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Abstract: Transport processes across membranes play central roles in any biological system. They
are essential for homeostasis, cell nutrition, and signaling. Fluxes across membranes are governed
by fundamental thermodynamic rules and are influenced by electrical potentials and concentration
gradients. Transmembrane transport processes have been largely studied on single membranes.
However, several important cellular or subcellular structures consist of two closely spaced membranes
that form a membrane sandwich. Such a dual membrane structure results in remarkable properties for
the transport processes that are not present in isolated membranes. At the core of membrane sandwich
properties, a small intermembrane volume is responsible for efficient coupling between the transport
systems at the two otherwise independent membranes. Here, we present the physicochemical
principles of transport coupling at two adjacent membranes and illustrate this concept with three
examples. In the supplementary material, we provide animated PowerPoint presentations that
visualize the relationships. They could be used for teaching purposes, as has already been completed
successfully at the University of Talca.

Keywords: computational cell biology; modelling; nutrient transport; plant biophysics; mathematical
model; plant–fungus interaction

1. Introduction

Transport processes across cellular membranes are essential components of cell biology,
as they are involved in most cellular functions such as energy supply, water fluxes, ion
homeostasis, protein maturation, and cell signaling. In plants, where there is no contractile
organ equivalent to the heart, the motor that dispatches water and nutrients in the organism
is constituted by the activity of proton ATPases and ion transporters at the membranes.
In concerted actions, they drive the bulk flow of xylem sap from the soil solution to the
leaves and of elaborated sap from photosynthetic source organs to heterotrophic sinks. A
detailed mechanistic description of membrane transporters is mandatory to understand
their functions in plant nutrition, plant cell homeostasis, and associated plant growth. It
also requires a description of the biophysical contexts in which these transporters operate.
Of particular importance in this regard is the cell-specific organization of the membranes in
which the transporters are localized, with their subtleties and remarkable structures that
confer the transport system its specificity.
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Transmembrane transport processes are very often studied by simplifying the experi-
mental system to a single membrane. While this simplification is certainly pertinent in a
variety of studies, some plant cell systems exhibit remarkable features that deserve special
attention. These structures can be characterized as membrane sandwiches, consisting of a
small volume compartment between two membranes. Such a dual-membrane system is the
rule rather than the exception in the plant. The zone between two independent membrane
systems can be apoplastic, when two non-connected plasma membranes face each other,
or cytosolic, when one is an organelle membrane. Apoplastic membrane sandwiches are
located at the interface of cells that are not connected by plasmodesmata; for instance, along
the phloem with the sieve element/companion cell (SE/CC) complex, at guard cells, and
in pollen tubes growing in the style. Highly relevant from an agronomical point of view,
membrane sandwiches are also found at the interface between plant cells and cells of a
foreign intruding organism, be it a parasite or a symbiont.

Despite the omnipresence of membrane sandwiches in plants, their dynamic properties
have hardly been explored, a fact surprising enough considering their main importance
in plant development. Only recently have we begun to systematically investigate the
peculiar dynamics of membrane sandwiches using computational cell biology approaches
(for instance, I. Dreyer, the 18th International Workshop on Plant Membrane Biology 2019,
Glasgow, Abstract P1.89). In this article, we summarize some of the findings on this
topic and place them in a physiological context. Although the two adjacent membranes
of a sandwich are electrically isolated from each other, the transport across one of the
membranes is strongly coupled to the transport processes across the other, enabling rapid
and cost-effective transport mechanisms for efficient, coordinated ion, and nutrient fluxes.

2. Fundamental Biophysical Properties of Membrane Sandwiches in Plants

As stated above, a membrane sandwich consists of two adjacent membranes separated
by a relatively small distance. The first examples that come to mind when thinking of such
a structure are certainly the outer and inner membrane of mitochondria, which separate the
6–8 nm wide intermembrane space [1], or the outer and inner membranes of chloroplasts,
with an intermembrane space of about 10–20 nm thick [2], and the thylakoid membrane
as the third membrane in series, or the two membranes of the nuclear envelope that are
separated by 30–50 nm [3]. Additionally, extensions of organelles, called stromules, would
be an example [4]. However, in this article, we do not refer to these examples of very thin
intermembrane spaces where electrostatic interfacial phenomena, such as Guy–Chapman
layers, play a dominant role. Instead, we refer to structures with larger intermembrane
spaces, as they are omnipresent in plants. Transmission electron microscopy pictures
may allow us to conclude that the usual distance between the plasma membranes of two
neighboring cells is about 100–1000 nm [5–7].

