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Abstract: A high-quality transcriptome is required to advance numerous bioinformatics workflows.
Nevertheless, the effectuality of tools for de novo assembly and real precision assembled transcrip-
tomes looks somewhat unexplored, particularly for non-model organisms with complicated (very
long, heterozygous, polyploid) genomes. To disclose the performance of various transcriptome
assembly programs, this study built 11 single assemblies and analyzed their performance on some
significant reference-free and reference-based criteria. As well as to reconfirm the outputs of bench-
marks, 55 BLAST were performed and compared using 11 constructed transcriptomes. Concisely,
normalized benchmarking demonstrated that Velvet–Oases suffer from the worst results, while the
EvidentialGene strategy can provide the most comprehensive and accurate transcriptome of Lilium
ledebourii (Baker) Boiss. The BLAST results also confirmed the superiority of EvidentialGene, so it
could capture even up to 59% more (than Velvet–Oases) unique gene hits. To promote assembly
optimization, with the help of normalized benchmarking, PCA and AHC, it is emphasized that each
metric can only provide part of the transcriptome status, and one should never settle for just a few
evaluation criteria. This study supplies a framework for benchmarking and optimizing the efficiency
of assembly approaches to analyze RNA-Seq data and reveals that selecting an inefficient assembly
strategy might result in less identification of unique gene hits.

Keywords: transcriptomics; de novo assembly; hybrid transcriptome; normalized comparison;
optimization; non-model organisms

1. Introduction

Lilium ledebourii (Baker) Boiss is a rare endangered species distributed only in very
limited areas of Iran and Azerbaijan. It has such valuable features as a high number of
flowers, sweet fragrance and attractive flowers, vigorous growth, etc. Unfortunately, it
was endangered before its genetics were discovered [1–3]. Because no transcriptomic or
genomic resources have been developed for L. ledebourii, research into its genetics has
lagged. At the moment, the only genomic study performed in L. ledebourii was dealing with
whole chloroplast sequencing to perform a comparative analysis between this species and
other closely-related Lilium species [3].
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The eruptive growth of sequencing technologies, lower costs, higher accuracy, and
increased throughput have led to the exponential generation of large genomic and tran-
scriptomic data [4,5]. This growth correlated with the expansion of high-performance
de novo transcriptome assembly tools. In light of these developments, benchmarks and
metrics for evaluating transcriptome assemblies are becoming increasingly important.

De novo transcriptome excavation is a helpful tool for generating an organism’s overall
genetic information in the absence of a genome sequence [6]. Even with the availability
of a reference genome, gene expression studies using a de novo transcriptome are still
recommended to uncover the transcripts missed during the genome assembly operation [7].

Nevertheless, for establishing transcriptomes from short reads, precise de novo assem-
bly is a critical step that should be customized to obtain the best transcriptome [8].

The lack of commonly accepted quality measures and rigorous examination of a wide
range of assemblers make it difficult to compare the performance of de novo transcriptome
assemblers [9]. Several de novo assemblers with specific algorithms for transcriptome as-
sembly have recently been developed, such as Trinity [10], rnaSPAdes [11], BinPacker [12],
TransLiG [13], and Velvet/Oases [14]; however, their effectuality varies even when equiva-
lent parameters are employed [8,15]. The methods these programs use for transcriptome
assembly may have some correspondence; however, they differ vastly in terms of the num-
ber of transcripts and, subsequently, the genes predicted. Advancing many bioinformatics
operations requires a comprehensive yet high-quality transcriptome [16,17]. Research
has revealed that the effectiveness of each assembly tool varies depending on the dataset
type [18]; hence no tool can build ideal assemblies for all datatypes [19]. Therefore, deter-
mining the best assembly tool is critical for every species regarding transcriptome [20] and
plant genome [21] assemblers. The absence of benchmarking datasets induces bioinformati-
cians often to use one method instead of another only based on the availability (publicly
free or under fee) [17].

