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Abstract: Sweet corn and waxy corn has a better taste and higher accumulated nutritional value
than regular maize, and is widely planted and popularly consumed throughout the world. Plant
height (PH), ear height (EH), and tassel branch number (TBN) are key plant architecture traits, which
play an important role in improving grain yield in maize. In this study, a genome-wide association
study (GWAS) and genomic prediction analysis were conducted on plant architecture traits of PH,
EH, and TBN in a fresh edible maize population consisting of 190 sweet corn inbred lines and
287 waxy corn inbred lines. Phenotypic data from two locations showed high heritability for all three
traits, with significant differences observed between sweet corn and waxy corn for both PH and
EH. The differences between the three subgroups of sweet corn were not obvious for all three traits.
Population structure and PCA analysis results divided the whole population into three subgroups,
i.e., sweet corn, waxy corn, and the subgroup mixed with sweet and waxy corn. Analysis of GWAS
was conducted with 278,592 SNPs obtained from resequencing data; 184, 45, and 68 significantly
associated SNPs were detected for PH, EH, and TBN, respectively. The phenotypic variance explained
(PVE) values of these significant SNPs ranged from 3.50% to 7.0%. The results of this study lay the
foundation for further understanding the genetic basis of plant architecture traits in sweet corn and
waxy corn. Genomic selection (GS) is a new approach for improving quantitative traits in large plant
breeding populations that uses whole-genome molecular markers. The marker number and marker
quality are essential for the application of GS in maize breeding. GWAS can choose the most related
markers with the traits, so it can be used to improve the predictive accuracy of GS.

Keywords: genome-wide association study; genomic prediction; plant height; ear height; tassel
branch number; sweet corn; waxy corn

1. Introduction

Maize (Zea mays L.) is the most important food, feed, and economic energy crop in the
world. Its production safety plays an extremely important role in ensuring national grain
production, promoting the development of animal husbandry, and improving people’s
quality of life [1,2]. Sweet corn and waxy corn, a new type of fresh edible maize, has been
widely planted. It can be used as the replacement of vegetables or fruits, because it tastes
sweet and juicy as well as having high nutritional value. The content of vitamins, proteins,
lysine, sugar and fat is much higher than that of regular maize [3]. Sweet corn, derived
from the mutation in the relative gene regulating the conversion of sugar to starch inside
the endosperm of the corn kernel, have a favorable flavor and is planted worldwide [4].
Waxy corn, a variety of maize expressing only amylopectin, has been extensively planted
in China and many other countries [5]. Using molecular markers can help to understand
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the genetic diversity of existing sweet corn and waxy corn germplasm resources and using
gene mapping to study plant architecture traits and analyze its genetic basis will help
improve the breeding efficiency of sweet corn and waxy corn and further promote the
research and development of fresh eating corn varieties.

Ideal plant architecture is critical for increasing plant density. The key components of
ideal plant architecture in maize include plant and ear height, leaf angle, ear architecture,
root architecture, and tassel architecture. If PH and EH are too high, planting density,
lodging resistance, and harvest index will be reduced [6]; If it is too low, it will affect the
field permeability, improve the infection rate of diseases and pests and reduce the biological
yield [7]. Tassel traits are an important factor affecting yield formation. Overly developed
or stunted tassel traits will affect maize yield due to excessive energy consumption, shad-
ing, or insufficient pollen supply [8,9]. Considering the continuous population growth,
environmental deterioration, and decrease in arable land, moderately increasing planting
density is the most effective and simple way to achieve high grain yields. However, higher
planting density will promote mutual shading among neighboring plants and limit the effi-
ciency of interception and utilization of light energy of individual plants. The improvement
in plant architecture traits during new variety breeding can be used for increasing grain
yield with the help of biotechnology. Therefore, the genetic basis for breeding high-yield
hybrids needs to be clarified [10]. The PH, EH, and TBN of sweet corn and waxy corn
were different from those of regular maize. With the development of molecular marker
technology and gene mapping methods, the study of these traits using the genetic mapping
method can enhance the role on the genetic basis of these traits, develop molecular markers,
and improve the efficiency of breeding.