To illustrate the effects in these structures, we considered, as an example, a 1 µm2

membrane patch and a distance between the two membranes of 100 nm, as determined for
the peri-arbuscular space in arbuscular mycorrhizal symbiosis [8]. The membrane interface
compartment of this patch has a volume of 0.1 fL (=10−16 L). With such a small volume,
substrate concentrations in the intermediate space can be subject to significant fluctuations
very quickly. For instance, the transport of just 60 molecules/ions per µm2 into or out of this
interface changes the concentration by 1 µM (∆c = N × NA

−1 × Vol−1; with the Avogadro
constant NA, the number of molecules N, and the volume Vol). Taking into account that
plant membrane transporters catalyze the movement of 0.5 × 103 to >106 molecules/s
and considering that they are expressed at densities of 1 to 10 transporters/µm2 [9–11],
abrupt concentration changes in the millimolar range theoretically take from milliseconds
to a few seconds, which would represent one of the fastest physiological processes in
plants. With a bigger cleft, the volume is correspondingly larger and the buffer capacity
of the intermembrane space is proportionally greater. However, even with a distance of
1000 nm, the membrane interface compartment would still have a volume of not more than
1 × 10−15 L per µm2 patch. In this case, the movement of ~6 × 105 ions per µm2 across
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one membrane, which can be mediated by an ion channel in less than a second (~100 fA),
would change the concentration in the intermembrane space by 1 mM. Thus, even in a
general plant physiological context, membrane sandwich effects may not be negligible.

Transport processes at the two separate membranes are ruled by the respective trans-
membrane electrical and chemical gradients. Since the sandwich membranes face the
common intermembrane space, the rapidly adjusting concentrations in the tiny volume
affect, therefore, the chemical gradients across both membranes. Thus, when transporter
activity in one membrane alters the intermembrane concentration, it directly affects the
chemical gradient across the second membrane, thereby coupling transport across one mem-
brane with transport across the other, even though the two are not connected (Figure 1).
This coupling has fundamental implications for transport mechanisms at sandwich mem-
branes, which have different properties than those known from isolated membranes. In
the following, we present the computational cell biological simulation of three examples
of transport across sandwich membranes. To facilitate the understanding, we visualize
the transport processes and their driving forces in animations that can be found in the
Supplementary Materials.
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Figure 1. The basic principle of coupling transport processes at membrane sandwiches. Two adjacent
membranes separate three compartments. In one possible scenario, compartments 1 and 3 are the
cytosol of two neighboring cells, the membranes are the plasma membranes, and compartment 2 is
the apoplast. In another scenario, compartment 1 is the apoplast, compartment 2 the cytosol, and
compartment 3 is an intracellular organelle, such as the vacuole. In this case, membrane 1 is the
plasma membrane and membrane 2 is the organelle membrane (e.g., the tonoplast). (1) The transport
of a molecule across membrane 1 changes the concentrations of that substance in compartments 1
and 2. (2) The altered concentrations, in turn, change the transmembrane concentration gradients not
only at membrane 1 but also at membrane 2, thereby affecting the transport processes even across
that membrane.

3. Example 1: Remote Control of Phloem (Re-)Loading

Long-distance transport in the phloem of vascular plants bridges the distance between
the green tissues where photosynthesis occurs and heterotrophic organs, such as roots,
flowers, and fruits, where the products of photosynthesis are used for growth and/or stor-
age. Via the phloem vasculature, various molecules synthesized in the leaves (e.g., sugars,
amino acids, and other nitrogenous or phosphorus-containing compounds) are transported
alongside inorganic ions from the source tissues, which produce more assimilates than they
need, to the consuming sink tissues [12]. The transport phloem between source and sink
tissues is not a passive transport tube, but a living tissue that also contributes significantly
to the maintenance and growth of the plant axis. During the passage from the source to
the sink along the transport phloem, there is a dynamic release and retrieval of photoas-
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similates and ions between the phloem tissue and the surrounding parenchyma cells [13].
Usually, the underlying membrane transport processes are energized by ATP-consuming
proton pumps. However, retrieval can also be energized by a potassium battery, i.e., the K+

gradient between phloem cytosol and the apoplast [14–16]. Voltage-gated K+ channels of
the AKT2-type [17–22] play a unique role in this process.