Several approaches are available to assess the quality of transcriptome assemblies, such
as N50 values (the length of unigene at which cumulatively constructed base pairs reach
50% of the entire assembly length), transcripts length, number of unigenes > length x, reads
that have been mapped back to the transcriptome (RMBT), TransRate, BUSCO, etc. The
N50 values and contig length metrics are commonly used to evaluate genome assemblies;
however, they are insufficient for transcriptome assemblies, primarily because the predicted
transcript lengths in certain species are unknown [20,22]. Unluckily, these metrics are crude
and frequently deceptive. Case in point, trivial assemblies can maximize N50. In summary,
N50 evaluates contig continuity but not accuracy [20,23]. The RMBT percentage can be
used to determine the completeness of each assembly (RMBT), implying the amount of
read incorporation used to build the assembly. The proportion of RMBT is one of the
most significant metrics for assessing each method’s success [24,25]. The aforementioned
criteria can assess the assembly strategies in different features; however, recognizing the
biological distinctions between the assemblies becomes challenging when these metrics
are used [22]. So in these cases, BUSCO can be employed to evaluate the completeness of
the constructed transcriptome, utilizing its gene content as a supplement method to usual
technical criteria [26]. In other cases, algorithms quantifying the complete and incomplete
transcripts, such as Full-LengtherNext [18], provide important clues to obtaining the best
assembly. On the whole, there is no agreement on the metrics that ought to be employed to
assess the quality of different de novo transcriptome assemblies. Therefore, it is important
to use multiple criteria to make more accurate judgments. Another significant challenge is
managing the resulting data sets, especially when various de novo transcriptome sets are
constructed using different tools, and this becomes even more difficult when we want to
judge their quality and quantity using different criteria.

Here, we sequenced the transcriptome of L. ledebourii, a species with no reference
genome, employing the Illumina platform, an effectual and popularly priced platform, and
supplied the researchers with the first considerable transcript data of this species. The cur-
rent study, employing transcriptome data, assesses the efficiency of different assembly tools
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employing reference-free and reference-based criteria and reveals the effect of choosing the
accurate assembly strategy on the identification of transcripts functions. The current study
has addressed the following issues to achieve a comprehensive and accurate transcriptome:
which assembly software ought to be chosen, and by what standards ought they to be
assessed? When each of the produced transcriptomes excels in one or more metrics, which
metric is the deciding factor? In the current study, the data from each metric was used
in a normalized way so that multiple metrics could fairly compare the performance of
assemblers, and the influence of one metric is not more than the others.

2. Results and Discussion
2.1. RNA-seq Quality Validation

The RNA-seq analysis workflow is depicted in Figure 1. Figure 2 displays the as-
sessment plots mean per-base quality scores, per-sequence GC content, and per-sequence
quality scores. The mean per-base quality scores above the Phred quality score of 35
(Figure 2A), and the quality score of all reads exceeded the quality level of 20, with the
majority score of more than 30 (Figure 2B). All the GC contents of the samples were plotted
as a normal distribution (Figure 2C). Overall, the statistics in Figure 2 exposed that the
RNA-seq reads were of excellent quality.

1 
 

 
 
 
 

 
 

Figure 1. Workflow of cDNA library construction, RNA-sequencing, and de novo transcriptome
analysis and benchmarking.
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 Figure 2. The quality assessment results for the trimmed RNA-Seq data. (A) Mean quality scores.

(B) Per sequence quality scores. (C) Distribution of GC content.

2.2. Analysis of Transcriptome Data

A total of 86,299,395 high-quality reads were obtained from the experiment. Overall,
68.26–98.77% of reads were mapped to each transcriptome after mapping (Table 1). All of
the assemblers, with the exception of Velvet–Oases, generated a comparable proportion of
RMBT (at least 96.23%).

Table 1. Percentage of reads mapped back to each transcriptome (RMBT) of L. ledebourii.