Genome-wide association studies (GWAS) are powerful tools for gene mapping in
plants and animals and have been widely used for genetic analysis of complex quantitative
traits in many important crop. In recent years, many scholars have used genome-wide
association study (GWAS) to study the loci that control various traits such as PH, EH [11],
yield [12], disease resistance [13], and grain dehydration [14] in maize. Yin et al. [15], using
the nested association mapping (NAM) population, yielded 264,694 SNPs by genotyping
sequencing. A total of 105 SNPs and 22 QTLs were identified by GWAS, which was
significantly associated with PH and EH. On chromosome 1, GWAS identified a QTL with
high confidence QTL-chr1-ep and performed linkage analysis in two recombinant inbred
line (RIL) populations. Wu et al. [16] used genome-wide association analysis and linkage
analysis to co-locate the inflorescence size trait, which was measured by panicle main
branch number (TBN) and panicle length (TL). A total of 125 QTLs were identified by
linkage analysis (63 for TBN and 62 for TL). In addition, 965 quantitative trait nucleotides
(QTNs) were identified by GWAS. These QTL/QTNs contain 24 known genes cloned from
mutants. In the genetic research of maize traits, scholars generally believe that PH is jointly
controlled by major genes and minor polygenes, and the genetic basis is relatively complex,
which is a typical quantitative trait inheritance [17]. Therefore, studying maize plant
architecture-related traits can not only effectively improve the spatial distribution of maize
plants and promote maize growth, but also support for breeding ideal plant architecture
and molecular marker-assisted selection (MAS). However, virtually no research has been
considered on plant architecture of sweet corn and waxy corn.

Genomic prediction is a method of using markers to predict the genetic value of
complex traits in offspring for selection and breeding [18]. When genomic prediction is used
for selection, it is called genomic selection (GS). GS is a modified form of marker-assisted
selection (MAS) in which the markers from the whole genome are used to estimate the
genomic-estimated breeding value (GEBV). A few studies have been conducted to dissect
the genetic architecture of plant architecture in maize. In maize, GS has been investigated
to improve several major plant architectures, e.g., maize root seedling traits [19], stalk
strength [20], root [21], plant height [22], and husk traits [23]. There is no report on the
study of plant architecture traits of sweet corn and waxy corn by whole genome selection.
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In this study, the association mapping panel comprised sweet corn and waxy corn
inbred lines; a total of 477 accessions was used to perform GWAS analysis to dissect the
genetic basis of the plant architecture traits of PH, EH, and TBN. The main objectives of
the present study are (1) To analyze the genetic diversity of Chinese sweet maize and
waxy maize elite inbred lines; (2) Using GWAS to locate and analyze the genetic basis of
plant architecture traits, locate the significant SNPs controlling the three traits, identify
candidate genes according to GWAS results, and annotate the function of candidate genes;
(3) Estimate the prediction accuracy of genome-wide selection. Genetically analyze the
maize PH, EH, and TBN by a genome-wide association study, find the quantitative trait
loci regulating agronomic traits of maize, and determine a series of candidate genes related
to plant growth. The candidate genes and mutation sites that control PH, EH, and TBN
were mined, and the genetic evolution rules of key loci were analyzed. It provides theoret-
ical guidance for further developing new germplasm resources and improving varieties
more effectively.

2. Results
2.1. Phenotypic Data Analysis Results

The phenotypic data analysis results of all the target traits of PH, EH and TBN are
shown in Table 1. Broad variations were observed for all the three traits in sweet corn
and waxy corn. The coefficients of variation (CV) in PH, EH and TBN were 0.17 to
0.23, from 0.33 to 0.36 and from 0.37 to 0.45, respectively. The PH ranged from 63 to
254 cm, the EH ranged from 10–134, and the TBN ranged from 1–26; the absolute values
of skewness and kurtosis of PH, EH and TBN were less than 1, indicating a small degree
of bias. The frequency distribution of the phenotypes for PH, EH and TBN exhibited
approximately near-normal distributions (Figure 1). The heritability for all traits were high
and greater than 0.96 in single environment condition. The heritability for PH, EH and
TBN in multiple environments analyses were 0.75, 0.79, and 0.72, respectively. Both the
genotype and genotype × environment interaction variances were extremely significant
(p ≤ 0.001) (Table 1).

Table 1. Descriptive statistics, variance components, and broad-sense heritability (H2) response to
PH, EH, TBN in the population.

Trait Environment Range Mean Skewness Kurtosis CV (%)
Variations

H2

G E G × E

PH
20SH 89.00–254.00 160.61 ± 26.92 0.37 0.50 0.17 702.62 ** 62.58 ** 0.97
19SH 63.00–264.00 139.79 ± 31.94 −0.85 0.31 0.23 686.65 ** 165.79 ** 0.93
BLUE 63.00–244.67 148.53 ± 26.31 0.10 0.50 0.18 447.64 ** 118.75 ** 254.99 ** 0.75

EH
20SH 10.00–134.00 58.14 ± 20.82 0.18 0.10 0.36 414.84 ** 48.63 ** 0.96
19SH 14.67–128.67 59.13 ± 20.62 −0.05 0.16 0.35 400.47 ** 68.89 ** 0.95
BLUE 14.33–128.67 58.45 ± 19.46 0.12 −0.04 0.33 284.23 ** 59.60 ** 129.65 ** 0.79