Interestingly, the associated transport processes couple in a way that the surround-
ing parenchyma cells can remotely control the reloading of photoassimilates into the
phloem [14] (Figure 2; Animation S1). To illustrate this phenomenon, the different trans-
port processes are presented step by step. Starting from the global steady state of the
system, the H+-ATPase of the parenchyma cell pumps a proton out of the cell (1), which
leaves the membrane voltage more negative inside (2). This additional electrical gradient
drives the influx of a K+ ion into the parenchymal cell via a K+ uptake channel (3), which
in turn relieves the additional electrical gradient (4) but locally causes an additional K+

concentration gradient across the phloem membrane (5). This additional [K+] gradient
drives the efflux of a K+ ion via AKT2-type channels from the phloem into the apoplast,
offsetting the additional [K+] gradient (6). The transmembrane charge transport creates an
additional electrical gradient across the phloem membrane (7), which drives the coupled
H+/S transport via a co-transporter into the phloem (8), thereby dissipating the additional
electrical gradient (9). In this model, the parenchyma cell remotely controls the transport
across the neighboring phloem membrane with the actual objective of K+ uptake. For
didactic reasons, our model shows the processes stepwise. In situ, however, the fluxes
occur simultaneously. The membrane sandwich is a new, unique entity that has dynamic
properties different from isolated membranes.
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text for details. An animated version of this Figure can be found in the Supplementary Materials
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The transporters highlighted here are the main actors of the process. In fact, they are
part of homeostats that adjust the steady-state conditions [23]. The homeostats are not
shown in detail in order to focus on the essentials of the system. A general K-homeostat is
built from K+ channels, K+/H+ symporters, and K+/H+ antiporters, while a general sugar
homeostat is built from H+/sugar co-transporters and sugar diffusion facilitators (SWEETs).
As stated initially, when starting the thought experiment, the different homeostats were in
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a steady state, meaning that all efflux via one transporter was compensated by an influx
via another. Nutrients and ions thus cycle across the respective membranes [23]. The
additional activity of the parenchyma H+-ATPase then breaks out of this balance. It should
be noted that for the membrane sandwich coupling, it does not matter if the parenchyma
cell accumulates K+ via a 1 H+/1 K+ exchange through K+ channels or via a 2 H+/1 K+/H+

exchange through proton-coupled K+ transporters. Nevertheless, the latter would cost the
cell the hydrolysis of two ATP molecules, while the former would cost only one [24].

4. Example 2: Self-Regulatory Nutrient Trading in Mycorrhizal Symbioses

Remote control of transport processes at sandwich membranes was also deduced
from the analysis of the interaction of plants with other organisms, in particular with
fungi. In mycorrhizal associations, fungi colonize the root tissue of a host plant, either
intracellularly, as in arbuscular mycorrhizal fungi (AMF or AM), or extracellularly, as in
ectomycorrhizal fungi (ECM) [25–29]. In both cases, this creates a membrane sandwich
structure of plant plasma membrane and fungal plasma membrane with a tiny apoplastic
interorganismic space. The ECM hyphae stay away from the host cells and establish a
sandwich of 500 nm–1 µm [30]. AM forms a much more intimate structure characterized
by highly branched arbuscules, where fungal and plant membranes are separated by
~80–100 nm [8,31,32]. Plants and fungi exchange nutrients through this symbiotic interface,
with the fungus providing phosphorus (P), nitrogen, and zinc, while the plant supplies
reduced organic molecules (fixed carbon). The membrane interface exhibits particular
dynamic features, as illustrated exemplarily by a minimal model describing the exchange
of a phosphate (P) and a carbon (C) source [33] (Figure 3; Animation S2). One of the limiting
factors for plant growth is the availability of P, while plants produce reduced carbon at
low-cost thanks to photosynthesis. On the other hand, a limiting factor for fungal growth is
the lower availability of carbon, while fungi can absorb P very efficiently. At the interface
between plants and fungi, an exchange takes place, with the plant providing a C source
and exchanging C for P provided by the fungus. The C–P trade is governed by the coupling
of transport across both membranes.
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To illustrate this coupling mechanism, we assume that the system is initially in a
steady state, i.e., there is no net transport across either membrane. In the following, the
different processes are again presented step-by-step. (1) As a result of its photosynthetic
activity, the plant is able to increase the cytosolic C concentration and thereby establish an
additional contribution to the [C] gradient across the plant membrane. (2) This gradient
energizes the coupled H+/C-efflux via a C homeostat (H/C) [23], which renders the electric
potential in the plant cytosol more negative due to the charge transport (3). The increase
[C] in the apoplast causes an additional contribution to the [C] gradient across the fungal
membrane, which in turn drives the coupled influx of H+ and C into the fungus (4). This
transmembrane charge transport establishes an additional contribution to the electric
gradient across the fungal membrane (4), which energizes the coupled 2 H+/1 H2PO4

