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Abstract: A new allotetraploid species of the genus Asplenium, A. pseudocapillipes, originated from the
hybridization between A. capillipes and A. tenuicaule, has been newly discovered in two limestone
areas of South Korea. A molecular phylogenetic analysis using one chloroplast region (rbcL) and
three single- or low-copy nuclear regions (AK1, gapCp, pgiC) and a cytological analysis, including
genome size measurements, were conducted to characterize this new species. From these results,
the maternal origin of A. pseudocapillipes was confirmed to be A. capillipes, which has never been
reported in Korea. All three nuclear data showed that this new species had genotypes of both A.
capillipes and A. tenuicaule. The quantitative characteristics of the leaves showed values intermediate
between the two parental species. The absence of gemma accorded with its paternal origin from A.
tenuicaule, and 32 spores per sporangium accorded with its maternal origin from A. capillipes. Al-
though A. pseudocapillipes has 32 spores per sporangium, it is considered to be a sexually reproducing,
not an apomitic, fern.

Keywords: Asplenium pseudocapillipes; new species; allotetraploid; Asplenium tenuicaule; Asplenium
capillipes

1. Introduction

Polyploidization is considered an important factor in plant evolution [1–4]. Polyploids
can be generated by autopolyploidization and allopolyploidization. Autopolyploidization
occurs by doubling the genome within a species, but allopolyploidization occurs by inter-
specific hybridization followed by genome doubling [5]. In ferns, the ratio of speciation
events related to polyploidy is higher (31%) than that in angiosperms (15%) [6]. Because of
the frequent polyploidization and hybridization that occurs in ferns, they can sometimes
experience reticulate evolution [7]. As a result, it can form a species complex that has
morphological continuity between species [8]. To examine this morphological complexity
in related taxa, many researchers have attempted to apply genome size measurement or
low-copy nuclear DNA markers for genotyping analysis in ferns [9–16]. Through these
attempts, new species, that were previously unknown and unrecognized due to their
morphological similarities, have actually been identified [9,14,17].

Comprising approximately 700 species, Asplenium L. (Aspleniaceae) is a species-rich
fern genus [18,19]. Members of Asplenium show various ploidy levels [20,21] and form
a species complex comprising basic diploids and many auto- and allopolyploids by fre-
quent reticulate evolution [9,10,14,15]. Moreover, it is possible to produce sterile hybrids
between species with different ploidy levels or between homoploids in the same com-
plex [15]. As the presence of numerous morphologically intermediate species in the genus
Asplenium make it more difficult to distinguish one from another, researchers have at-
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tempted to solve this problem using various methods, including cytological and molecular
methods [9,10,15,16,22,23].

To investigate Asplenium species, we collected plant samples from various habitats in
Korea. Among them, we found plants that had been collected from the limestone area and
identified as A. tenuicaule Hayata in the field based on their morphological characteristics.
However, they were different from typical A. tenuicaule because the plants had an acute
segment that is not generally observed in this taxon. This newly observed Asplenium sp. was
more similar to A. capillipes Makino, except for the absence of gemma in the acroscopic axil.

In this study, cytological and molecular phylogenetic analyses were conducted to
investigate the identity of this enigmatic species. Our goals in this paper were (1) to verify
whether the newly found Asplenium sp. originated from hybridization; (2) to identify the
parent species if it was a hybrid taxon; and (3) to describe it in detail if it was recognized as
a new species.

2. Results
2.1. Chloroplast Phylogeny Based on rbcl

We determined the rbcL sequences of the new taxon Asplenium sp. found in Korea
and its related species in this study and compared them together with the sequences of A.
capillipes and A. tenuicaule reported from Japanese and Chinese samples. From the result, it
was confirmed that the sequence of new taxon was identical to those of A. capillipes of Japan
and China. The aligned sequence length of rbcL was 1272 bp with 1090 conserved sites and
63 parsimony-informative sites. The phylogenetic analysis showed that two individuals
of Asplenium sp. were nested in the A. capillipes clade comprising Chinese and Japanese
specimens with 100% ML bootstrap support, and the A. capillipes clade was identified as
being sister to the A. tenuicaule clade (Figure 1A).
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Figure 1. Maximum likelihood phylogeny based on plastid rbcL (A) and three nuclear markers,
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2.2. Nuclear Phylogenies Based on pgiC, AK1, and gapCp