Sample BinPacker
_k25

BinPacker
_k32

Bridger
_k25

Bridger
_k32

Evidential
Gene rnaSPAdes TransLiG

_k25
TransLiG

_k32 Trinity
Velvet–
Oases
_k25

Velvet–
Oases
_k32

Petal 1 97.1 97.66 96.28 97.49 97.51 98.39 97.02 97.6 98.75 63.66 72.31
Petal 2 96.71 97.24 96.08 97.15 97.11 98.19 96.61 97.17 98.37 62.26 70.83
Petal 3 97.54 98.15 96.51 97.85 97.73 98.77 97.47 98.1 99.19 74.15 83.47
Petal 4 97.43 97.96 96.51 97.7 97.65 98.62 97.36 97.92 98.94 68.01 76.94
Petal 5 97.54 98.07 96.57 97.8 97.77 98.73 97.47 98.03 99.1 69.77 78.44
Petal 6 96.51 97.07 95.44 96.81 96.47 97.71 96.38 96.97 98.24 71.71 80.56

Ave.
RMBT 97.14 97.69 96.23 97.47 97.37 98.40 97.05 97.63 98.77 68.26 77.09

Trinity resulted in the highest (1262) complete BUSCO. The EvidentialGene had the
fewest number (24) of fragmented BUSCOs, while in Velvet–Oases 93 (k-mer = 25) and
55 (k-mer = 32), fragmented BUSCOs were obtained. Furthermore, Velvet–Oases fared the
worst in the matter of the number of BUSCOs missing (Figure 3).

An Ex90N50 statistic (the N50 score of the transcript accounts for 90% of the overall nor-
malized expression data) was calculated using transcripts from each assembly. The longest
(1934 and 1882) value of Ex90N50 with 14,796 and 15,410 transcripts was related to Velvet–
Oases (k-mer = 32) and Bridger (k-mer = 32), respectively (Supplementary Figure S1). The
EvidentialGene (7960) assembly found the most full-length transcripts among the 11 assem-
blies, followed by Trinity (7342). Velvet–Oases had the worst performance by reconstructing
4079 and 4914 transcripts in k-mer = 25 and k-mer = 32, respectively (Figure 4 and Fig-
ure S2). The rnaQUAST statistical output shows that EvidentialGene (78,689) and then
Trinity (64,997) have the highest number of transcripts > 500 bp, while in Velvet–Oases,
this number is only 32,730 (k-mer = 25) and 29,996 (k-mer = 32). The highest number
of transcripts > 1000 bp was also recorded in EvidentialGene (43,150) and Trinity (35,270)
assemblers (Supplementary Table S1, Supplementary Figure S3).
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Figure 3. Assessment results of Benchmarking Universal Single-copy Orthologs (BUSCO).
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Figure 4. The number of full-length protein-coding genes rebuilt at different coverage depths by
each assembler.

We calculated the transcripts that encode for a protein. A comparison of the number
of transcripts with Open Reading Frame (ORF) indicates that EvidentialGene has the
highest number of transcripts with ORF, with a large difference from other assemblers. As
EvidentialGene (57,814) had about 61% to 30% more transcripts with ORF than Velvet–
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Oases (23,030) and Trinity (40,993), respectively (Figure 5, Supplementary Table S2). As the
data in Figure 6 show, the highest and lowest number of unique gene hits was recorded in
all protein databases for EvidentialGene and Velvet–Oases, respectively. 

3 

 

 
 

 
 

Figure 5. Comparison of assemblies in terms of transcripts that potentially encode for a protein.

 

3 

 

 
 

 
 Figure 6. Unique hits in BLASTx (e-value cutoff ≤ 1 × 10−5) searches of 11 transcriptomes against

five major databases: NR, UniRef100, Swiss-Prot, COG, and eggNOG.

