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Abstract: Non-coding RNAs play vital roles in the diverse biological processes of plants, and they
are becoming key topics in horticulture research. In particular, miRNAs and long non-coding RNAs
(lncRNAs) are receiving increased attention in fruit crops. Recent studies in horticulture research
provide both genetic and molecular evidence that miRNAs and lncRNAs regulate biological function
and stress responses during fruit development. Here, we summarize multiple regulatory modules
of miRNAs and lncRNAs and their biological roles in fruit sets and stress responses, which would
guide the development of molecular breeding techniques on horticultural crops.

Keywords: miRNA; long non-coding RNA; stress response; fruit; agricultural traits; CRISPR;
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1. Introduction

Fruits are differentiated from a mature ovary of the pistil after fertilization or floral
organs and comprise a variety of pericarp and seed tissue types, which can be classified
as dry or fleshy according to different pericarp textures [1]. Dry fruits or their seeds
are usually derived from ovary tissues, such as Arabidopsis thaliana, which produces dry
dehiscent fruits (silique) [2]. Fleshy fruits are derived mostly from hypanthium tissues that
are hypothesized to consist of the fused bases of the sepals, petals and stamens [1], such
as tomato (Solanum lycopersicum) and strawberry (Fragaria × ananassa). Fleshy fruits play
important nutritious and health roles in the human diet, and several characteristics of the
fleshy fruit, including color, flavor, aroma, texture and nutrition, have been studied for
their dramatic changes during growth [3,4].

Likewise, although there is a remarkable convergence between fleshy fruit species,
regardless of the ontogeny of the fruit, the processes involved in fleshy fruit development
can be very different. For example, tomato fruit ripens in climacteric patterns, while
strawberry fruit softening during ripening is accompanied by non-climacteric behavior [5].
Fruit development is under regulation at a complex molecular level and it explains the
dynamics that alter the size, color, firmness, taste and flavor, which are characteristics
intimately related to fruit quality. In addition, disease-resistant and stress-tolerant varieties
also contribute an important part to fruit quality, fruit production and economic value.
Fruit analysis provides insights into the potential for fruit crop improvement strategies and
consequently applies to agricultural production [6,7].

More recently, a great number of functional genomics has shown that non-coding
RNAs, especially miRNA and lncRNA, are involved in a diversity of developmental
reproductive stages, from carpel formation and ovary development to the softening of
the ripe/ripened fruit [8–10]. Moreover, numerous genetic studies have also shown that
miRNA and lncRNA regulation results in fruit development alteration, including organ
pattern, fruit shape and size, as well as their developmental progress, such as miR159
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involved in fruit set [11], miR160 associated with fruit shape [12], miR164 affecting locule
number [13,14] and miR156 regulating fruit softening [15]. This layer of transcriptional
control has been associated with ovule, seed and fruit development and fruit ripening, as
well as stress responses [16,17], which are crucial developmental processes in breeding
programs because of their relevance for crop production. In addition, the final ripe fruit is
the result of a process under multiple complicated levels of regulation that acts to coordinate
the main steps of fruit development/patterning and fruit ripening, including mechanisms
orchestrated by miRNA and lncRNA.

Although miRNA and lncRNA are particularly well studied and well known in fleshy
fruit, the functions of miRNA involved in development processes are different in fruit
species. In contrast, lncRNAs are usually less evolutionarily conserved, but the broad
functions of lncRNAs are still possible under certain interactions. In this review, we discuss
miRNA/lncRNA-controlled mechanisms described in the current literature that act to
coordinate the main steps of fruit development/patterning, fruit ripening and fruit stress
responses. Moreover, we discuss the main aspects of agronomic traits in fleshy fruits, such
as yield (fruit size, fruit set), quality (parthenocarpic fruit) and stress tolerance, and explore
the outlook for uses of miRNA/lncRNA-associated traits in fruit biotechnology and fruit
breeding. In such a way, we present the latest advances in miRNA and lncRNA validation
and the functional analysis as strong evidence for the regulatory roles in fruit biology
(Table 1).