TBN
20HN 1.00–21.33 7.32 ± 3.33 0.53 0.77 0.45 9.28 ** 2.17 ** 0.93
20SH 1.00–26.00 11.54 ± 4.05 0.34 −0.01 0.35 15.62 ** 2.5 ** 0.95
BLUE 1.00–20.83 9.27 ± 3.47 0.32 0.31 0.37 7.31 ** 2.34 ** 4.97 ** 0.72

** correlation is significant at p < 0.01.
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Figure 1. Distribution of phenotypes for PH, EH, and TBN in maize. (A) PH. (B) EH. (C) TBN.

Between sweet corn and waxy corn, significant difference was observed for PH, as
well as for EH. Waxy corn had higher means of PH and EH than that sweet corn (Figure 2A).
In the three subgroups of sweet corn, the three plant architecture traits did not show a
significant difference (Figure 2B).
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Figure 2. Comparison of PH, EH, and TBN traits among different maize types. (A) Comparison
between sweet corn and waxy corn. (B) Comparison between different genotypes of sweet corn.
Asterisk above the box indicates significant differences by Student’s t test, *** p < 0.001; ns p > 0.05.

The results of the correlation analysis between different environments for the same
trait and the correlation analysis results between PH and EH were shown in Figure 3A,B.
The correlation coefficients between the two environments for PH, EH, and TBN was 0.59,
0.64, and 0.57, respectively. The correlation coefficients of the BLUE values for the same
trait between a single environment and multiple environments were high, i.e., greater than
0.80. The correlation coefficients of the BLUE values estimated from multiple environments
between PH and EH was 0.75, which were 0.65 and 0.82 in the single environments analysis
in 2019 and 2020. The correlations between TBN and other two traits were not estimated.
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Figure 3. Distributions of and correlations between three relative phenotypic traits. (A) Correlation
between BLUE and different environments of plant height and ear height. (B) Correlation between
BLUE and different environments of the number of tassel branches. The frequency distribution
histograms of three traits are located on the diagonal line, the area below the diagonal line is the
scatter plot of the traits, and the area above is the correlation coefficient between each pair of traits.
*** indicate significance at p < 0.001.

2.2. Results of SNP Characterization, LD Decay Distance, and Population Structure

The heat map representing the marker density in ten maize chromosomes was showed
in Figure 4A. There were 38,013, 32,224, 30,423, 35,688, 28,335, 22,698, 25,987, 24,306, 20,202
and 20,716 SNPS on chromosome 1 to chromosome 10, respectively. The number of markers
on chromosome 1 was the most, and the number of markers on chromosome 9 was the
least. There were 123.24, 132.24, 127.82, 142.56, 125.18, 125.16, 139.86, 133.255, 123.94 and
135.90 SNPS in 1 per Mb on each chromosome, respectively. The markers were evenly
distributed. In the filtered SNP dataset, the average missing rate across the SNPs was
0.12, and the average MAF was 0.16, which was suitable for a subsequent genome-wide
association study (Figure 4B,C). We used 278,592 SNPs to evaluate the degree of linkage
disequilibrium (LD) attenuation of this association population, which corresponds to 50 kb
at r2 = 0.2 (Figure 4D). LD attenuation was slow, indicating that the higher the degree of
domestication, the greater the selection intensity, resulting in a decrease in genetic diversity.

Results of the population structure analysis were shown in Figure 5. In general, results
of population structure, PCA, and genetic distance or kinship were consistent, and this core
collection of waxy and sweet inbred lines could be divided into two or three major groups,
according to their pedigrees or genetic backgrounds. When K = 3, the curve slows down,
indicating that it was feasible to divide the population into three subgroups (Figure 5A,B).
The number of lines in subgroups 1, 2, and 3 was 247, 164, and 66, respectively. The principal
component analysis also revealed three subgroups, the first two principal components
explained most variances (Figure 5C) corresponding to the three subgroups identified by
structure analysis (Figure 5D): sweet corn subgroup, waxy corn subgroup, and sweet–waxy
corn mixed subgroup.
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2.3. Results of GWAS for Plant Architecture Traits

The GWAS was performed by combining the individual location BLUE values of PH,
EH, and TBN estimated across environments, the 278,592 high quality SNPs, the first three
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PCAs, and kinship matrix. A linear mixed model based GWAS was used to control for
population structure: both kinship (K) and population structure were taken into account to
avoid spurious associations. Q–Q plots showed that the population structure has been well
controlled. A mixed linear model (MLM) can reduce the false positive significant markers,
but also lead to some false negative significant markers not being identified.