2.3. Normalized Metric Score Assessment

The assembly strategy inevitably affects the completeness and quality of the tran-
scriptome created in each species. Therefore, finding the best strategy is essential [18,22].
Because the optimal transcript length for every species is unknown, some criteria for mea-
suring the quality of genome sequence studies, including contig length and N50 values, are
not sufficiently valid to determine transcriptome quality [27]. The selection of appropriate



Plants 2022, 11, 2365 7 of 15

criteria for de novo transcriptomes assessment and a fair and impartial method to evaluate
these criteria remain a source of common uncertainty for researchers. Consequently, to
choose the best performing outcomes from several assembly cycles, the proper selection
of reference-free and biological-based evaluation criteria is required. Therefore, in this
study, several metrics were used to evaluate the assembly quality of each transcriptome to
determine its completeness and credibility. Individual metric scores are scaled from 0 to
1 on a scale. Zero denotes the weakest performance, and 1 denotes the best performance.
The findings supported earlier studies by demonstrating that various assemblers perform
differently across various metrics [16,23]. In terms of RMBT percentage, Velvet–Oases was
the worst (NMS = 0 in kmer = 25 and NMS = 0.29 in k-mer = 32), while the other assemblers
scored high for RMBT with a Trinity lead (NMS = 1) (Figure 7). The RMBT percentage is a
critical metric for assessing each method’s effectiveness. To rebuild high-quality transcripts,
an ideal software should employ as many reads as feasible [24]. Moreover, to RMBT, it is
critical to reach a certain level of completeness regarding the number of genes discovered.
The transcriptome assemblies were examined for this purpose based on their completeness
and correctness, as determined by the BUSCO, which assigned different scores to the as-
semblies. Benchmarking Universal Single-Copy Orthologs indicated that the Trinity (NMS
= 1) assembly has 91.78 percent complete BUSCO genes. While 4% and 6.76% of all BUSCO
genes are fragmented in the Velvet–Oases with k-mer = 25 and k-mer = 32, respectively,
EvidentialGene performed best (NMS = 1). Because the EvidentialGene relies on sequence
characteristics such as coding sequence (CDS) composition and length, maybe fragmented
CDS is fewer to pass through the filtering phase [28]. In addition, 11.78% of BUSCO genes
are missing in Velvet–Oases (k-mer = 25) assembly (NMS = 0). Except for Velvet–Oases,
the rest obtained NMS ≥ 0.83 from the “Missing BUSCO” parameter (Figure 7). A high
proportion of fragmented BUSCO genes implies problems with the assembly process [26].
Surprisingly, Velvet–Oases (k-mer = 32) had the highest Ex90N50 score (NMS = 1). As a
result, it appears that Velvet–Oases (k-mer = 32) can build lengthy contigs from exceedingly
expressed transcripts. Nevertheless, general metrics, and for instance, the BUSCO findings,
demonstrate that numerous transcripts that may be expressed at low levels in the data sets
are missed by Velvet–Oases, and this may increase the Ex90N50. Therefore the N50 values
metric can be misleading and should not be used to distinguish assembly completeness
regarding gene content on its own [26].

The high ratio of severely fragmented transcripts is a typical difficulty in RNA-seq
data assembling, owing to challenges in defining correct transcript boundaries [29,30]. We
computed coverage against the Swiss-Prot database to see how prosperously assembled
transcripts were reconstructed to full-length in each of the 11 assemblies. According to our
findings, EvidentialGene (NMS = 1) performed the best in recovering full-length transcripts,
as between about 8% (in Trinity, the second highest ranking) and 38% (in Velvet–Oases
k-mer = 25, the weakest) more proteins transcripts by EvidentialGene covered by assembled
for the entirety of their protein length (Figure 7). In the context of transcripts longer than
500 bp and 1000 bp, Velvet–Oases acted awful, while EvidentialGene (NMS = 1) decisively
trounced ten other assemblers. Here, the overall pattern of increasing the Ex90N50 with
fewer transcripts longer than 500 bp and 1000 bp was observed for most assembly strategies,
particularly Velvet–Oases k-mer = 32 (Figure 8). These results are consistent with earlier
reports regarding the reduction in the number of large-length transcripts and high N50
values [31]. This becomes even more interesting when the Transrate findings reveal that
the EvidentialGene strategy (NMS = 1) remarkably increases the number of transcripts
that encode for a protein so that none of the other assemblers could even achieve half the
“NMS”. Therefore, the length of the transcripts and the mean ORF percentage also indicate
the superiority of EvidentialGene (Figure 7).
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Figure 8. Normal distribution of the number of Transcripts > 500 bp, Transcripts > 1000 bp, and
Ex90N50 values among assemblies.