After alignment, the lengths of the nuclear genes pgiC, AK1, and gapCp were found to
be 694 bp, 866 bp, and 1221 bp, respectively. In pgiC, one copy of Asplenium sp. from each
population (non-T type) was completely identical to the pgiC of Chinese A. capillipes, except
for the 1 bp deletion of poly T in the Jeongseon population (CBNU2020-0171A). The other
copy of Asplenium sp. in each population was almost identical to A. tenuicaule, therefore, we
designated this copy as T type (Supplementary Figure S1). In the phylogeny based on pgiC,
the T types of Asplenium sp. were nested in the A. tenuicaule clade, and the non-T types
were positioned in the A. capillipes clade with an ML bootstrap support >99% (Figure 1B).

In the cases of AK1 and gapCp, each population of Asplenium sp. had two copies.
One copy was identical to the sequence of A. tenuicaule, but the other was obviously
different. The phylogeny based on AK1 and gapCp showed that the T types of Asplenium
sp. and A. tenuicaule were also strongly supported as being monophyletic, and the non-T
types of Asplenium sp. formed an independent clade with an ML bootstrap support >94%
(Figure 1C,D).

2.3. Ploidy Analysis and Spore Observation

The mitotic chromosome number of Asplenium sp. was 2n = 144. Therefore, it was
identified as being tetraploid (Figure 2). The genome size of Asplenium sp. with 16 in-
dividuals and A. tenuicaule with 4 individuals were measured and the mean C-values
were 8.875 ± 0.06 pg and 4.079 ± 0.05 pg, respectively (Figure 3).
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Figure 3. Results of genome size measurement using a flow cytometer. (A) Asplenium tenuicaule,
(B) Asplenium sp.

In addition, 32 spores were observed per sporangium (Figure 4E), with a mean
size of 52.94 ± 3.02 µm ranging 46–59 µm, and they successfully germinated
(Supplementary Figure S2).

Etymology: the species resembles A. capillipes.
From the results, we conclude Asplenium sp. should be treated as the new allotetraploid

species Asplenium pseudocapillipes (Figure 4), which is described as follows.

2.4. Taxonomic Treatment

Asplenium pseudocapillipes S. H. Park, J. S. Kim & H. T. Kim, sp. nov. Type: South
Korea, Taebaek-si, Hasami-dong, Deokhang Mountain, 770 m alt., 30 April 2020, (holotype
CBNU2020-0106)

Diagnosis: Asplenium pseudocapillipes is allotetraploid, originating as the hybrid be-
tween A. capillipes and A. tenuicaule, and generally shows the intermediate form of both
species (Table 1). This species has an acute segment apex and 32 spores per sporangium,
which are similar to those of A. capillipes, but a gemma of the acroscopic axil does not form
as in A. tenuicaule.

Plants are evergreen and epilithic. Plants (1.5-3-9(-12) cm tall. Rhizome shortly erect,
apex scaly; scales dark brown to black, triangular to narrowly triangular. Fronds caespitose,
herbaceous, green, subglabrous; stipe slender, sulcate adaxially, (0.3–)0.5–3(–5) cm; lamina
triangular to narrowly triangular, (0.8-)1.5-6(-7) × (0.5-)0.7-2.5(-3) cm, 2 or almost three-
pinnate, apex acute to acuminate, without gemma; pinnae (3-)4-9(-11) pairs, alternate or
opposite, stalk slender, basal pinnae not reduced (or often slightly reduced), broadly ovate
to triangular, 3-11(-15) × 2.5-7(-9) mm in basal pinna, pinnate to two-pinnatifid; ultimate
segments (1-)1.5-3(-5) × 1-2.5(-3.5) mm, base cuneate, margin entire, apex mucronate to
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acute. Sori, one (or two) per ultimate segment or pinnule, basal to median on subtending
vein, linear to narrowly oblong, (0.8-)1-1.8(-2.5) mm; indusia whitish to whitish-yellow,
membranous, margins entire, opening toward costa, persistent. Spores 32 per sporangium,
longer diameter averaging 52.94 µm, ranging 46-59 µm, excluding perispores. Tetraploid,
2n = 144.
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Figure 4. Asplenium pseudocapillipes sp. nov. (A,B) Habitat. (C) Plant. (D) Rhizome scale.
(E) Thirty-two spores per sporangium.