−

efflux from the fungus to the apoplast via an H+-coupled H2PO4
− transporter (5). The

increased [P] in the apoplast creates an additional contribution to the [P] gradient across the
plant membrane. In addition to the so far not compensated additional electric gradient (3),
the P gradient further energizes the coupled 2 H+/1 H2PO4

− uptake by the plant (6).
As in the model of the phloem sandwich described above, these different steps occur
simultaneously and are not separate for each membrane, pointing to new, unique dynamic
properties of the membrane sandwich.

The presented example of an increase in [C] in the plant can be repeated analogously
with changes of [C] and [P] in the plant and the fungus, with corresponding results. An
increase in [P] in the fungus stimulates a larger P-flux from the fungus to the plant and a
larger C-flux in the reverse direction [33]. The link between the C- and P-fluxes due to the
dynamics of the membrane sandwich explains, straightforwardly, the observation of recip-
rocal rewards that stabilize the symbiosis between the plant and fungus [34]. The minimal
model can also be expanded to approach more complex physiological contexts [28,35]. For
instance, the transport of nitrogen sources can also be included [35]. However, regardless
of how complex the model is designed, the electrochemical coupling of the two membranes
via the concentration in the apoplast and the transmembrane charge transport remains the
fundamental principle that rules the novel features of the membrane sandwich module.

In addition to explaining the basics of the mutual nutrient deal between the plant
and fungus as a self-organizing process, mathematical/thermodynamic modeling of the
transport processes at sandwich membranes enabled further fundamental physiological
insights. With the available experimental techniques, it is extremely difficult to determine
the concentrations in the apoplast of the symbiotic interface. Model calculations suggest
that one consequence of the coupling of the two membranes is nutrient concentrations
that are much lower than generally assumed [33,36]. Indeed, low concentrations in the
apoplast are a prerequisite for the rapid and sensitive perception of changes caused by the
interaction partner, which minimizes the risk of being cheated in the symbiotic interaction.

5. Example 3: A Small Step from Mutualism to Parasitism in
Plant–Fungus Interactions

Fungi can not only interact symbiotically with plants. In many cases, they show
parasitic behavior instead. A typical example is the fungus Ustilago maydis, which causes
corn smut disease and induces tumor formation in its host Zea mays [37]. During infection,
the fungal hyphae meshwork grows selectively along the phloem vessels [38] and creates a
contact zone near the sugar-conducting cells of the sieve element companion cell (SE/CC)
complex. Ustilago maydis hyphae can establish strong interaction with their host, entering
into cells and forming sandwich structures with intramembrane compartments in the range
of 100 nm [39] (Figure 4; Animation S3). Interestingly, models similar to those used to
describe mycorrhizal symbiosis [33,35] (Figure 3) could also be applied here, illustrating
the fine line between mutualism and parasitism [40].
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occur due to a leak in the plant phloem, does not lead to an increased transport capacity 
across the fungal membrane and flooding of the fungal cytosol with osmotically problem-
atic sucrose. 

This example illustrates that organisms have adapted to the special dynamics of 
membrane sandwiches. Interestingly, in wheat, it has been demonstrated how a plant 
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Figure 4. Nutrient transport at plant fungi interfaces in a parasitic relationship. For details, see the
text. An animation illustrating more details of this model system can be found in the Supplementary
Materials (Animation S3).