2. Functions of miRNAs and lncRNAs in Fruit Development

Fruit size and/or fruit number are crucial for improving yield and have a positive
impact on consumer preference. It has been reported that the genes controlling tissue
identity are involved in modulating fruit morphology, such as MADS-box genes, which
are known to regulate floral organ identity, thereby regulating fruit development in
Arabidopsis [18]. The regulatory module of miR172-AP2 has been highlighted in regu-
lating fruit development in diverse plants. In Arabidopsis, miR172 promotes the silique fruit
expansion process by the negative regulation of the activity of the APETALA2-like (AP2)
gene [19], which would otherwise hinder the action of AGAMOUS (AG) and FRUITFUL
(FUL) [20], two MADS-box transcription factors that are essential for ovary and silique
growth [21]. miR172 has an adverse influence on fruit size in apples (Malus × domestica)
through the negative regulation of AP2 that is required for hypanthium development into
a pome fruit [22], resulting in small fruit size and an abnormal floral organ [23]. Another
study in tomato, an ovary-derived fleshy fruit, revealed that the SlMIR172c and SlMIR172d
loss-of-function mutant lines (slmir172c-dCR) resulted in abnormal flower organ and number
identity [24]. These findings suggested a different role of miRNAs in dry and fleshy fruit.
miRNAs regulate endogenous genes to impact development responses and even drive crop
domestication; these results are consistent considering that silique is a true fruit deriving
from ovary tissues, while the pome is a false fruit developing mainly from extra-carpellary
tissues, such as sepals.

MIR172 encodes highly similar miR172s, but exhibits differences in their distribution
among fruit growth. These different biological functions and miRNA patterns in Arabidopsis,
apple and tomato indicate the parallel evolution of the miRNA machinery in different
fruit types. There are seven genes (SlMIR172a–g) that code for four unique species of
miR172 (sly-miR172) in tomato [25], fifteen genes (mdm-MIR172a–o) in apple [26] and
five genes (ath-miR172a–e) in Arabidopsis [27]. A recent study shows that the whole
genome duplication (WGD) event of Populus trichocarpa stimulates the emergence of new
miRNAs [28]. The number variety of miRNAs in different species may have resulted from
the whole genome duplication event, thus contributing to the functional specialization of
miRNAs and the functional importance of MIR genes. Many miRNAs are species-specific
rather than conserved, which supports fruit type-specific divergence in miRNA evolution.
Divergence in miRNAs or targets may have played important roles in horticultural crop
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domestication; for example, a loss-of-function mutation in MIR172p improved fruit size
during apple domestication [22].

In addition, it has been observed that sly-MIR156a-c expressed in placenta, ovules and
pre- and post-anthesis flowers in tomato [29], when overexpressing miR156a–c, resulted in
the enhancement of vegetative development, a delay in flowering time, and a smaller num-
ber of fruits that presented ectopic leaf-like structures [15]. Moreover, the overexpression of
tomato miR156 altered the expression of miR164, which is related to organ identity as well
as carotenoid biosynthesis [15], suggesting that the miRNA–miRNA crosstalk and other
molecular networks are also involved in fruit development. It has also been reported that
miR156–miR172 pairs perform a negative correlation in flowering induction in A. thaliana,
Nicotiana tabacum, D. glomerate and Oryza sativa [30–33], suggesting that miRNA–miRNA
crosstalk plays an important role in the development of plant sexual organs.

Furthermore, other miRNA regulation modules have also been identified in regulating
fruit size and number (Table 1, Figure 1A,B). The sly-miR171a gene regulates hormone
crosstalk between auxin and gibberellin in fruit size/weight by targeting two members of
the GRAS family (SlGRAS24 and SlGRAS40) known as hormone regulators [34]. In this way,
SlGRAS24 silencing results in GA3 and IAA accumulation, which leads to cell division and
cell growth, and then floral initiation and seed number alteration [35,36]. Furthermore, sly-
miR396a-3p/5p and sly-miR396b are mainly expressed in fruit, highlighting their potential
role in fruit development. Knocking down miR396 by short tandem target mimic (STTM)
showed an increase in fruit weight (66%), sepal size (153%), cell number (99%) and size
(65%) [37], suggesting that the attenuation of miR396 results in the enhancement of some
key performance indicators for fruit production. It has also been observed that knocking
out miR164a by CRISPR/Cas9 to release the expression of NAM2/3 leads to decreased
tomato fruit size [38]. The knocking down of miR1917 targeting an ethylene response gene
CTR4 in tomato leads to bigger fruit [39]. It is reported that sly-miR159 is essential for fruit
growth in Arabidopsis, and the mir159ab double mutant leads to small siliques [40], while its
silencing results in larger fruits in tomato [41], suggesting fruits developed from the ovary
may have evolved a different role of miRNAs in dry and fleshy fruit.