Table 1. A comparison of A. pseudocapillipes and two parental species. Measurements of A. capillipes
and A. tenuicaule were referred to in the Flora of China [18]. Asterisk (*) is a measurement of the spore
length according to Ichihara [24].

A. capillipes A. pseudocapillipes A. tenuicaule

Plant height (cm) 3–8 3–9 6–15
Stipe (cm) 0.3–2.5 0.5–3 1.5–5

Lamina (cm) 1.5–6 × 0.5–2.5 1.5–6 × 0.7–2.5 4–9 × 1.2–3
Number of pinnae 5–7 4–9 7–10

Spore length (µm) 38–42
45.7 * 46–59 28–32

29.1 *
Ploidy 2×, 4× 4× 2×

Number of spores per sporangium 32 32 64
Gemma on rachis Present Absent Absent

Distribution and habitat: Two populations of A. pseudocapillipes have been reported
from the limestone areas of Korea in Gangwon-do, Jeongsun-gun, and Taebaek-si. It usually
grows by forming clusters on mossy rocks under moist forests.
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3. Discussion
3.1. Discovering New Allotetraploid in Genus Asplenium

In this study, we found a new allotetraploid species, A. pseudocapillipes, from two
populations in limestone areas of Korea. It was different from the hybrid species Asple-
nium × capillicaule Fraser-Jenk. from Nepal [25] and Japan [26] between A. capillipes and
A. tenuicaule because Asplenium × capillicaule is known to have a gemma in acroscopic axils,
which is similar to that of A. capillipes.

The A. pseudocapillipes found in Korea had two distinct copies of all three nuclear genes
tested in the present study. The T types or non-T types (pgiC) of A. pseudocapillipes formed a
clade with the counterparts of A. tenuicaule and A. capillipes, respectively. Maternally inher-
ited rbcL was shown to be the maternal parent of A. pseudocapillipes. Based on the number
of chromosomes, genome size, and fertile spores of A. pseudocapillipes, it is an allotetraploid
between A. capillipes and A. tenuicaule because both parent species are diploids [18,24,26],
excluding the tetraploid of A. capillipes in the Himalayas [27].

Allotetraploid A. pseudocapillipes may originate by two unreduced gametes of a ho-
moploid hybrid (Figure 5A) or by a triploid bridge (Figure 5B). Because we have not yet
found any sterile hybrids of diploid or triploid A. pseudocapillipes, it is not easy to establish
a speciation model for this allotetraploid. The paternal species A. tenuicaule grows closely
with A. pseudocapillipes in Korea, whereas the maternal species A. capillipes has not been
reported in Korea yet. This implies that A. pseudocapillipes moved into Korea after speci-
ation or that A. capillipes became extinct in Korea after speciation. However, A. capillipes
is small and grows among moss with a high morphological similarity to A. tenuicaule [18]
and A. pseudocapillipes. Therefore, this species may have been easily overlooked or was
identified as A. tenuicaule even though we did not find any A. capillipes, which was identical
to our original description, from herbarium specimens survey. If A. capillipes grew closely
with A. tenuicaule and hybridization and polyploidization recently occurred, the relatively
low genetic diversity of nuclear sequences between parents and offspring is to be expected.

In this study, we compared new allotetraploids to their parental species using mor-
phological characters and cytological and molecular analyses. Further studies including
gametogenesis and sporogenesis are required to deepen our understanding of this species.

3.2. Reproductive Mode of Asplenium Pseudocapillipes

During sporogenesis, most sexual reproductive leptosporangiate ferns produce 16 spore
mother cells through four premeiotic mitoses and a total of 64 haploid spores per spo-
rangium through meiosis [28]. In contrast, apomictic ferns have 32 spores with the same
number of chromosomes as the parent sporophyte either by premeiotic endomitosis [29,30]
or meiotic first division restitution [31]. Therefore, 32 spores per sporangium were con-
sidered to be presumptive evidence of apomictic ferns [29,30,32]. However, some species
have been confirmed to be sexually reproductive ferns, even though they have 32 spores,
such as Lindsaeaceae species [33] and Cystodium sorbifolium [34], or 16 spores, such as
Alsophila species [35]. Lin, Kato, and Iwatsuki [34] deduced that the formation of eight
spore mother cells was due to the reduction in premeiotic mitosis divisions from four to
three and referred to these species types as “32-spored sexual type” or “lindsaeoid type”.