Different assemblers handle the 5’ and 3’ boundaries differently, and EvidentialGene
has been shown to retrieve more accurately assembled contigs with relaxed thresholds [32].
Transcripts are categorized and chosen by EvidentialGene, which also uses each transcript
ORFs and associated quality metrics to guide its decision [33]. As a result of the Evidential-
Gene pipeline, transcripts are selected based on their coding potential, resulting in the best
ORFs constructed [34].

Additionally, as a result, we obtained more transcripts with ORF when using Eviden-
tialGene despite having assembled a larger number of transcripts with Trinity. Trinity can
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have a high number of duplicates [22]. Here, assemblies were combined using the CD-HIT
and EvidentialGene tr2aacds pipelines. With the EvidentialGene tr2aacds pipeline, high-
quality transcripts are combined to reduce redundancy, and the low-translational-potential
transcripts are removed [35].

Finally, to evaluate the performance of the assemblers, as well as to reconfirm the
performed benchmarks, each transcriptome was blasted against five protein databases,
including NCBI non-redundant (NR), UniRef100, Swiss-Prot, COG, and eggNOG. In com-
parison to other assemblies, the EvidentialGene assembly had the unique (best) ‘Basic
Local Alignment Search Tool’ (BLAST) hits (the single best scoring transcript alignment for
each database record over a given significance level). A BLASTX of transcriptome from
EvidentialGene against the protein databases with a 10-5 threshold yielded 76445 (mean
five databases) unique gene hits (Figures 6 and 7). However, the other assembling methods
reduced unique gene hits by about 59% (Velvet–Oases k-mer = 25).

2.4. Which Impartial Indicators Help to Identify the Top Assemblers?

To better understand the status of each assembler and to find more effective metrics,
principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) were
performed using the final data from the normalized workflow output (Figure 9A,B). Princi-
pal components (PC) 1 and 2 explained 84% of the observed variance. The first two principal
components of a principal components graph revealed that the constructed transcriptomes
are in different clusters. As expected, EvidentialGene takes the lead. BinPacker, Bridger,
rnaSPAdes, and TransLiG behaved almost similarly, and Trinity was placed between these
four and EvidentialGene. Each of the two transcriptomes from the Velvet–Oases was
found to be distant from the other assemblers (Figure 9A). PCA revealed that Trinity and,
in particular, EvidentialGene were positively related to the number of transcripts with
ORFs, transcripts > length x, and they were more separated in comparison to the other
metrics, indicating that these two assemblers performed better. The Biplot revealed that the
Velvet–Oases (k-mer = 32) was more isolated than the others, which is mainly explained by
the average length of assembled transcripts (Figure 9B).

Plants 2022, 11, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 9. Principal component analysis of evaluation metrics for different assemblers. (A) 
Confidence ellipses obtained by PCA for the mean points of different transcriptomes. (B) Biplot of 
the first two principal components. 

The AHC analysis revealed that the performance metrics could be classified into 
three groups based on their similarity (Figure 10). The first group is divided into two parts: 
part I includes transcripts > 500 bp, transcripts > 1000 bp, number with ORF, and number 
of annotated transcripts, which showed close correlation with two leading assemblers, 
EvidentialGene and Trinity; and part II includes RMBT, number of full-length transcripts, 
and statistics of BUSCOs, which were correlated with moderate performance assemblers 
namely TransLiG, BinPacker, Bridger, and rnaSPAdes. The average length of assembled 
transcripts and mean ORF percentage were included in the second group. However, 
Ex90N50 was separated on its own (Figure 10). 