In total, 184 SNPs significantly (p = 1× 10−4) associated with the PH were identified,
which were spread across 10 chromosomes (Figure 6). The phenotypic variance explained
(PVE) of significant SNPs ranged from 3.5% to 6.4%, with an average value of 4.7%. Out of
the total significant SNPs, the maximum number of SNPs were identified on chromosome
7 (85 SNPs) and the minimum number of SNPs were in chromosome 8 (6 SNPs) across
locations. The p-value of the significantly associated SNPs ranged from 8.8 × 10−7 to
9.77 × 10−5. The most significant SNPs with the lowest p-value were located on chromo-
some 7, i.e., S7_121735865.
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In total, 45 SNPs significantly (p = 1× 10–4) associated with EH were identified, which
were located on chromosomes 1, 2, 3, 4, 5, 6, 7, 9, and 10, respectively (Figure 7). The
PVE of these significantly associated SNPs ranged from 3.5% to 5.8%, with an average
value of 4.4%. Out of these total significant SNPs, the maximum number of SNPs were
identified on chromosome 5 (eight SNPs) and the minimum number of SNPs were in
chromosome 10, containing only one SNP. The p-value of these significantly associated
SNPs ranged from 2.94 × 10−6 to 9.11 × 10−5. The most significantly associated SNP was
located on chromosome 6, i.e., S6_34755019. Among the 45 SNPs significantly associated
with EH, two were also significantly associated with PH, indicating their pleiotropic effects
both on PH and EH. The co-mapping of different traits to the same loci suggested that the
genes controlling maize PH and EH have multiple effects.
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In total, 68 SNPs significantly (p = 1× 10–4) associated with the TBN were detected,
and they were located on chromosomes 1, 2, 3, 4, 5, 6, 7, 9, and 10, respectively (Figure 8).
The PVE of these significant SNPs ranged from 3.7% to 7.0%, with an average of 5.0%.
Out of all the significantly associated SNP, the maximum number of SNPs were identified
on chromosome 1 (25 SNPs) and the minimum number of SNPs were in chromosome 5
(one SNP). The p-values of the significantly associated SNPs ranged from 4.11 × 10−7 to
9.99 × 10−5. The most significantly associated SNP of S4_184008951 was located on
chromosome 4. There were no SNPs whose PVE exceeded 10%, indicating that PH, EH,
and TBN were traits jointly controlled by a minor gene.
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2.4. Candidate Genes Revealed by GWAS

Using B73 RefGen_v4 as the reference genome, 483 candidate genes were identified
within 50 kb regions either upstream or downstream of the significant SNPs associated
with all three plant architecture traits. Table 2 lists the candidate genes with functional
annotation on the NCBI website and related to maize growth and development. Based on
the expression levels of the candidate genes in plant growth and development, and the
functional annotations on the NCBI website, the most promising candidate genes were
determined to predict the PH, EH, and TBN in this experiment. Candidate genes were
grouped into the following functions: photosynthesis, metabolism, plant hormones, cellular
transport, transcriptional regulation, structural proteins, and cell division. These genes can
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directly or indirectly regulate the growth and development of maize plants. The details of
all candidate genes associated with potential SNPs and the functional annotations were
presented in Table S1.

Table 2. Candidate genes for each significant SNP associated with traits and their encoding products.

Trait Chr SNP Physical
Position Gene ID Encoding Functions

EH 1 298683020 Zm00001d034639 Zinc finger protein ZAT12 transcriptional regulation
Zm00001d034641 ZFP16-2 other
Zm00001d034642 Zinc finger protein ZAT11 transcriptional regulation

2 222818258 Zm00001d007123 FPF1 other
Zm00001d007121 CW-type Zinc Finger transcriptional regulation

3 219824021 Zm00001d044117 MYBR41 transcriptional regulation
Zm00001d044120 cytochrome P450 CYP51H12 metabolism
Zm00001d044121 auxin-like 1 protein plant hormones

4 240547324 Zm00001d053756 SBP-domain protein2 other
Zm00001d053753 calmodulin binding protein metabolism

6 158598786 Zm00001d038496 Cyclin-T1-5 cell division
6 167169385 Zm00001d038930 Transcription factor MYB36 transcriptional regulation
7 177703100 Zm00001d022437 probable WRKY transcription factor 70 transcriptional regulation

Zm00001d022440 ABI32 ABI3VP1 type transcription factor plant hormones
Zm00001d022442 bZIP transcription factor transcriptional regulation

PH 1 2773087 Zm00001d027317 rolled leaf 2 other
1 244295536 Zm00001d032945 myosin-7B structural proteins
1 255274670 Zm00001d033231 Expansin-B4 other

