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Abstract: Blackcurrant reversion virus (BRV) is the most destructive mite-transmitted pathogen
in blackcurrants. The understanding of the resistance to BRV is limited, hindering and delaying
the selection process. To identify the resistance (R) gene for BRV resistance, a gene expression
analysis based on de novo blackcurrant cv. Aldoniai comparative transcriptome analysis (mock-
and BRV-inoculated samples at 2 and 4 days post-inoculation (dpi)) was performed. In this study,
111 annotated clusters associated with pathogenesis according to conservative R gene domains were
identified. In virus-infected samples, only Cluster-12591.33361 showed significant expression at 4 dpi.
The expression profiles of this cluster were significantly associated with the presence of BRV particles
in plant tissues, making it a putative R gene in the dominant resistance strategy in the BRV–Ribes
nigrum interaction. The newly identified gene R.nigrum_R belongs to the CC-NBS-LRR class and has
63.9% identity with RPM1 in Populus spp. This study provides new insights on dominant putative
R genes related to resistance to BRV in R. nigrum, which could aid targeted research and genetic
improvement in breeding programs of blackcurrants.

Keywords: blackcurrant reversion virus; dominant resistance; R gene; unigene

1. Introduction

Biotechnological and plant genetic research approaches have helped to elucidate
the mechanisms of the immune response against viruses in plants. Several evolutionary
strategies in response to viral infection have been identified in plants. Resistance induced
by dominant and recessive resistance (R) genes, as well as hormone-mediated resistance
and RNA interference pathways, has been analyzed [1]. Many dominant R genes belonging
to the nucleotide-binding site leucine-rich repeat family (encoding proteins NBS-LRR) have
been identified in plants. Intracellular NBS-LRR proteins are divided into two classes:
TIR-NBS-LRR (TNL) proteins containing the Toll/Interleukin-1 (TIR) receptor domain
and non-TIR-NBS-LRR (non-TNL) proteins that lack the TIR domain. Members of the
non-TNL class usually contain a predicted coiled-coil (CC) domain and belong to the
CC-NBS-LRR (CNL) class [2,3]. It is known that TNLs can provide resistance to diseases
in solanaceous and brassicaceous species, while CNLs are more common in dicotyledon
and cereal crops [4,5]. Studies have revealed insights into defense responses to viruses in
maize [6], tomato [7], potato [8], tobacco [9], etc.

Blackcurrant reversion virus (BRV) (Nepovirus of group C) is spread through the vector
Cecidophyopsis spp. and causes blackcurrant reversion disease (BRD) during intracellular
interaction with host plants [10–13]. The combination of pest–pathogen–disease causes
substantial losses in yield up to 100% [10,14]. Thus, natural plant resistance may prove
to be an effective and environmentally friendly method to control BRV spread. Cultivars
with genetically determined resistance are the best option for blackcurrant breeding and
plantation use. Resistance to the BRV biological vector and, hypothetically, to BRV is
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known to be inherited from several Ribes spp. through dominant genes [15–17]. However,
the genetic control of BRV resistance, including specific genes, is not entirely known. An
effective in vitro inoculation method [18] and comparative transcriptome analysis of cv.
Aldoniai, having BRV resistance inherited from R. dikuscha, were performed in 2022 [19].
These studies allowed a transcriptome-wide study to find putative R genes in blackcurrants.

This study provides a theoretical foundation for the further screening of putative
R genes in response to BRV infection. Selected genes were characterized based on annota-
tions of functional domains and motifs, as well as expression levels by quantitative real-time
PCR (qRT-PCR). This investigation enriches our knowledge of possible genes related to
dominant resistance to BRV and lays the groundwork for future crop improvement in Ribes
breeding programs.

