food insecurity, hunger, and poverty for millions of subsistence farmers [12–15]. Hence,
developing suitable Striga control strategies to minimize the damage is of urgent need for
African agriculture.

Despite the debilitating yield losses caused by Striga, effective control measures are
still far beyond success. Production of more than 200,000 tiny (0.3 nm × 0.15 nm), light
(4–7 µg), and long-lived (>15 years) viable seeds by a single Striga plant, characterized by a
complex life cycle and underground parasitism, makes Striga control burdensome [16,17].
Even though local farmers are aware of the Striga problem, many factors, such as poverty,
limited resources, and harsh weather have impeded the control of this parasite in infested
areas. In such cases, the key principles for effective control of Striga should be prevention
of new seed production, significant reduction in the soil seed bank, and avoiding spreading
of seeds from infested to non-infested soils [18–21].

The tiny Striga seeds have developed a host detection strategy by perceiving host-
released signaling molecules, mainly the phytohormone strigolactones (SLs), which trigger
their germination [22–24]. Strigolactones (SLs) are a group of evolutionarily conserved
carotenoid-derived plant hormones that regulate many aspects of plant biology [25–27].
The well-known reason why plants release SLs is to successfully communicate with the
surrounding arbuscular mycorrhiza (AM) for symbiotic interactions [23,28]. In the parasitic
plant Striga, the receptors responsible for SL-induced seed germination are Striga hermonth-
ica hyposensitive to light (ShHTLs), a group of α/β s that are assumed to be evolutionarily
derived from a karrikin-insensitive2 (KAI2) receptor and to arise through gene duplication
with functional replacement by SLs [29]. Among the several SL receptors, ShHTL7 is
the most sensitive to SLs, suggesting a major role in modulating the seed germination of
Striga [30,31]. Recently, ShHTL7 has been further characterized as a non-canonical receptor
by noting how covalently linked intermediate molecule (CLIM), the SL hydrolysis inter-
mediate, interacts with the F-box proteins ShMAX2 and SMAX1 to mediate SL signaling
transduction [32], in a similar way as to rice D14. After successful germination and attach-
ment to the host roots, Striga seedlings start siphoning off nutrients and water [33,34]. This
dependency of Striga germination on host-released SLs and host attachment can be utilized
as an effective management strategy [15,35]. The induction of Striga seeds’ germination
through synthetic SL analogs in the absence of the host leads to the death of germinating
seedlings at the latest a few days after germination [36,37]. This mechanism builds the
basis for a promising control strategy, known as “suicidal germination”, which can reduce
the Striga seed bank in the infested soils [38–40]. However, the assessment of utility and
the employment of suicidal germination relies on the development of cheap and potent SL
analogs. Although this technology has been suggested and advocated in several studies
to combat not only Striga [37–43] but also other root parasites of the Orobanchaceae family,
in the past 40 years, its application in real African fields remains contested. Despite the
availability of several SL analogs and mimics, the selection of simple SL analogs to be used
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as potential Striga suicidal agents, especially under field conditions, is still a challenge. In
the present study, we selected two potent methyl phenlactonoates (MP3 and MP16) [24,37]
and a well-known, easy-to-synthesize SL analog, Nijmegen-1 [43], for a comparative study
on inducing Striga seed germination, first under laboratory conditions.