2 11369186 Zm00001d002374 SAUR20—auxin-responsive SAUR family
member plant hormones

2 241314625 Zm00001d007869 UDP-glycosyltransferase 71B1 cellular transport
2 242857556 Zm00001d007924 cytochrome P450 93G2 metabolism

3 36650639 Zm00001d040302 Zinc finger CCCH type
domain-containing protein ZFN-like 1 transcriptional regulation

3 220846626 Zm00001d044162 WRKY-TF64 transcriptional regulation
5 198868106 Zm00001d017528 cytochrome P450 86A2 metabolism

5 212239163 Zm00001d018016 putative RING zinc finger domain
superfamily protein transcriptional regulation

8 121528270 Zm00001d010601 ZmCHX5 other
9 28153529 Zm00001d045600 NAC46 transcriptional regulation

10 3595365 Zm00001d023332 putative WRKY DNA-binding domain
superfamily protein transcriptional regulation

10 36382301 Zm00001d024008 auxin-responsive protein IAA5 plant hormones
TBN 1 29829368 Zm00001d028304 Homeobox-leucine zipper protein HOX19

1 37949776 Zm00001d028515 NCBP other
1 64922019 Zm00001d029289 putative cytochrome P450 superfamily protein metabolism

1 204436402 Zm00001d031861 ethylene-responsive transcription factor
ABI4 plant hormones

1 232642160 Zm00001d032637 myosin 1 structural proteins
2 2113968 Zm00001d001864 uracil-DNA glycosylase

Zm00001d001865 ZmCip1, cytokinin-inducible protein plant hormones
2 3567341 Zm00001d001961 SAUR23—auxin-responsive SAUR family member

2 4131167 Zm00001d001995
ribulose bisphosphate
carboxylase/oxygenase activase 2,
chloroplastic

photosynthesis

Zm00001d002000 linoleate 9S-lipoxygenase6
4 184008951 Zm00001d052229 ERF056 Other
4 246401386 Zm00001d054093 senescence-associated protein DIN1 transcriptional regulation
6 157380718 Zm00001d038444 Transcription factor TCP11 transcriptional regulation
7 113522699 Zm00001d020430 ra1-ramosa1 Other
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2.5. Estimation of Genomic Prediction Accuracies

For all three traits of PH, EH and TBN, the prediction accuracies increased rapidly
when the number of markers increased from 0 to 500; subsequently, the prediction accu-
racy increased slightly when the number of markers kept increasing. The differences in
prediction accuracies obtained from 3000, 5000, and 10,000 markers were not obvious. It
was effective to improve prediction accuracy by adding markers significantly associated
with each target trait (Figure 9A).
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Figure 9. Genomic prediction accuracy of PH, EH, and TBN in the population, (A) when the number
of SNPs varied from 0 to 10,000. (B) when the training population size (TPS) ranged from 10 to 90%
of the total population size.

As the training population size increases, the prediction accuracy gradually improved.
When the training population size was 10% of the total markers, the prediction accuracy
of PH was 0.51. As the proportion of the training population gradually increased, the
prediction accuracy also increased. When the training population size was 80% of the
total markers, the prediction accuracy of plant height was evenly distributed around 0.61.
When the training population size was 10% of the total markers, the prediction accuracy
of EH was evenly distributed at 0.62. With the increasing proportion of training groups,
the prediction accuracy also increases. When the training group size was 10% of the total
markers, the prediction accuracy of TBN was evenly distributed around 0.16. With the
gradual increase of the proportion of training groups, prediction accuracy also increases.
When the training group size was 90% of the total markers, the prediction accuracy of
TBN was distributed around 0.48. By comparing and analyzing the influence of training
population size on the prediction accuracy of the whole genome, the results show that when
the training population size increases from 10% to 30% of the total markers, the prediction
accuracy increases with the increase of the training population size, and the growth trend
was significant. However, when the size of the training group increases from 40% to 80%,
the changing trend of prediction accuracy was nearly horizontal. The prediction accuracy
of plant height decreased at 90% (Figure 9B).

3. Discussion

In the present study, inbred lines representing the core collection of sweet and waxy
corn germplasm in China, were used to conduct GWAS and GP analysis on three plant
architecture traits, i.e., PH, EH, and TBN. In this study PH, EH, and TBN detected in the
association mapping panel also exhibited extensive phenotypic variation and followed
a normal distribution. Heritability was at a moderately high level; ANOVA for PH, EH,
and TBN showed that the effects of G and G × E interactions were significant, indicating
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that these three traits were mainly influenced by genetic effects (Table 1). According to the
results of GWAS, it was found that the PH, EH, and TBN of maize were typically controlled
by multiple genes.