2. Results
2.1. Conserved Domain and Motif Analysis of Putative R Genes in R. nigrum

The availability of the R. nigrum cv. Aldoniai transcriptome made it possible to
identify and characterize putative R genes associated with resistance to BRV. Initially, all
48,966 identified unigenes in blackcurrants were scanned by selecting sequences related to
pathogenesis and disease resistance, which resulted in the identification of 111 candidate
proteins (Table S1). The sorting analysis confirmed the presence of 111 unigenes containing
at least one conserved domain specific to R genes: CC, TIR, NBS, and LRR. Figure 1 shows
blackcurrant sequences classified into seven different groups based on conserved domains.
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Figure 1. Distribution of predicted conserved domains in 111 unigenes related to BRV pathogenesis
in R. nigrum cv. Aldoniai. The length of the sequences of amino acids is indicated in brackets, and
amino acid sequences of unigenes are provided in Table S1.
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This analysis revealed that 40% of sequences had highly conserved NBS domains.
These NBS-encoding unigenes were categorized into four groups according to the presence
of conserved domains: NBS (13%), NBS-LRR (13%), CC-NBS (5%), and CC-NBS-LRR
(9%). Moreover, more than half of unigenes had partial sequences (a problem due to de
novo transcriptome assembly without a reference genome) and encoded only one domain
from the 5′ or 3′ end of the resistance gene: LRR (51%) and CC (3%). In addition, 6% of
unigenes that lacked the NBS domain were found to contain both TIR and LRR domains.
Generally, R genes are characterized by the presence of three domains in their sequences:
a variable amino-terminal domain, a central NBS domain, and a carboxy-terminal LRR
domain. Thus, from the identified R gene candidates in R. nigrum, the complete gene
structure was identified in 10 sequences belonging to the CC-NBS-LRR class.

Furthermore, the conserved motifs present in the selected 111 protein sequences
were analyzed using the MEME suite (Figure 2 and Figure S1). A total of 16 conserved
motifs were identified, each consisting of ≥ 15 amino acids. According to the Conserved
Domain Database (CDD), eight motifs were identical to conserved domains: five motifs
(Nos. 1, 4, 5, 10, and 13) were specific to the NBS domain, motifs No. 6 and 7 were
identical to the LRR domain, and No. 8 was identical to the CC domain. Interestingly, in
addition to known conserved motifs, our analysis identified eight motifs that had not been
identified according to the CDD database, so they are unique to blackcurrants. Ribes spp.
are systemically distinct from other plant species, which may have led to mutations in
motifs compared to other plants. For example, unigenes containing LRR domains had
unidentified (in statistical analysis) leucine-rich repeat Nos. 2, 9, and 16, while unigenes
with the NBS domain had motif Nos. 12, 14, and 15 (Figures 1 and 2). Thus, these motifs
are likely to be specific to the LRR or NBS domains, respectively, in blackcurrants.
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Figure 2. Sequence logos of 16 conserved motifs identified in 111 putative R genes of R. nigrum. Sequence
logo representation was generated from multiple alignments with MEME software. CDD—Conserved
Domain Database; NBS—nucleotide-binding site; LRR—leucine-rich repeat; CC—coiled-coil domain;
Uni—unidentified motif, unique to R. nigrum cv. Aldoniai.

2.2. Expression Patterns of Unigenes in Response to BRV Infection

The selected unigenes were differentially expressed during the entire period of the
experiment. The statistical analysis of the FPKM values of 111 clusters reduced the number
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to 14 statistically significant unigenes in SAM graphs—8 unigenes at 2 dpi and 6 at 4 dpi
(Figure 3A,B).

1 
 

 

Figure 3. Statistical analysis of 111 unigenes according to FPKM values related to BRV resistance
in R. nigrum cv. Aldoniai at 2 dpi (A) and 4 dpi (B). The SAM graphs were generated by MeV
v. 4.8 package. Red dots indicate up-regulated genes, and green dot indicate down-regulated genes.