Both PCA and AHC results highlight the seclusion of the Ex90N50 and the average 
length of assembled transcripts from other metrics. We recommend that these two metrics 
not be used alone when estimating assembly accuracy and quality. The overall normalized 
results also provide evidence for this (Figure 7). So that the highest Ex90N50 and, at the 
same time, the weakest performance was recorded for Velvet–Oases. Furthermore, on the 
other hand, EvidentialGene had a lower score on the average length of assembled 
transcripts metric, but it was the best in the complete review. The results highlight that 
the N50 statistic and the transcript length metrics are insufficient for the evaluation of 
transcriptome assemblies, primarily because it is not known what the expected transcript 
length is in the species [20,22]. As a result, careful criteria selection is required to choose 
the best outcomes from multiple assembly cycles, and we recommend using both 
reference-free and reference-based criteria. 

In short, with the help of a broader perspective on each assembler’s performance, 
that is, the normalized overall score of each assembler (Figure 7), as well as PCA (Figure 
9), we can now say EvidentialGene exceeded all other assemblers with an ONMS of 10.86, 
followed by Trinity (ONMS = 9.34), TransLiG (with an ONMS of 8.37 and 8.02 in k-mer = 
25 and 32, respectively), and the rest. Velvet–Oases performed worse than the others, 
scoring just 2.03 and 3.88 points from ONMS in the k-mer = 25 and k-mer = 32, respectively 
(Figure 7). Converting fragmented BUSCO genes into complete ones is a reliable indicator 
of a considerable improvement in assembly quality, particularly when confirmed by other 
metrics [26]. Here it was found that EvidentialGene has the lowest fragmented BUSCO 
with the highest score of most evaluation criteria (NMS = 1) such as Transcripts > 1000 bp, 
Number of full-length transcripts, Number with ORF, etc., resulting in the highest ONMS 

Figure 9. Principal component analysis of evaluation metrics for different assemblers. (A) Confidence
ellipses obtained by PCA for the mean points of different transcriptomes. (B) Biplot of the first two
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The AHC analysis revealed that the performance metrics could be classified into three
groups based on their similarity (Figure 10). The first group is divided into two parts:
part I includes transcripts > 500 bp, transcripts > 1000 bp, number with ORF, and number
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of annotated transcripts, which showed close correlation with two leading assemblers,
EvidentialGene and Trinity; and part II includes RMBT, number of full-length transcripts,
and statistics of BUSCOs, which were correlated with moderate performance assemblers
namely TransLiG, BinPacker, Bridger, and rnaSPAdes. The average length of assembled
transcripts and mean ORF percentage were included in the second group. However,
Ex90N50 was separated on its own (Figure 10).

 

5 

 

 
 

 
 Figure 10. Dendrograms from the agglomerative hierarchical cluster analysis (AHC) performed on

evaluation metrics. Three different groups are shown with different colors.

Both PCA and AHC results highlight the seclusion of the Ex90N50 and the average
length of assembled transcripts from other metrics. We recommend that these two metrics
not be used alone when estimating assembly accuracy and quality. The overall normalized
results also provide evidence for this (Figure 7). So that the highest Ex90N50 and, at the
same time, the weakest performance was recorded for Velvet–Oases. Furthermore, on
the other hand, EvidentialGene had a lower score on the average length of assembled
transcripts metric, but it was the best in the complete review. The results highlight that
the N50 statistic and the transcript length metrics are insufficient for the evaluation of
transcriptome assemblies, primarily because it is not known what the expected transcript
length is in the species [20,22]. As a result, careful criteria selection is required to choose the
best outcomes from multiple assembly cycles, and we recommend using both reference-free
and reference-based criteria.