In Asplenium, there are some species with 32 spores, such as A. monodon [36], A. monanthes,
A. palmeri [10], A. heterochroum, A. resilens [37], and A. cheilosorum [38], which are similar
to A. pseudocapillipes found in the present study. Therefore, this poses the question of
whether A. pseudocapillipes is agamosporous. To answer this question, we need to focus
on the parents. A. capillipes is the maternal parent of A. pseudocapillipes, and is considered
to be an apogamous species because it has 32 spores per sporangium [39]. However,
half of the parental chromosomes in meiosis I, the normal meiotic division, and eight
spore mother cells imply that this species is sexual in reproduction [24]. In contrast,
A. tenuicaule, the paternal parent of A. pseudocapillipes, normally produces 64 spores in the
sporangium. Therefore, it was suggested that the feature of “32-spored sexual type” found
in A. pseudocapillipes was likely to be inherited from its paternal parent A. capillipes.
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4. Materials and Methods
4.1. Plant Materials and Observation of Morphological Characteristics

Except for the populations mentioned in the introduction, we found another popu-
lation of Asplenium sp. and A. tenuicaule within a 10 m radius in the limestone areas of
Gangwon-do, Korea (Figure 6). Living samples were collected from each population and
transplanted into the greenhouse at Chungbuk National University (Cheongju, Chungbuk,
Korea), and voucher specimens (Table 2) were deposited in the herbarium of the Chungbuk
National University (CBNU). One individual from each of the two populations of the
new taxon and three diploid Asplenium species (A. tenuicaule, A. ruprechtii Kurata, and A.
tripteropus Nakai) were used for the molecular analysis. Two diploid Athyriaceae species
(Athyrium yokoscense (Franch. & Sav.) Christ, and Deparia pterorachis (Christ) M. Kato were
used as outgroups for the phylogenetic analysis (Table 2).

Rhizome scales and spores were observed using a light microscope (Olympus BX50,
Tokyo, Japan). A total of 35 spores were randomly sampled under a light microscope
(Olympus BX50) to measure the spore size based on the length of the long axis, excluding
the perispore.

4.2. Chromosome Counting and Measurement of the Genome Size

For the observation of the mitotic chromosomes, the root tips were pretreated using 2 mM
8-hydroxyquinoline solution for 2 h and then fixed in Carnoy’s solution for 12 h. The fixed
root tips were washed with 70% ethanol, macerated in 1 N HCl for 5 min, and then stained
using the squashed method with 1% aceto-orcein. The slides were examined at 1000×
magnification and then captured using a light microscope (Olympus BX50).
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Table 2. List of plant materials used for DNA analysis in this study.

Voucher Locality
Accession

rbcL AK1 gapCp pgiC

Asplenium sp.

CBNU2021-0084-A Korea: Gangwon-do, Taebaek-si OP114589 OP114405
P114406

OP153882
P153883

OP114578
P114579

CBNU2020-0171-A Korea: Gangwon-do, Jeongsun-gun OP114590 OP114407
P114408

OP153884
P153885

OP114580
P114581

Asplenium tenuicaule
CBNU2020-0096-E Korea: Jeollabuk-do, Suncheon-si OP114586 OP114403 OP153880 OP114576
CBNU2020-0157-D Korea: Jeju Island, Jeju-si OP114587 OP114402 OP153879 OP114575
CBNU2021-0086-D Korea: Gangwon-do, Taebaek-si OP114585 OP114401 OP153878 OP114574
Asplenium ruprechtii
CBNU2020-0180-A Korea: Seoul, Gangbuk-gu OP114588 OP114404 OP153881 OP114577
Asplenium tripteropus
CBNU2020-0028-A Korea: Jeju Island, Jeju-si OP114584 OP114400 OP153877 OP114573
Athyrium yokoscense(outgroup)
CBNU2021-0104-A Korea: Jeollanam-do, Gwangju-si OP114583 OP114399 OP153876 OP114572
Deparia pterorachis (outgroup)
CBNU2021-0017-A Korea: Gyeongsangbuk-do, Ulleung Island OP114582 OP114398 OP153875 OP114571