To visualize the differentially expressed genes in response to a virus attack, a selected
set of genes are presented in heatmaps. Figure 4 represents only the 14 significant expression
patterns according to FPKM values among mock-inoculated and BRV-inoculated plants
at 2 and 4 dpi (Figure 4). On the second day after BRV infection, five unigenes (Cluster-
12591.21693, Cluster-12591.20650, Cluster-12591.12984, Cluster-12591.11844, and Cluster-
12591.21347) were significantly up-regulated, while three unigenes (Cluster-12591.19111,
Cluster-12591.17963, and Cluster-12591.3030) were down-regulated. At 4 dpi, the number
of reliably expressed genes decreased to six (Cluster-12591.17815, Cluster-12591.15361,
Cluster-12591.17642, Cluster-12591.33361, Cluster-12591.27284, and Cluster-12591.18471),
all of which showed up-regulated expression patterns. Only three unigenes with the
structure CC-NBS-LRR (Cluster-12591.17963 and Cluster-12591.3030 were down-regulated
at 2 dpi, and Cluster-12591.33361 was up-regulated at 4 dpi) were found. Other unigenes
were partial genes comprising one or two conserved domains.
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Figure 4. Heatmaps of 8 significantly expressed genes at 2 dpi (A) and 6 significantly expressed genes
at 4 dpi (B). C_2 and C_4—the average of three biological replicates of mock-inoculated plants at
2 and 4 dpi, respectively. V_2 and V_4—the average of three biological replicates of BRV-inoculated
plants at 2 and 4 dpi, respectively. In the scale bar, green color indicates low (−1.5) gene expression
values, and red color indicates high expression (1.5).

The origins of the 14 significantly expressed genes were identified using the NCBI Blast
database (Table 1). The majority of them showed the highest identity with disease resistance
protein family RGAs. In addition, representatives from At1g12280, RPM1, RPP13, and TVM
resistance protein families were found in blackcurrants. The highest matching percent (70%) was
detected between Cluster-12591.27284 and TMV resistance protein N in Pyrus x bretschneideri.
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Table 1. Identification and log2FC expression values of significantly expressed R. nigrum genes.

Cluster Accession No. and Gene Name
According to NCBI Blast Gene Identity, % log2FC

(V_2vsC_2)
log2FC

(V_4vsC_4)

Cluster-12591.21693 XP_028108391_RGA4 [Camellia sinensis] 54.01 0.41 −0.48
Cluster-12591.20650 KAB1227433_RGA4 [Morella rubra] 54.01 0.93 −0.22
Cluster-12591.12984 XP_021660273_RGA1 [Hevea brasiliensis] 52.83 0.50 0.01
Cluster-12591.11844 XP_002526758_RGA4 [Ricinus communis] 60.00 0.77 0.30

Cluster-12591.21347 XP_022735032_At1g12280
[Durio zibethinus] 63.33 0.60 −0.79

Cluster-12591.19111 XP_034689147.1_RGA3 [Vitis riparia] 52.32 −0.80 −0.40
Cluster-12591.17963 XP_030942204.1_RPM1 [Quercus lobata] 51.28 −0.45 −0.42
Cluster-12591.3030 XP_002281054.1_RPP13 [Vitis vinifera] 50.63 −0.71 0.03

Cluster-12591.17815 XP_023923535.1_TMV resistance protein N
[Quercus suber] 54.31 0.06 0.40

Cluster-12591.15361 KAB1200960.1_RGA3 [Morella rubra] 52.03 −0.72 0.81
Cluster-12591.17642 XP_015865709.2_RGA1 [Ziziphus jujuba] 34.23 0.24 0.50

Cluster-12591.33361 XP_002324939.1_RPM1
[Populus trichocarpa] 63.88 −0.40 1.09

Cluster-12591.27284 XP_009335301.1_TMV resistance protein N
[Pyrus x bretschneideri] 70.00 0.07 0.43