In the analysis of the population structure, although the value at K = 9 was the lowest,
when K = 3, the value was obviously slowed down. Coupled with the kinship heat map
and PCA analysis in this study, the associated population should be divided into three
subgroups, including sweet corn, waxy corn, and sweet–waxy corn (Figure 5). Different
populations with the same population type also have great differences in LD decay rate
due to their different genetic backgrounds. Domestication selection can lead to a decrease
in population genetic diversity and the strengthening of linkage between loci. Therefore,
generally, the higher the degree of domestication and the greater the selection intensity of
the population, the slower the LD decay rate. Similarly, the decline of population genetic
diversity caused by natural selection and genetic drift will also slow down the rate of LD
decay [24]. In comparison between LD analysis results and other studies, the value of
distance was larger than that in other studies. In tropical maize, the average LD decay
distance across all 10 chromosomes was 8.14 kb [25]. In subtropical maize, the average
decay distance of the LD across all chromosomes was about 5–10 kb at r2 = 0.2 [26]. The
smaller the value, the greater the genetic diversity and the greater the genetic relationship
between the populations. LD decay rate in this study was similar to that in other sweet
corn studies, with the mean length of LD decay decreasing rapidly to 76 kb at a cut-off of
r2 = 0.2 [27].

In the correlation analysis of phenotypic traits, we found a significant correlation
between PH and EH. Many previous studies have also confirmed that PH and EH were
related [28]. In addition, GWAS analysis of the three traits found that EH and PH had two
overlapping SNPs, which were S3_219824021 and S5_37693709. Therefore, further study on
the relevant candidate genes of these loci was helpful to analyze the genetic mechanism of
PH and EH in fresh eating maize. Previous research has used QTL mapping and GWAS
methods to study the genetic structure of PH and EH traits, but due to the differences in
population type and size, marker type and density, and statistical methods used by each
research group, the identification of QTL were quite different, and it was difficult for a
single study to reveal the genetic structure of maize PH and EH. The previous genome-
wide association study of PH and EH was mainly carried out on common maize. This
study uses the association group composed of fresh edible maize to overlap the identified
significant SNPs and the segments located in the previous study. The SNPs of EH located
in this study, S5_101186696, S5_101191399, S5_101191576, S5_101416556, S5_101420833,
S5_110982180, S6_117338012 were located in 5.04/05; The SNPs of PH located in this study,
S6_109254482, S6_113842238 were located in 6.04/05. These two regions were consistent
with the “stable QTL” jointly located by Li using F2:3 population and RIL population for
PH and EH traits [29]. The SNPs of TBN located in this study, S6_157380718, S6_157381716,
and S6_157391371, were located in the QTL and SNPs region of Bins 6.06–6.08 previously
identified, indicating that there may be an important region for regulating maize TBN in
this region [30–33]. The results of this study deepen the understanding of the genetic basis
of sweet corn and waxy maize plant type traits and contribute to improving the breeding
efficiency and breeding new varieties.

Previous studies have cloned some genes that related to TBN, such as mutations in
ramosa1 [34], ramosa2, and ramosa3 [35] with increased TBN numbers. Double mutants of
repetitive SBP-box transcription factor genes unbranched2 and unbranched3 exhibit a reduced
number of tassel branches and an increased number of spike rows [36]. The ramosa1 gene en-
codes a putative transcription factor that controls branching architecture in the maize tassel
and ear. The candidate gene Zm00001d020430 mapped by TBN in this study encodes ra1 [37].
The cytochrome P450 (CYP) family plays a key role in plant evolution and metabolic diver-
sification [38]. The genes Zm00001d017528, Zm00001d007924, and Zm00001d044120 were
cytochrome P450 superfamily proteins, which may regulate the process of plant growth
and development and affect the phenotype of plants through the regulation of metabolites



Plants 2023, 12, 303 12 of 17

in plants. Zinc-finger protein (ZFP) was one of the most important transcription factors
in eukaryotes [39,40]. It plays an important role in plant gene expression and regulation,
growth, and senescence [41,42]. The candidate genes Zm00001d022427, Zm00001d010380,
Zm00001d047539, Zm00001d034639, Zm00001d034642, Zm00001d007121, Zm00001d038926,
Zm00001d027312, Zm00001d040302, and Zm00001d01801 in this experiment encode RING
zinc finger domain superfamily proteins and zinc finger CCHC domain proteins, which may
regulate the growth and development of plants. Gene Zm00001d022437, Zm00001d044162,
Zm00001d023332, Zm00001d023336, and Zm00001d038451 encode a WRKY gene family
protein. WRKY were widely involved in regulating rice growth and development by regu-
lating growth regulator-mediated signaling pathways. The plant basic leucine zipper (bZIP)
transcription factor protein is encoded by the gene Zm00001d022442, Zm00001d03169 [43].
Glycosyl-phosphatidyl inositol (GPI)-anchored proteins were associated with a variety of
growth and developmental mechanisms [44]. The gene Zm00001d038682 encodes a GPI-
anchored protein [45]. These candidate genes may play important roles in plant growth
and inflorescence development, but their biological functions require further study. With
the development of high-throughput sequencing technology and various gene editing
technologies, direct selection of genotypes for crop phenotype improvement has become a
reality. This study revealed candidate genes and possible molecular mechanisms regulating
PH, EH, and TBN, providing important insights and genetic resources for efficient breeding
of maize using genetically improved PH, EH, and TBN.