The symbiotic nutrient exchange between plant and fungus works as long as both
participants are energetically on equal terms [33]. In the root cortex, this is often the case.
In phloem tissue, however, the interaction shows a parasitic nature. Maintaining the [C]
gradient in the phloem is necessary to ensure bulk flow from source to sink, but it represents
an Achilles’ heel that fungi exploit to absorb [C] through a membrane sandwich. Both
the H+-ATPase, as well as a potassium gradient, are needed to energize the membrane
and to allow the establishment of a high [C] gradient [14–16]. However, critical energy
conditions make any structure vulnerable to attack from the outside, which is apparent in
this case as well. The high [C] concentration in the cytosol of the plant does not allow the
[C] concentration in the apoplast to be reduced to very low levels, as is the case, for example,
in mycorrhizal symbiosis. The plant simply does not have the energy resources necessary
in this case to compete with the fungus for the nutrient source. The missing competition
uncouples the different transport processes at the membrane sandwich. At the fungal side
of the sandwich, the [C] gradient across the fungal membrane is much lower than on the
phloem side because the cytosolic [C] of the fungus is not as high as in the phloem. As a
consequence, the fungus benefits from the C source in the apoplast, the absorption of which
is not associated with the delivery of P or other nutrients, as in a symbiotic relationship
(Figure 4). Rather, the fungus must ensure, through special adaptation of its transporter
properties, that C uptake does not occur too rapidly and potentially cause undesirable
osmotic side effects [40] (Animation S3). An unusually high affinity of the fungal H+/sugar
co-transporter guarantees that this transporter operates at its saturation limit. Therefore, a
sudden increase in apoplastic sugar concentration, as can occur due to a leak in the plant
phloem, does not lead to an increased transport capacity across the fungal membrane and
flooding of the fungal cytosol with osmotically problematic sucrose.

This example illustrates that organisms have adapted to the special dynamics of
membrane sandwiches. Interestingly, in wheat, it has been demonstrated how a plant
could counterstrike in this type of arms race. Partial resistance to fungal pathogens was
achieved by mutations in a sugar transporter that render it incapable of transporting
hexoses [41]. This handicap apparently reduces sugar leakage from the phloem and
reduces its availability to fungi.

6. Conclusions and Outlook

Membrane sandwiches are omnipresent in plants. Yet, they seem to have received little
attention. Here, we consider these morphological structures as important for physiological
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functions and demonstrate unique properties emerging from membrane sandwiches. Mean-
while, there are first reports on the communication between the plasma membrane and
the vacuolar membrane [42,43]. However, the far-reaching significance of dual-membrane
systems still does not seem to have been fully recognized. On the contrary, sometimes their
importance seems to be artificially belittled [43]. The conclusion that, for example, the semi-
open nature of the apoplast, i.e., that it is not a tightly closed compartment, may moderate
the interactions between membranes largely neglects the actual geometry of the systems.
A contact zone between two plasma membranes can extend over hundreds of µm2. This
means that the 1 µm2 patch we originally considered in the second paragraph is surrounded
by other identical patches in all directions. At the immediate edges of the contact zone,
dilution effects may well occur. However, these dilution effects are not present in the core
of the contact zone. There, the transport processes across one membrane affect the transport
across the other without significant dissipation. Thus, the contact zones are special and
may be characterized by specifically adapted expression of membrane transporters.

In the intermembrane compartment of the sandwich of two plasma membranes,
charged polymers from the cell wall may interact with ions, especially protons and di-
valent cations, such as Ca2+. A pectin methylesterase enzyme adds charges to pectin
homogalacturonans upon activation and alters the local Ca2+ and H+ buffer capacity of the
compartment [44,45]. With respect to pH, lateral homogeneity and transverse gradients
have been observed, supporting the idea that biochemical activity at the cell wall may
affect the electrochemical properties of the compartment, free ion concentration, and elec-
trodiffusion [46,47]. These findings suggest that the pH of the cell wall reflects not only
the activity of the proton pump and ion channels at the plasma membrane, but also the
buffering capacity of polyanionic cell wall polymers. Consequently, the cell wall has to be
considered as an additional player in the dynamics of membrane sandwiches involving
two plasma membranes.

In this article, we present a few glimpses of the surprising dynamics of membrane
sandwiches in plants. At this stage, we are far from grasping the full extent of such
phenomena. In the future, we all will need to strengthen our efforts in the investigation
of the systemic character of membrane transport processes. Considering those limits, we
offer a new conceptual framework that we applied on the basis of the thermodynamics
of transport. Membrane sandwiches constitute physiological interfaces that control most
plant growth through photo assimilate allocations and plant interaction with pathogens
and symbionts. By consistently following this new path, we may be able to develop
unprecedented strategies to improve salt and drought tolerance, and nutrient use efficiency
of crops.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/plants12010204/s1, Animation S1: Remote Control of Sugar Uptake;
Animation S2: Nutrient Trade in Mycorrhizal Symbiosis; and Animation S3: From symbiosis to
parasitism. This material package was designed specifically to support teaching at the undergraduate
and graduate levels.
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