Cluster-12591.18471 XP_021663085.1_RGA3 [Hevea brasiliensis] 58.05 0.04 0.49

In accordance with the FPKM value transformed to log2FC during the entire period
of the experiment (2 and 4 dpi), genes were divided into two groups: those having an in-
creasing expression pattern (Cluster-12591.19111, Cluster-12591.17963, Cluster-12591.3030,
Cluster-12591.17815, Cluster-12591.15361, Cluster-12591.17642, Cluster-12591.33361, Cluster-
12591.27284, and Cluster-12591.18471) and those having a decreasing expression pattern
(Cluster-12591.21693, Cluster-12591.20650, Cluster-12591.12984, Cluster-12591.11844, and
Cluster-12591.21347). Of all of these genes, only Cluster-12591.33361 with the structure
CC-NBS-LRR plus six motifs unique to R. nigrum (Figure S1) showed significant expression
at 4 dpi (log2FC varied from −0.40 to 1.09), making it a potential candidate for an R gene
in blackcurrant cv. Aldoniai (Table 1 and Figure 5A).
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Figure 5. Gene expression in Avr-R resistance system of blackcurrant cv. Aldoniai based on RNA-seq
(A) and qRT-PCR (B). Control (mock-inoculated at 2–10 dpi) samples C_2–C_10; treated (BRV-
inoculated at 2–10 dpi) samples V_2–V_10; M—mass ruler, NC—negative control in the agarose
gel, *—treatment with positive qRT-PCR reaction of BRV. Significant expression level log2FC > 1 in
heatmap (A); significant expression level 2−∆∆C

T > 1 is separated by a red line in the bar chart (B).
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2.3. Expression and Phylogenetic Analyses of Putative R Gene to BRV Resistance

Based on the previous analysis, Cluster-12591.33361 was identified as a representative
of Resistance to Pseudomonas syringae pv. maculicola 1 (RPM1) and was selected as the
potential resistance candidate to BRV in R. nigrum cv. Aldoniai (Figure 5). According to
transcriptome analysis data, the expression levels of Cluster 12591.33361 were detected
at 2 and 4 dpi (log2FC −0.40 and 1.09, respectively). The avirulence (Avr) factor for
RPM1 is RNA1 of BRV (log2FC 12.85 and 11.29 at 2 and 4 dpi, respectively) (Figure 5A).
To elucidate the presence and function of this gene in later periods (2–10 dpi) of BRV
infection, an expression profile analysis via qRT-PCR was performed in BRV-resistant cv.
Aldoniai and BRV-susceptible cv. Ben Tirran. In the BRV-susceptible genotype, the virus
was detected during the entire period of the experiment, and the expression levels of
R.nigrum_R compared to the control were not determined (data not presented). Meanwhile,
in the resistant genotype, viral infection was detected until 6 dpi (Figure 5B). The relative
expression levels of R.nigrum_R directly correlated with the presence of BRV in microshoots
and were significantly higher at 2, 4, and 6 dpi in comparison to mock-inoculated plants of
R. nigrum cv. Aldoniai. When BRV was no longer detected in microshoots (8 and 10 dpi), the
expression levels of R.nigrum_R decreased. The expression levels of putative R.nigrum_R
in different RNA-seq and qRT-PCR experiments were not consistent in cv. Aldoniai at
the beginning of the infection (at 2 dpi). This slight difference might be due to errors in
different inoculation experiments.

The phylogenetic relationships and genetic polymorphism of the RPM1 family were
inferred by constructing a phylogenetic tree using full-length amino acid sequences of
RPM1 homologs from different plant species together with Cluster-12591.33361 identified
in the transcriptome of cv. Aldoniai (Figure 6). Two reliably distinct branches at 93% and
100% bootstraps separated it from the Arabidopsis thaliana RPM1 homolog. The sequence
detected in R. nigrum was grouped into the phylogenetic dendrogram’s second branch
with RPM1 homologs from Populus spp., Ricinus communis, Citrus sinensis, Camellia sinensis,
and Impatiens glandulifera. In this branch, RPM1 homologs were genetically diverse and
reliably separated into several sub-branches, which shows their uniqueness. The RPM1
homolog of R. nigrum, showing a clear correlation with BRV resistance, was in a separate
phylogenetic branch at 84% bootstrap and showed high genetic diversity from resistance
genes to different pathogens in other plants.
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3. Discussion

The pathogenic complex of the virus (BRV), its biological vector (the gall mite), and
blackcurrant reversion disease cause a significant or complete reduction in berries’ yield
and quality. Therefore, a prime goal of blackcurrant breeders is to develop BRV-resistant
cultivars. To achieve this goal, it is necessary to identify genes that determine resistance to
this harmful pathogen. Numerous genome-wide investigations of the NBS-encoding gene
family have been performed in plants, including Arabidopsis [5], blueberry [20], apple [21],
wheat [22], cabbage [23], etc., and have demonstrated their importance in searching for
specific R genes to various pathogens.