Genomic selection, especially early selection, was more accurate. Genotyping uses
high-density molecular markers to estimate all QTL effects and explain genetic variation for
most traits. However, MAS uses fewer markers for trait selection and genomic selection was
more accurate than MAS. A previous study shows that GWAS-derived markers improved
the prediction accuracy of GS [46]. Consistent with the results of this study, the prediction
accuracy gradually increased with the number of significance markers added, and then the
increasing trend gradually decreased.

Genomic prediction and GS have been successfully applied to a variety of crops to
accelerate genetic gain and improve complex traits in breeding programs [47,48]. The
prediction accuracy increases with the increase of the panel TPS, when the TPS increases
from 10% to 30%, the prediction accuracy increases rapidly, and when the TPS was further
increased, the prediction accuracy increases slightly. If 80% of the total genotypes were
used as the training set, the prediction accuracy was higher, and the standard error was
smaller. Noman et al. results showed that when the training population was smaller, the
prediction accuracy increases as the modeled population increases [49]. However, beyond
a certain point, the growth rate of prediction accuracy becomes very low, and breeders can
decide on an acceptable prediction accuracy based on the actual situation.

4. Materials and Methods
4.1. Plant Material

This study utilized an association mapping panel composed of 477 fresh edible maize
inbred lines, in which 190 sweet corn inbred lines and 287 waxy corn inbred lines were
collected or developed by Shanghai Academy of Agricultural Sciences, China. This panel
represents a core collection of sweet corn and waxy corn germplasm in China, and includes
most of the parents of the recently released waxy corn and sweet corn varieties. The
190 sweet corn inbred lines could be divided into three subgroups, i.e., enhanced sweet
corn, super sweet corn and ordinary sweet corn, according to the sweetness regulatory
genes of Sugar-1 (su1), shriken-2 (sh2) and Sugar Extender (se).

4.2. Phenotyping and Experimental Design

We evaluated 477 sweet corn and waxy corn inbred lines; and three plant architecture
traits of PH, EH, and TBN were measured. The association panel of fresh edible maize was
planted at Zhuanghang Experimental Station (N 30◦53′, E 121◦23′) of the Crop Research
Institute of Shanghai Academy of Agricultural Sciences in Shanghai, and at the winter
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season breeding station (N 18◦51′, E 110◦03′) in Lingshui County, Hainan Province in 2019
and 2020. The phenotypic data of PH and EH were collected in the summer of 2019 and
2020 from the trials planted in Shanghai, and the phenotypic data of TBN were collected
from the trials planted in Hainan in the summer of 2020, and in Shanghai in the winter
of 2020. A single row plot was planted with 2.5 m in length and 0.6 m between plots,
with 0.25m between plants, and at a planting density of 52,500 plants ha−1, A randomized
complete block design with two replications per trial was applied. Other field measures
were implemented following conventional management practices.

At the maturity stage, after the plant height of the maize inbred line in the natural
population was stable, five plants from each row were randomly selected and measured
with a tower ruler. The mean value of each trait was used for association analysis. The
length from the root to the top of the tassel was the PH of the maize inbred line. EH is
measured as the length from the root of the maize to the knot of the uppermost ear of
the maize.

4.3. Phenotypic Data Analysis

The phenotypic data were analyzed using Microsoft Excel 2007 software to generate
descriptive statistics, including the mean, minimum, maximum, standard deviation (SD),
coefficient of variation (CV), skewness and kurtosis. The coefficient of variation was
calculated as CV (coefficient of variation) = SD (standard deviation)/mean. The frequency
distribution of phenotypic data was also checked using Microsoft Excel 2007 software. The
kurtosis and skewness were used to estimate the frequency distribution normality. Corrplot
in R was used to generate plots using Pearson correlation analysis.

Best Linear Unbiased Estimator (BLUE) and generalized heritability were estimated
in META-R [50].