Fruit set or fruit shape is a crucial indicator of fruit development affecting the eco-
nomic values of fruit and consumers’ preferences. During the initial fruit growth phase,
rapid growth in fruit length and width, mainly due to rapid cell division and expansion
driven by phytohormones such as auxin and gibberellins (GAs), is observed in the tis-
sues surrounding fertilized ovules [42]. It has long been known that auxin is involved in
plant growth as well as development and fruit set [43–45]. Early studies revealed that the
knockdown of sly-miR160a by STTM technology resulted in the alteration of floral organ
abscission and auxin-mediated ovary patterning as well as fruit shape through the post-
transcriptional regulation of the auxin response factors ARF10A, ARF10B and ARF17 [12].
The overexpression of ARF10A resulted in greener fruits before the BR stage, enhanced
photosynthesis rate and sugar accumulation [12,46]. These results suggest the important
roles of sly-miR160 auxin-mediated fruit shape and sugar accumulation in tomato [47].

Moreover, many transcript factors (TFs) are miRNA targets that regulate key genes
involved in the floral induction and flower formation processes such as transition phases
from juvenile to adult, the initiation of floral competence and flower development [48].
A large number of species-specific miRNAs have also been identified in tomato fruit
development [49]. For example, silencing miR159 induced more locules inside the tomato
fruit [11]. The miR159–SlGAMYB1/2 module is involved in tomato ovary development
and fruit set by modulating auxin and gibberellin responses during ovule and ovary
development [11]. Additionally, the overexpression of an miR166-resistant mutant of REV
(35S::REVRis) results in ectopic fruits on receptacles and fused fruits [50], indicating that the
functioning of REV mainly depends on the regulation of miR166 at the posttranscriptional
level. In addition, is reported that the overexpression of PbrmiR397a reduced the lignin
content and stone cell number in pear fruit (Pyrus bretschneideri) by inhibiting laccase
(LAC) genes that encode key lignin biosynthesis enzymes [51]. The genome analysis of a
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single nucleotide polymorphism (SNP) in the promoter of PbrmiR397a between sixty pear
varieties was found to be associated with low levels of fruit lignin [51]. Moreover, miR160
regulates longan somatic embryo development by targeting ARF10, ARF16 and ARF 7 [52].
Altogether, these results unveil the function of the miRNA-targeted key genes in regulating
an agronomically important trait.
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and (C) fruit crops (fruit species on left: apple, kiwifruit, blueberry, pear, litchi, grape; fruit species
on right: longan, melon, strawberry, persimmon, mango, orange, pitaya, and sea buckthorn). The
asterisk (*) represents bioinformatics analysis data.

In addition, transcriptome-wide analyses have revealed the important regulatory
roles of lncRNAs in a set of fruit developmental processes, such as lncRNAs function in
regulating flower and fruit development in strawberry [53], peach (Prunus persica) [54] and
apple [55]. Although many lncRNAs have been identified in diverse fruit species during
fruit developmental stages, their biological functions will be fully elucidated in the future
(Table 1, Figure 1A–C).
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Parthenocarpic or seedless fruits are an important agricultural trait and a desirable
trait for consumers. Methods of achieving seedless/parthenocarpic fruits have received
increasing attention from researchers and breeders. Fruit and seed development held a
distinct place in plant propagation and harvesting for defining crop yields; therefore, the
roles played by the miRNAs in the development of fruits and seeds are of great interest. In
tomato, the interaction of AGO1s–miR168 not only determines fruit initiation and growth,
but also exhibits parthenocarpy in miR168-resistant 4m-SlAGO1A [56]. The overexpression
of miR159 induced parthenocarpy as well as the downregulation of miR167, releasing the
expression of SlARF8 [11]. It was also observed that the SlHB15A transcript is recessive-
dosage-sensitivity-controlled by miR166, and Slhb15a knockdown alleles by miR166 lead to
a parthenocarpic fruit set [57]. The MIR172 gene loss-of-function mutant line (slmir172c-dCR)
produces an abnormal ovary expanded to form small parthenocarpic fruit-like organs [24].