Dominant resistance through the R gene plays an important role in plant defense
against viral pathogens during the first infection period [1]. However, to date, no research
has been conducted on such a gene family in blackcurrant, an important horticultural plant
that is grown in temperate climate zones of Europe, Asia, New Zealand, Australia, and
North America. In this study, a transcriptome-wide search uncovered 111 unigenes related
to pathogenesis in R. nigrum, which provides a useful database of potential resistance genes
for further testing in the development of marker-assisted strategies for the selection of
BRV resistance (Figure 1). For example, 16 resistance genes of the TIR-NBS-LRR class were
found to be involved in resistance to turnip mosaic virus in cabbage [24]. The NBS domain
is responsible for the binding and hydrolysis of ATPases during plant disease resistance.
Meanwhile, the LRR domain is involved in protein–protein interactions and is important in
the recognition of pathogen-derived avirulence factors [25]. Multiple studies of molecular
and functional analyses of plant genetics have shown that R genes may contain sequences
related to functions at the amino acid level but not identical at the nucleic acid level [26].
In this study, we identified not only the conserved domains CC, TIR, NBS, and LRR,
characteristic of R genes, in blackcurrant unigenes (Figure 1) but also unique functional
sequences. Eight unique motifs in amino acids among resistant unigenes in R. nigrum were
identified (Figures 2 and S1), and several of them are putative NBS or LRR domains. An
explanation for this is that the evolutionarily conserved LRR domain is associated with
innate immunity in many proteins, not only in Plantae but also in Animalia [27].

Fourteen candidate unigenes with significant expression were identified as responding
to BRV infection (Figure 3). Three unigenes (Cluster-12591.17963, Cluster-12591.3030, and
Cluster-12591.33361) with complete R gene structures showed expression in the de novo
assembled transcriptome of BRV-resistant cv. Aldoniai (Figure 4). According to expression
data, only Cluster-12591.33361 had up-regulated expression at 4 dpi and was used for
deeper analysis as a putative R gene for BRV, referred to as R.nigrum_R. The sequence
of this gene at the amino acid level (Table S1) was identified as a homolog to the disease
resistance protein RPM1 in R. nigrum and had 63.88% identity with RPM1 in Populus
trichocarpa [28] (Figure 6). Based on the structural features, RPM1 encodes a CC domain at
the N-terminus, a central NBS domain, and a C-terminal LRR [29] and is a typical member
of the CC-NBS-LRR class; our studies also confirmed this fact (Figure 1). However, putative
molecular motifs/functional LRR domains unique in the R.nigrum_R gene have also been
identified and result in the genetic diversity of blackcurrants in comparison to other plants.