The formula for calculating the BLUE value is:

Yijk =µ + Repi+ Blockj(Repi) + Genk + εijk

where Yijk is the plant architecture trait, µ is the overall mean effect, Repi is the effect of the
ith replicate, Blockj (Repi) is the effect of the jth incomplete block within the ith replicate,
Genk is the effect of the kth genotype, and εijk is the effect of the error associated with
three factors.

The formula for calculating the generalized heritability is:

H2 =
σg

2

σg2 + σge2/nEnv + σε
2/(nEnv× nRep)

where σg
2 and σε

2 are the genotype and error variance components, respectively, σge
2 is

the variance of the G × E cross-variance component, nEnv is the number of environments,
and nRep is the number of repetitions. To calculate BLUE and generalized heritability, all
effects were declared as random.

4.4. Genotyping and Genotypic Data Analysis

For genotyping, fresh young leaves of all accessions were collected, and genomic DNA
was extracted using a DNA extraction kit. All samples were sent for genotype detection at
Novogene Company using the single nucleotide polymorphism (SNP) Illumina platform.
The panel of 477 inbred lines was genotyped on the Illumina platform, and the reference
genome was B73 RefGen_v4 for SNP calling. The raw reads were filtered via a standard
quality control (QC) process, and the clean reads were obtained for SNP calling. A total
of 108,457,756 SNPs were obtained. SNP calling using VCFtools software, the SNPs with
missing rate (<20%) and minor allele frequency (MAF > 0.05) were retained, resulting in a
final set of 278,592 high-quality SNPs.
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4.5. Analyses of Linkage Disequilibrium (LD), Population Structure, GWAS, and LD
Block Analysis

Population structure analysis: a model-based clustering algorithm in ADMIXTURE
Software Version 1.3 [51] was applied. Preliminary analysis was performed in multiple
runs by entering consecutive K values from 1 to 12. A five-fold cross-validation proce-
dure was performed for each value of K. The most likely K value was determined using
the cross-validation value of ADMIXTURE. Inbred lines with a membership probability
greater than 0.5 were assigned to the corresponding clusters and plotted using TBtools
software v1.098727 [52]. Principal component analyses (PCA) and clustering analyses were
performed in R.

The PopLDdecay 3.40 software (https://github.com/BGI-shenzhen/PopLDdecay
(accessed on 13 April 2022)) [53] and perl scripts were used to evaluate linkage disequilib-
rium (LD) to determine the number of markers required for GWAS, and to determine the
detection efficiency and accuracy of GWAS.

The GWAS analysis was conducted in TASSEL 5.0 software [54] by incorporating
PCA + K in a mixed linear model. The population structure (PCA) and kinship calculated
among individuals were used to adjust the population structure. For the PCA method, the
first three PCs (PC1, PC2, and PC3) that were determined from a scree plot constructed from
PCs were included in the model as fixed-effect covariates to adjust population stratification.
Considering the rigor of the mixed linear model, we conservatively chose −log10 (p-value)
of 4.0 as the threshold to determine the SNPs significantly associated with the target traits of
PH, EH, and TBN, respectively. The Manhattan plot and quantile–quantile (Q–Q) plot were
produced using the “CMplot” package in R. The proportion of the explained phenotypic
variation by each marker was estimated by the phenotype variance explained. Linkage
disequilibrium heat maps were constructed using “LDBlockShow” [55].

4.6. Candidate Gene Identification and Annotation

All the putative candidate genes within 50 kb of the detected loci were identified.
The expression data and gene annotation information were collected from the maizeGDB
database (http://www.maizegdb.org (accessed on 19 May 2022)). The physical locations
of the genes and SNPs were based on the maize B73 RefGen_V4 genome. The annotation
functions and related information of the candidate genes are obtained from the Maize
Genetics and Genomics Database and the National Center for Biotechnology Information
(http://www.ncbi.nlm.nih.gov/ (accessed on 1 June 2022)).

4.7. Genomic Prediction Analysis

Genomic prediction analysis was conducted with the Ridge Regression Best Linear
Unbiased Prediction (RRBLUP) model in R [56]. To estimate the effect of marker density on
GP accuracy, the different number of significance markers identified by GWAS—100, 500,
1000, 3000, 5000, and 10,000—were selected to estimate prediction accuracy for all the target
traits. At each marker density, SNPs were randomly selected 500 times, and a five-fold
cross-validation scheme with 500 repetitions was applied. To explore the effect of training
population size on the estimation of the prediction accuracy, training population sizes
increasing from 10% to 90% of the total markers, with 10% of the total markers interval,
were set to estimate the prediction accuracy for all the target traits.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants12020303/s1, Table S1: SNPs, chromosomal positions
and candidate genes identified by GWAS.
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