2. Results
2.1. Striga Seed Germination Bioassays in Response to Various Strigolactone Analogs

The structures of the selected SL analogs are shown in Figure 1. All selected SL
analogs at the 1 µM concentration showed a 49–52% Striga germination rate, which is
statistically equal to the standard SL analog GR24 (64%) (Figure 2). However, Striga
seeds were more sensitive to a lower concentration of GR24 (0.1 µM) with a maximum
germination rate (66%), compared to the two other analogs at the same concentration
(34–37%). Interestingly, higher concentrations, (1–10 µM) did not show any significant
differences between SL analogs. Next, we applied these SL analogs to Striga seeds collected
from Kenya, Burkina, and Niger to account for differences between Striga populations
from different origins (Supplementary Figure S1). At a concentration of 1 µM, GR24 and
MP3 showed a higher germination rate (20–22%) than MP16 and Nijmegen-1 (14%) in
the Striga seeds collected from Burkina Faso. In contrast, the four SL analogs exhibited
statistically equal Striga germinating activity (11–16%) on the seeds collected from Kenya
and Niger. These results unraveled differences in the sensitivity of Striga populations
toward SL analogs but also indicated that the selected analogs could be candidates for
testing and realizing the introduction of suicidal germination technology in various parts
of Africa.
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Figure 1. Chemical structures of strigolactone analogs (A) MP3, (B) MP16, (C) Nijmegen-1, (D) GR24,
and (E) strigol, a natural strigolactone.
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Figure 2. Striga seed germination rate in response to MP3, MP16, Nijmegen-1, and GR24. Various
concentrations (10−5–10−7 M) of selected SL analogs were applied to 10-day preconditioned Striga
seeds. GR24 was used as a positive control and water as a negative control. For each SL analog,
treatments with various letters differed significantly according to one-way analysis of variance
(ANOVA) and Tukey’s post-hoc test (p < 0.05). Error bars represent the standard error of the mean.

2.2. Striga Emergence on Strigolactone Analogs’ Treatment under Greenhouse Conditions

Surprisingly, all three SL analogs showed a significant reduction in Striga emergence
in comparison to the control treatment (Figure 3A–C). The reducing effect of MP16 on
Striga emergence was strongest (97%), followed by Nijmegen-1 (89%) and MP3 (73%). As
expected, the application of SLs led to improved growth of the host plant due to lower
infection of viable Striga plants. In particular, MP16-treated pots had the same plant heights
as non-infested plants. Application of MP3 and Nijmegen-1 also improved plant growth as
compared to the control treatment, but to a lesser extent than MP16, which indicated that
the latter is the most potent suicidal agent among the selected analogs under greenhouse
conditions (Figure 3C).

2.3. Effect of Strigolactone Analogs on Striga Infection under Field Conditions

In the pearl millet field, application of Nijmegen-1 led a smaller number of Striga
plants to emerge (32 ± 6.1), followed by MP16 (33 ± 9.8) and MP3 (37 ± 6.7), as compared
to the control plot (56 ± 16.4). In other words, treatment with Nijmegen-1, MP16, and MP3
led to a 43%, 41%, and 33% reduction of Striga emergence, respectively (Figure 4C). In
the sorghum field, formulated Nijmegen-1 also exhibited the highest reduction of Striga
emergence (60%), followed by formulated MP3 (52%) and MP16 (11%) (Figure 5C). With
respect to the host plants, we observed a 38% increase in pearl millet grain yield and 64%
for the stalk yield on MP16 application, whereas MP3 showed a moderate effect on grain
yield (9%) and biomass yield (30%). Surprisingly, the application of Nijmegen-1 showed a
reduction of pearl millet grain yield (13% less than blank), accompanied by a 31% increase
in biomass yield (Figure 4D) In contrast, the application of this SL analog to sorghum led to
the maximum observed increase in grain yield (13% higher than blank), while MP3 and
MP16 did not show a pronounced effect (−4% and 3%, respectively). All the treatments
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showed a 1–37% increase in sorghum biomass yield over the blank treatment (Figure 5D).
These results indicate the applicability of the selected SL analogs under real field conditions
and their potential to solve the severe food security threats caused by Striga.
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Figure 3. Striga emergence in response to the application of various SL analogs in pots under
greenhouse conditions. (A) Representative pots of greenhouse study, showing Striga emergence
under different treatments. (B) Number of Striga plants that emerged in mock, MP3, MP16, or
Nijmegen-1 treatment. The selected SL analogs were applied twice at a 1 µM concentration to 10-day
preconditioned Striga-infested pots. (C) Rice plant height in response to different treatments. Data are
means ± SE (n = 6). Error bars represent the standard error of the mean. Values in parenthesis show
the percentage increase (+) or decrease (−) over mock treatment. For each SL analog, treatments with
various asterisks differ significantly according to one-way analysis of variance (ANOVA), ** p < 0.005,
*** p < 0.005, **** p < 0.0005).
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Figure 4. Striga emergence in response to different SL analogs for a naturally infested pearl millet field
in Burkina Faso. (A) Representative pearl millet plots of farmer’s field, showing Striga emergence
under different treatments. (B) Number of Striga plants that emerged in pearl millet field under mock,
MP3, MP16, or Nijmegen-1 treatment. (C) Pearl millet grain yield per plot. (D) Pearl millet stalk
yield per plot. Data are means ± SE (n = 4). Values in parenthesis show the percentage increase (+) or
decrease (−) over mock treatment.
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Figure 5. Striga emergence in response to different SL analogs for a naturally infested sorghum field
in Burkina Faso. (A) Representative sorghum plots of farmer field, showing Striga emergence under
different treatments. (B) Number of Striga plants that emerged in sorghum field under mock, MP3,
MP16, or Nijmegen-1 treatment. (C) Sorghum grain yield per plot. (D) Sorghum stalk yield per
plot. Data are means ± SE (n = 4). Values in parenthesis are showing the percentage increase (+) or
decrease (−) over mock treatment.