Dual or multiple specificities of R genes can be explained by the guard hypothe-
sis [30] that an R gene guards a single avirulence factor that is modified by multiple
effectors. One of the examples is RPM1, which recognizes different effectors of the same
bacteria [31]. In Arabidopsis, RPM1 confers resistance against the bacterium Pseudomonas
syringae pv. maculicola expressing AvrRpm1 or AvrB. Pathogen avirulence effectors induce
RIN4 (RPM1-interacting protein 4) phosphorylation, which is required for the activation of
the RPM1-induced defense response, leading to a rapid hypersensitive response (HR) and
the restriction of pathogen growth [32]. The increasing expression patterns of RPM1 have
been studied not only in response to bacteria [33] but also to fungi [34] and viruses [35].
In this study, qRT-PCR was used to establish the expression profiles of RPM1 during BRV
infection in blackcurrants. We determined that the expression of RPM1 directly correlated
with the presence of the virus in BRV-resistant plants (Figure 5A). BRV can be monitored
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by PCR in inoculated microshoots of cv. Aldoniai up to the 6–8 dpi period. The virus can
persist in individual microshoots of this BRV-resistant cultivar for up to 8 dpi, but in many
cases, it lasts for up to 6 dpi using the inoculation method under in vitro conditions [18]. In
this study, BRV infection was detected in pooled samples until 6 dpi (Figure 5B). Dominant
resistance determined by the RPM1 homolog in blackcurrants (Cluster-12591.33361), re-
ferred to as R.nigrum_R, relies on the interaction between the avirulence factor RNA1 of BRV
(Cluster-12591.29271) [19] and a specific R gene product CC-NBS-LRR, which specifically
recognizes the Avr factor in the Avr-R system (Figure 5A). This dominant resistance mecha-
nism was effective six days after the virus’s mechanical transmission into the blackcurrant
microshoots. In parallel, phytohormone-mediated resistance induced by salicylic acid,
jasmonic acid, auxin, and ethylene synthesis in cv. Aldoniai (a virus- and gall-mite-resistant
interspecific hybrid) was also observed due to BRV infection [19].

4. Materials and Methods
4.1. Prediction of Putative R Genes in Transcriptome of R. nigrum cv. Aldoniai

RNA transcripts of R. nigrum cv. Aldoniai were used for the prediction of R gene
candidates for BRV resistance in blackcurrants (raw data are available on BioProject PR-
JNA797914 in the NCBI database). Comparative analysis of the de novo assembled tran-
scriptome of mock-inoculated (control) and BRV-inoculated (treatment) microshoots at
2 and 4 days post-inoculation (dpi) was performed [19]. From 48,966 functionally anno-
tated unigenes identified by NCBI Blast and the Conserved Domain Database (CDD) [36],
specific domains (TIR, CC, NBS, and LRR) associated with pathogenesis-related or disease-
resistant genes were detected in 113 unigenes. This set of sequences was further filtered by
applying a cut-off of the FPKM (fragments per kilobase of transcript per million mapped
reads) expression value of 1.0. Sequences with lower expression values were discarded;
111 sequences were left.

The distribution of putative R genes according to the conserved domain was deter-
mined using Krona2 [37]. The structural diversity of specific motifs in unigenes was per-
formed using Multiple Expectation Maximization for Motif Elicitation (MEME) suite 5.4.1,
choosing 16 motifs to find with an E-value < 1 × 10−10 [38]. A SAM (significant analysis
for microarrays) graph was constructed according to two-class unpaired FPKM data of
unigenes using value parameters by the method in [39], the K-nearest neighbors (10) im-
puter with Multiple Experiment Viewer (MeV v 4.8) package [40], and an adjusted p-value
of < 0.05. Heatmaps (HMs) of the unigenes were constructed using transcriptome data us-
ing the R packet; the FPKM values were transformed to log2FoldChange (log2FC). Changes
in expression levels were also evaluated by log2FC values; log2FC ≥ 1 was considered to
show significant expression.

4.2. Expression and Phylogenetic Analyses of R.nigrum_R

In vitro–propagated microshoots of R. nigrum cvs. Aldoniai and Ben Tirran were used
in the inoculation assay and the expression of R.nigrum_R. Inoculum preparation, plant
material preparation, and the inoculation assay with BRV through roots were performed
identically to the methods described by Juškytė et al. [18]. Inoculated plants were cultivated
for 2, 4, 6, 8, and 10 dpi. Mock- and BRV-inoculated microshoots in 3 replicates were stored
in liquid nitrogen until RNA extraction. Total RNAs were extracted using the GeneJET Plant
RNA Purification Mini Kit according to the manufacturer’s protocol (Thermo Scientific,
Vilnius, Lithuania). cDNAs were synthesized with the Maxima H Minus First Strand cDNA
Synthesis Kit using oligo d (T)20 primers and 50 ng of RNA according to the manufacturer’s
protocol (Thermo Scientific, Vilnius, Lithuania). cDNAs were stored at −20 ◦C until
the qRT-PCR.