In short, with the help of a broader perspective on each assembler’s performance, that
is, the normalized overall score of each assembler (Figure 7), as well as PCA (Figure 9),
we can now say EvidentialGene exceeded all other assemblers with an ONMS of 10.86,
followed by Trinity (ONMS = 9.34), TransLiG (with an ONMS of 8.37 and 8.02 in k-mer
= 25 and 32, respectively), and the rest. Velvet–Oases performed worse than the others,
scoring just 2.03 and 3.88 points from ONMS in the k-mer = 25 and k-mer = 32, respectively
(Figure 7). Converting fragmented BUSCO genes into complete ones is a reliable indicator
of a considerable improvement in assembly quality, particularly when confirmed by other
metrics [26]. Here it was found that EvidentialGene has the lowest fragmented BUSCO
with the highest score of most evaluation criteria (NMS = 1) such as Transcripts > 1000 bp,
Number of full-length transcripts, Number with ORF, etc., resulting in the highest ONMS
(10.86 out of a possible 12). Especially since the high ONMS in this assembly was reaffirmed
with Blast results. By comparing transcriptome assemblers according to several criteria,
we are able to observe that each assembly method has its strong points, which are not
usually operated by others, but it is quite evident that EvidentialGene outperforms the other
methods and covers their shortcomings. The ideal method for obtaining a thorough de
novo transcriptome assembly appears to be combining the contigs of several assembly tools
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and parameters to overcome the various drawbacks of some assemblers and combine their
advantages [36]. Overall, our findings support Gilbert’s (2019) report that EvidentialGene is
a pipeline for reconstructing genes that have been shown to be more accurate at recovering
transcript sets than any other common RNA-seq assembly approach [37].

To promote assembly optimization, we emphasize that each metric informs only
one component of the assembly. The findings here suggest that one should never settle
for just one or two criteria when assessing transcriptome quality and accuracy, no mat-
ter how common and widely used, something that is often inadvertently neglected in
transcriptomic studies.

3. Materials and Methods
3.1. Sample Preparation, RNA Isolation, and Sequencing

The flower samples of L. ledebourii were taken from the Damash village plant. The
frozen samples in liquid nitrogen were transferred to a −80 ◦C freezer until RNA isola-
tion. The petals of each three flowers were pooled together, and finally, the RNA was
isolated from 6 pooled samples employing TRIzol Reagent and QIAGEN RNeasy Plant
Mini Kit. Total RNA was tested for quality and quantity employing a Nanodrop and
an Agilent 2100 Bioanalyzer, respectively. The samples with an RIN > 7 were used to
construct cDNA libraries employing TruSeq standard mRNA whit Part # 15031047 Rev.
E Protocol. The Illumina sequencing platform was employed to sequence libraries with
150 bp paired-end reads.

3.2. Data Pre-Processing and Transcriptome Assembly

The workflow was driven using 24 cores and 396 GB of RAM on an Ubuntu Linux
Server. The quality control of the raw Illumina reads was executed utilizing FastQC tools
v0.11.8 [38]. Trimmomatic (Version 0.39) was employed to trim low-quality reads and
adapter sequences [39]. Based on their usual use in de novo transcriptomic research,
11 distinct transcriptome assemblies were built employing seven reputable assemblers
including Trinity v.2.10.0 [10], rnaSPAdes v.3.14.1 [11], BinPacker v.1.0 [12], Bridger v. r2014-
12-01 [40], TransLiG version v.1.3 [13], and Velvet/Oases v.1.2.10 [14] and one merging
strategy via EvidentialGene v.18may07 (http://arthropods.eugenes.org/EvidentialGene/
accessed on 9 May 2018).

3.3. Mapping Rate

To assess each assembler’s performance, the all trimmed paired-end reads were
mapped back utilizing Bowtie2 v.2.3.5.1 end-to-end [41].

3.4. Ex90N50 Statistic

The trinity utilities were loaded to compute the Nx statistic [10], which includes tran-
script expression data. We employed Salmon [42] via abundance_estimates_to_matrix.pl to
calculate Ex90N50. The Ex90N50 statistic is the N50 metric that only includes transcripts
with a high expression which represents 90% of the total normalized expression data.