3. Discussion

The performance of three selected synthetic SL analogs (Figure 1) for Striga control was
first assessed and confirmed using in vitro bioassays. The results showed that MP3, MP16,
and Nijmegen-1 are all potent SL analogs inducing Striga seed germination (Figure 2). Previ-
ously, the moderate activity of Nijmegen-1 was reported for Striga germination [43–45], but
our bioassays showed its comparable Striga germination activity at a high dose (1–10 µM).
Similarly, we recently reported that MP3 and MP16 exhibit high bioactivity in stimulating
Striga seed germination [24,37], which is in agreement with the outcome of this work. In ad-
dition, these SL analogs were also tested on different Striga batches collected from Burkina
Faso, Niger, and Kenya. Although all SL analogs (at 1 µM) induce Striga seed germination
ranging from 12–20%, this activity level is not as high as we observed in a Striga batch
collected from Sudan. This result demonstrates that the sensitivity toward a certain SL
analog depends on the ecotype of the Striga population. In addition, it shows the need to
have an array of SL analogs to realize the suicidal germination strategy in different parts of
Africa. Nevertheless, the results obtained with different Striga populations indicate that
the selected SL analogs can be used in different regions of Africa, although with different
efficiency levels.

The bioactivity of Nijmegen-1 was previously tested under pot conditions at a lower
concentration (0.5 µM) and reported to be relatively weak [39]. In the present pot study,
we modified the testing protocol by increasing the concentration of SL analogs to 1 µM
and the number of applications to two. The results obtained indicated that increasing
the dose and frequency of SL analogs might be an effective way to improve their efficacy
as suicidal agents against Striga. The maximum 97% reduction in Striga emergence on
the application of MP16 showed its potential to be used as a suicidal agent (Figure 3).
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Although we reported a high Striga germination-inducing activity of MP1, which carries
a 4-nitro substituent on the benzene ring of MP3 [24,39], its synthesis is complex and
expensive due to the involvement of additional synthesis steps and introduction of a 4-nitro
group. So, alternately, we redesigned and synthesized another SL analog MP16, which
is comparatively simple and easy to synthesize at a low cost. The Striga germination-
inducing activity of the proposed MP16 was comparable to MP1. Similarly, the selected SL
analogs might also potentially regulate the plant root architecture and above-ground shoot
development when applied to a field [46]. However, there is still a lack of experimental
evidence to support our understanding of the mechanisms involved. The actual molecular
basis for the SL analogs on crop plants and crosstalk with other phytohormones still needs
to be further investigated.