The primers R.nigrum_R_F 5′atcaccttaccgaatgcatgttt3′ and R.nigrum_R_R 5′ctcgagaaga-
taaagcagctcag3′, Actin_F 5′tcaactatgttccctggtattgc3′, and Actin_R 5′ctcccttggaaatccacatctg’3
were designed with the Primer3Plus program, version 3.2.6 (Cambridge, MA, USA) [41].
Primers suggested by Lemmetty et al. [42] were used for BRV detection. The qRT-PCR reaction
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was performed in a 20 µL reaction volume containing 10 µL of MyTaq Mix 2x (Bioline GmbH,
Luckenwalde, Germany), 2 µL of 20x EvaGreen dye (Biotium, Inc., Fremont, CA, USA), 1 µL of
cDNA, and 10 pmol of each forward and reverse primer. The analysis was carried out on three
biological replicates on a CFX 96 Deep Well Real-Time System (Bio-Rad, Hercules, CA, USA)
under the following conditions: 95 ◦C for 3 min; 40 cycles of 95 ◦C for 20 s, 58 ◦C for 20 s, and
72 ◦C for 30 s; 72 ◦C for 5 min; and step 95 ◦C–65 ◦C for 20 min was inserted for identification
of melting curve.

Relative expression was assessed by the 2−∆∆C
T method [43] using Actin as the internal

control gene. Means and SEM (standard error of the mean) from independent experiments
were subjected to STAT-ENG. The visualization of specific fragments (992 bp of R.nigrum_R,
175 bp of Actin, and 481 bp for BRV detection (marked as an asterisk in Figure 5B)) was
performed in 1.2% agarose gel using ethidium bromide staining and UV illumination.

Phylogenetic analysis of the R. nigrum RPM1 homolog and 16 homologous sequences
in other plants (NCBI database) was performed using the maximum likelihood method
implemented in the PhyML program; each branch was assessed by bootstrap analysis with
100 replicates [44].

5. Conclusions

The present study provides comprehensive insights into 111 transcriptome-wide virus-
responsive unigenes in R. nigrum. These genes, especially Cluster-12591.33361, referred to
as R.nigrum_R, and their verification should be the focus of subsequent work on resistance
genetics, thereby providing opportunities for improving BRV resistance. In addition, they
could be used as candidates for engineering BRV resistance in R. nigrum and creating
BRV-resistant cultivars.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11223137/s1. Figure S1: Conserved motifs in 111 unigenes
of R. nigrum cv. Aldoniai; Table S1: Amino acid sequences of putative R genes in transcriptome of
R. nigrum cv. Aldoniai.

Author Contributions: Conceptualization, A.D.J. and I.M.; methodology, A.D.J.; software, A.D.J.;
investigation, A.D.J. and I.M.; resources, A.D.J. and V.S.; data curation, I.M.; writing—original draft
preparation, A.D.J.; writing—review and editing, I.M. and V.S.; visualization, I.M.; supervision, V.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nicaise, V. Crop immunity against viruses: Outcomes and future challenges. Front. Plant Sci. 2014, 5, 660. [CrossRef] [PubMed]
2. Moffett, P. Mechanisms of recognition in dominant R gene mediated resistance. Adv. Virus Res. 2009, 75, 1–33. [PubMed]
3. Marone, D.; Russo, M.A.; Laido, G.; De Leonardis, A.M.; Mastrangelo, A.M. Plant nucleotide binding site-leucine-rich repeat

(NBS-LRR) genes: Active guardians in host defense responses. Int. J. Mol. Sci. 2013, 14, 7302–7326. [CrossRef] [PubMed]
4. Pan, Q.; Wendel, J.; Fluhr, R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes.