3.5. Full-Length Protein-Coding Transcripts Reconstruction

The Swiss-Prot database was used to align known transcripts to each assembly. It
was considered -max target seqs 1 and -evalue 1 × 10−20 for BlastX. Employing the Perl
script “analyze_blastPlus_topHit_coverage.pl”, the length to which top database hits were
covered was examined and compared among assemblies (https://github.com/macmanes/
trinityrnaseq-1/blob/master/util/analyze_blastPlus_topHit_coverage.pl/ accessed on 11
January 2015).

3.6. Benchmarking of Assembly Completeness

To accomplish the benchmarking and evaluate the levels of completeness and accu-
racy of each de novo assembled transcript, rnaQUAST v. 2.0.1 was employed [43]. The

http://arthropods.eugenes.org/EvidentialGene/
https://github.com/macmanes/trinityrnaseq-1/blob/master/util/analyze_blastPlus_topHit_coverage.pl/
https://github.com/macmanes/trinityrnaseq-1/blob/master/util/analyze_blastPlus_topHit_coverage.pl/
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rnaQUAST generates plots to display basic statistics such as transcript lengths and the
number of transcripts per isoform.

3.7. TransRate Assessment

TransRate v.1.0.3, a reference-free quality assessment, was utilized for sequence-based
assessment to obtain predicted transcript metrics such as the number of bases in each
assembly, the mean lengths, and the numbers of transcripts in sizes ranging [44].

3.8. Benchmarking Universal Single-Copy Orthologs (BUSCO)

Single-copy orthologous were benchmarked using BUSCO v.4.1.4 [26]. Assembled
contigs were compared against the embryophyta_odb10-lineage-specific dataset using
tBLASTn [45]. The annotated contigs are then classified as single-copy and complete,
duplicated and complete, fragmented, and or missing by HMMER [46].

3.9. Overall Normalized Scores Calculation

We examined the efficiency of 11 de novo assembly instrument ak ∈ {a1, . . . , a11}
utilizing 12 predetermined metrics mi ∈ {m1, . . . , m12}. A vector vi of crude scores ci

k for
each assembly instrument were defined for each metric mj as

Vi =
(

ci
1, . . . , ci

11

)
.

The vector Vi values were then to the interval (0,1) utilizing

Normalize
(

Vi
k

)
=

(
Vi

k
)
−min

(
Vi)

max(Vi) – min(Vi)
= ni

k

and the vector obtained from normalized (0,1) scores indicated as

NMSi =
(

nsi
1, . . . , nsi

11

)
.

Finally, to achieve a broader perspective of each assembler’s performance, an overall
normalized metric score (ONMS) was calculated for each assembler by summing the
normalized scores NMS of each assembler.

3.10. Identification of Transcripts Functions

To identify the potential functions of the L. ledebourii transcripts, BlastX (e-value
cutoff ≤ 1 × 10−5) was employed to compare every contig similarities obtained from each
of the 11 assemblies against the five major protein databases, NCBI non-redundant (NR),
UniRef100, Swiss-Prot, COG, and eggNOG.

4. Conclusions

This research provided an optimal de novo transcriptome assembly approach for
L. ledebourii with a normalized computational workflow. Normalized benchmarking indi-
cated that the EvidentialGene method could deliver the most comprehensive and accurate
transcriptome of L. ledebourii based on the maximum score from the majority of quality met-
rics. This is especially true now that the BLAST findings have reconfirmed its dominance.
Therefore, we strongly recommend the use of this method for future structural genomic
works, especially in under-investigated plant species such as L. ledebourii. The results of
this study reveal that choosing an inappropriate assembly strategy can significantly lead
to less identification of unique gene hits. In addition, this study supplies researchers with
the first transcriptome-level data on this species. Finally, we point out the importance of
benchmarked criteria for evaluating and improving transcriptome assembly performance
and that no single criterion can represent an optimal assembly.
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