In field trials, we observed that all selected analogs caused a reduction in Striga
emergence for both pearl millet and sorghum fields; however, these differences were
statistically non-significant (Figures 4 and 5). This might be attributed to the great variation
in Striga infestation level between each plot. Moreover, the Striga seed density in the
soil, soil texture, structure, pH, farmer’s cultural practices, and the amount of rainfall to
the field are all possible factors affecting the observed variations between two fields and
their replications. Weak activity of MP3 and Nijmegen-1 in clay soil and high in sandy
loam-mixture soil has already been reported [39]. In addition, the inconsistency in the
performance of MP3 and Nijmegen-1 for farmer’s fields has been indicated in a previous
study [39], showing reductions of 55% and 65% in Striga emergence in a pearl millet field
(sandy soil) but no significant impact (12–20%) in a sorghum field (clay soil). In the present
study, we increased the number of applications from two to four and observed 33–43%
and 60–52% reductions in Striga emergence by MP3 and Nijmegen-1 in a pearl millet and
sorghum field, respectively. Due to seed dormancy or pre-conditioning requirements, Striga
seeds are not synchronous in their germination response to SL analogs; hence, we suggested
at least four-time repeated applications of SL analogs for maximum eradication of the seed
bank in the infested soil. Then, the compound should reach Striga seeds to induce their
germination. The success of the suicidal germination depends on many factors that are
not restricted to the frequency and concentration of the suicidal agents but also include
the type of the soil, climate conditions, and amount and frequency of rainfall [39,47]. In
addition, it is very important to develop a handy, cost-effective, and stable formulation of
suicidal agents that must be easily accessible to African farmers [48].

In summary, our results demonstrate the potential of the three selected simple SL
analogs in combating Striga. The selected SL analogs will allow the development of further
analogs as well as testing and optimizing of formulations and application protocols that
aim at depleting the Striga seed bank and increasing food security. Moreover, combining
the suicidal germination strategy with resistant crop varieties and/or suitable crop rotation
or intercropping will likely alleviate the Striga problem significantly in the infested regions
of Africa.

4. Materials and Methods
4.1. Plant Materials and Chemicals

The SL analogs rac-GR24, MP3, and Nijmegen-1 were synthesized and provided by
Prof. Binne Zawanenburg, Radboud University, The Netherlands. The SL analog MP16 was
synthesized and provided by Prof. Tadao Asami, University of Tokyo, Japan. The procedure
for the synthesis of SL analogs has already been described previously [24,37,43,49]. Striga
hermonthica seeds were collected from an infested sorghum field during 2020 in Sudan
(Prof. A. G. Babiker), from a maize field during 2018 in Kenya (Prof. Steven Runo, Kenyata
University), from a pearl millet field during 2020 in Burkina Faso (Dr. Djibril Yonli, INERA),
and a pearl millet field during 2019 in Niger (Dr. Mohammed Riyazaddin, ICRISAT). Seeds
of rice IAC-165 were obtained from Africa Rice, Tanzania (Dr. Jonne Rodenburg). The
emulsifier Atlas G-1086, a polyoxyethylene sorbitol hexaoleate, was obtained from CRODA,
The Netherlands.
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4.2. Striga Seed Germination Bioassays

The germination activity of the selected SL analogs on Striga hermonthica seeds was
determined by using a previously described procedure [50,51]. For pre-conditioning, Striga
seeds were surface sterilized with 50% commercial bleach for seven minutes, followed by
six washing steps with MiliQ water in a laminar fume hood. Then, about 50–100 surface-
sterilized Striga seeds were uniformly spread on a glass-fiber filter-paper disc (9 mm), and
12 discs with Striga seeds were put in a Petri dish on sterilized filter paper moistened with
3 mL MiliQ water. The sealed Petri dishes were incubated in the dark at 30 ◦C for 10 days.
On the 11th day, the discs were dried under a laminar flow cabinet, and the SL analogs
(50 µL) were applied to each disc with various concentration ranges (10−5 M to 10−7 M).
Being very active, the synthetic SL analog GR24 was used as a standard positive control
instead of natural SL, which is very scarce in plants, unstable, and difficult to extract. After
application, the Striga seeds were induced to germinate in the dark for 24 h at 30 ◦C. The
discs were scanned under a binocular microscope and germinated, and non-germinated
seeds were counted by SeedQuant [52], with a germination rate (in %) then calculated.