J. Mol. Evol. 2000, 50, 203–213. [CrossRef] [PubMed]
5. Meyers, B.C.; Kozik, A.; Griego, A.; Kuang, H.; Michelmore, R.W. Genome-wide analysis of NBS-LRR-encoding genes in

Arabidopsis. Plant Cell 2003, 15, 809–834. [CrossRef]
6. Zhou, Y.; Xu, Z.; Duan, C.; Chen, Y.; Meng, Q.; Wu, J.; Hao, Z.; Wang, Z.; Li, M.; Yong, H.; et al. Dual transcriptome analysis

reveals insights into the response to Rice black-streaked dwarf virus in maize. J. Exp. Bot. 2016, 67, 4593–4609. [CrossRef]
7. Chen, T.; Lv, Y.; Zhao, T.; Li, N.; Yang, Y.; Yu, W.; He, X.; Liu, T.; Zhang, B. Comparative transcriptome profiling of a resistant

vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS ONE 2013,
8, e80816. [CrossRef]

https://www.mdpi.com/article/10.3390/plants11223137/s1
https://www.mdpi.com/article/10.3390/plants11223137/s1
http://doi.org/10.3389/fpls.2014.00660
http://www.ncbi.nlm.nih.gov/pubmed/25484888
http://www.ncbi.nlm.nih.gov/pubmed/20109662
http://doi.org/10.3390/ijms14047302
http://www.ncbi.nlm.nih.gov/pubmed/23549266
http://doi.org/10.1007/s002399910023
http://www.ncbi.nlm.nih.gov/pubmed/10754062
http://doi.org/10.1105/tpc.009308
http://doi.org/10.1093/jxb/erw244
http://doi.org/10.1371/journal.pone.0080816


Plants 2022, 11, 3137 10 of 11

8. Goyer, A.; Hamlin, L.; Crosslin, J.M.; Buchanan, A.; Chang, J.H. RNA-Seq analysis of resistant and susceptible potato varieties
during the early stages of potato virus Y infection. BMC Genom. 2015, 16, 1–13. [CrossRef]

9. Liu, D.; Cheng, Y.; Gong, M.; Zhao, Q.; Jiang, C.; Cheng, L.; Ren, M.; Wang, Y.; Yang, A. Comparative transcriptome analysis
reveals differential gene expression in resistant and susceptible tobacco cultivars in response to infection by cucumber mosaic
virus. Crop J. 2019, 7, 307–321. [CrossRef]

10. Jones, A.T. Black currant reversion disease–the probable causal agent, eriophyid mite vectors, epidemiology and prospects for
control. Virus Res. 2000, 71, 71–84. [CrossRef]

11. Susi, P. Black currant reversion virus, a mite-transmitted nepovirus. Mol. Plant Pathol. 2004, 5, 167–173. [CrossRef] [PubMed]
12. Špak, J.; Koloniuk, I.; Tzanetakis, I.E. Graft-transmissible diseases of Ribes–pathogens, impact, and control. Plant Dis. 2021,

105, 242–250. [CrossRef] [PubMed]
13. Stewart, L.R. Sequiviruses and Waikaviruses (Secoviridae). In Encyclopedia of Virology, 4th ed.; Bamford, D.H., Zuckerman, M., Eds.;

Academic Press: Cambridge, MA, USA, 2021; pp. 703–711. ISBN 978-0-12-814516-6.
14. Łabanowska, B.H.; Pluta, S. Assessment of big bud mite (Cecidophyopsis ribis Westw.) infestation level of blackcurrant genotypes

in the field. J. Fruit Ornam. Plant Res. 2010, 18, 283–295.
15. Anderson, M.M. Resistance to gall mite (Phytoptus ribis Nal.) in the Eucoreosma section of Ribes. Euphytica 1971, 20, 422–426.

[CrossRef]
16. Knight, R.L.; Keep, E.; Briggs, J.B.; Parker, J.H. Transference of resistance to black currant gall mite Cecidophyopsis ribis, from

goosebery to black currant. Ann. Appl. Biol. 1974, 76, 123–130. [CrossRef]
17. Brennan, R.M. Currants and gooseberries. In Temperate Fruit Crop Breeding; Hancock, J.F., Ed.; Springer: Dordrecht, The

Netherlands, 2008; pp. 177–196. [CrossRef]
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