4.3. DNA Extraction, PCR Amplification, and Cloning

Genomic DNA was extracted from the leaves dried with silica gel using a DNeasy
Plant Mini Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol. Based
on maternally inherited chloroplast genomes and biparentally inherited nuclear genomes
in the genus Asplenium, chloroplast rbcL and nuclear pgiC regions were amplified to clar-
ify the parent species, given that the sequences of two putative parent species, namely
A. capillipes and A. tenuicaule, have been previously reported (Figure 1A,B). Nuclear AK1
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and gapCp regions were amplified to confirm the hybrid origin of the new taxon of As-
plenium sp. Primer sets for rbcL, 1FN [40], and 1361R [41], AK1, AK_4F, and AK_R2 [42],
gapCp, ESGAPCP8F1, and ESGAPCP11R1 [43], and pgiC, 14F, and 16R [44] were used for
the PCR amplification. However, given that the pgiC amplification was not successful for
Asplenium sp., the new primer set, 14F2 (5′-GAGTGTTTGGAATGTTTCCTTC-3′) and 16R3
(5′-GAGGAATGCCATCTATTGAA-3′), was newly designed for this study. The reaction
mixture comprised 10 µL of AccuPower® PCR Premix (Bioneer, Daejeon, Korea), 1 µL of
DNA, 1 µL of each primer (10 pM), and distilled water to a total volume of 20 µL. The PCR
conditions were as follows: a total of 5 min denaturation at 95 ◦C, followed by 30 cycles
at 95 ◦C for 45 s, 53 ◦C for 20 s, 72 ◦C for 60 s, followed by a final extension step at 72 ◦C
for 10 min. Except for nuclear markers of Asplenium sp., the PCR products were purified
using Expin™ PCR SV (GeneAll, Seoul, Korea) and sequenced using the AB1 3730xl System
(Macrogen, Seoul, Korea). The PCR products of nuclear markers of Asplenium sp. were
purified using the PureLink™ PCR purification kit (Invitrogen, Waltham, MA, USA) to
remove primer dimers and small fragments of less than 300 bp. To obtain accurate se-
quences of nuclear markers, cloning was performed using the TOPO™ TA Cloning™ Kit
(Invitrogen) following the manufacturer’s protocol. At least 10 colonies were randomly
selected from each plate and grown in liquid medium. Plasmids were extracted using
Exprep™ Plasmid SV (GeneAll) and sequenced with a universal M13 primer using the AB1
3730xl System (Macrogen).

4.4. Sequence Alignments and Phylogenetic Analyses

Each of the cloned nuclear genes was divided into two types, and a consensus
sequence of each type was generated with a threshold of 50% in Geneious Prime soft-
ware (ver. 2022.0.2) [45]. One chloroplast and three nuclear genes were aligned using
MAFFT [46] and MUSCLE [47], respectively. For the phylogenetic analysis, the best-fit
model of nucleotide substitution for each dataset was determined using ModelFinder [48]
and a maximum likelihood analysis was performed using IQ-Tree [49] with 1000 ultrafast
bootstraps [50].

4.5. Genome Size Measurement

The genome sizes of Asplenium sp. and A. tenuicaule were measured using a CyFlow®

Ploidy Analyzer (Sysmex-Partec, Munster, Germany). Tetraploid Solanum tuberosum L.,
1C = 1.82 pg [51], was used as the internal standard. Young fresh leaf tissues of the two
Asplenium species and S. tuberosum were collected from living samples. They were washed
using distilled water and chopped with razor blades in 500 µL of CyStain UV Precise P
nuclei isolation buffer (Sysmex-Partec). After 10 min of incubation on ice, the suspension
was then filtered through a nonsterile CellTrics® 30 µm filter and stained using 2 mL of UV
Precise P staining buffer (Sysmex-Partec) containing DAPI. The stained suspension was
loaded onto a flow cytometer, and the genome size was measured.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11223089/s1, Figure S1: Comparison of pgiC gene sequence
after editing the common Indels and outgroups in the original alignment among the Asplenium sp.
and its putative parental species; Figure S2: Germinated spores of A. pseudocapillipes in the 1/2 MS
medium 45 days after sowing. Scale bar = 0.1 mm.
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