4.3. Striga Emergence under Greenhouse Conditions

To further evaluate their bioactivity, we tested the three SL analogs in Striga-infested
pots under greenhouse conditions, using a highly susceptible rice cv. IAC 165 as a host
crop. The SL analogs were applied twice at 1 µM concentration to artificially infested
preconditioned Striga pots. After 10 days of application, three one-week-old rice seedlings
were planted in each pot, and Striga emergence was counted at 10 weeks after sowing
(WAS). A mixture of soil (Stender, Basissubstrat) with sand (3:1 ratio) was prepared [53]
and about 0.5 L of this mixture without Striga seeds was added to the bottom of a 3-L
perforated plastic pot. Then, about 20 mg (~8000) Striga seeds were thoroughly mixed in
a 1.5-L soil mixture and added on the top of clean soil in the same pot. The Striga seeds
were preconditioned in a greenhouse under hot (30 ◦C) and moist conditions for 10 days.
On the 11th day, each pot was supplied with 500 ml (1 µM) SL analogs, and Striga seeds
were allowed to germinate for suicidal death without a host for another 10 days. Then,
three one-week-old rice seedlings (IAC-165, a Striga-sensitive variety) were planted in the
middle of each pot. The rice plants were allowed to grow under normal growth conditions
(30 ◦C, 65% RH, normal sunlight). After 10 weeks, Striga emergence was observed in each
pot and compared with the mock treatment.

4.4. Striga Emergence under Field Conditions

Next, the suicidal germinating bioactivity of three selected SL analogs was further
investigated under naturally infested rainfed farmer’s field conditions in Burkina Faso
(Figures 4 and 5). Formulated SL analogs were applied at a 1 µM final concentration
four times on the onset of rainfall. The three selected candidate SL analogs were further
evaluated under field conditions in eastern Burkina Faso. Two highly Striga-infested
pearl millet and sorghum fields, located near the Kouaré research station (11◦58′49′′ N,
0◦18′30′′ E) of INERA (Institut de l’Environnement et de Recherches Agricoles), were
selected. Trials were established in each farmer’s field, following a randomized complete
block design with four independent replications using 4 m × 4 m (or 16 m2) plots. Each
plot consisted of five (5) ridges/rows, and the distance between ridge/row was 0.80 m; all
plots were spaced with four (4) ridges/rows to avoid any SL contamination through run-off.
The emulsifier Atlas G-1086 was used to formulate MP3, MP16, and Nijmegen-1. Each SL
analog was applied (25 mL/m2 at 400 µM) in formulated form four times in each field after
the onset of rainfall (≥10 mm) to make a final concentration of 1 µM. A blank treatment
(Atlas-G only) was included as the control. The experimental crops pearl millet (local
cultivar Idipiéni) and sorghum (local cultivar Itchoari) were sown at least one week after
the last application. The rainfall was 391.5 mm recorded in 25 days and 617 mm in 27 days
during the pearl millet and sorghum growth period, respectively. Plots were weeded twice
(15 and 30 days after sowing (DAS)) with hand hoeing before Striga emergence. Then,
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weeds other than Striga plants were hand-pulled until crop harvest. The emerged Striga
plants were counted at 80 DAS, corresponding to the period of maximum emergence of
Striga plants in the plots.

4.5. Statistical Analysis

Collected data were analyzed using statistical software package R (version 3.2.2) and
GraphPad Prism (version 9.1.1). One-way analysis of variance (ANOVA) with the least
significant difference (LSD) multiple range test and unpaired t-test were used to analyze
the effect of different SL analogs on Striga infestation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11081045/s1, Figure S1: Striga seed germination in response
to MP3, MP16, and Nijmegen-1 treatments.
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