It is reported that the molecular mechanisms of parthenocarpic fruit formation are
mainly related to plant hormones, for example, cytokinin-treated pear (Pyrus spp.) and
kiwifruit (Actinidia chinensis) [58,59], gibberellic acid-treated and auxin-induced tomato [60,61],
brassinosteroids-induced apple [62], cytokinin-regulated and auxin-regulated grape (Vitis
vinifera) [63] and gibberellic acid-maintained citrus (Citrus clementina) [64]. It is well estab-
lished that parthenocarpy/seedless work in various fruits contributes to improving the
taste quality of the fruit.

3. Functions of miRNAs and lncRNAs in Fruit Ripening

Fruit color variation is the most important agricultural trait of fruit ripening and
chiefly affects the postharvest texture and consumers’ preferences. miRNAs have been
extensively investigated in fruit development, and they also play an important role in fruit
ripening. Interestingly, some miRNA regulations work in the same biological processes
during fruit ripening. It has been found that the miR156-SPLs [65–67] and miR828/858-
MYBs [68–72] modules are the conserved pathways to regulate fruit coloration in vari-
ous fruit crops. For example, the miR156a-SPL12 module manipulates the accumulation
of chlorophylls and anthocyanins during fruit ripening in blueberry, in which VcSPL12
interacts with VcMYBPA1 [66]. In pear, miR156-targeted SPLs interfere with the MYB-
bHLH-WD40 complex in anthocyanin biosynthesis [73]. The transient overexpression of
VvmiR156b/c/d in tomato promotes fruit coloring by repressing VvSPL9 transcription [74],
suggesting that VvmiR156b/c/d-mediated VvSPL9 is involved in the formation of grape
color. Similarly, in litchi (Litchi chinensis Sonn.), miR156a-targeted LcSPL1, interacting
with LcMYB1, functions as a major cue in anthocyanin biosynthesis [67]. Moreover, the
overexpression of miR156 promotes the accumulation of anthocyanins by targeting SPL9 in
Arabidopsis, which negatively inhibits anthocyanin biosynthetic genes through the desta-
bilization of an MYB-bHLH-WD40 transcriptional activation complex [65]. Another study
reveals that long non-coding RNA MLNC3.2 and MLNC4.6 function as eTMs for miR156a
and suppress the miR156a-mediated cleavage of SPL2-like and SPL33 during light-induced
anthocyanin accumulation in apple fruit [75]. Similarly, the lncRNA LNC1-induces the down-
regulation of SPL9 through endogenous target mimics of miR156a, which leads to increased
anthocyanin content in sea buckthorn (Hippophae rhamnoides Linn.) [76]. Moreover, ncRNAs
associated with the anthocyanin biosynthesis pathway have also been reported in various regu-
latory modules, such as NEW41-CHI in litchi [67], miR396-FtsZs and miR_n10-BAG1 associated
with blueberry [77] and miR172-AP2, miR7125-MYB16/MYB1 and MdLNC499-ERF109 involved
in apple [78–80], all of which have been identified in anthocyanin accumulation (Table 1).

In addition, miR828 triggers the biogenesis of phasiRNAs that, in trans or in cis,
regulate multiple MYBs that are involved in anthocyanin accumulation [8,68,69]. These
MYBs belong to the R2R3 class, which is integrated with multiple biological processes,
particularly in plant anthocyanin biosynthesis [81]. In Arabidopsis, the overexpression of
miR828 reduces anthocyanin accumulation by repressing genes encoding MYB transcrip-
tion factors [68]. In tomato, miR858 plays a negative role in anthocyanin biosynthesis,
and the blockage of miR858 leads to increased anthocyanin accumulation by modulating
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the expression of SlMYB7 and SlMYB48 [70]. Another report demonstrates that miR858a
represses the translation of MYBL2 in Arabidopsis seedlings as a positive regulator of antho-
cyanin biosynthesis [72]. In grape, miR828/miR858 targets VvMYB114, which is reported as
being essential for anthocyanin and flavonol accumulation [69]. The transient overexpression of
miR858 reduces anthocyanin accumulation in kiwifruit (Actinidia arguta) by repressing the target
gene MYBC1 [71]. Among them, miR828 and miR858 could directly or indirectly control an-
thocyanin biosynthesis in apple [26]; for example, a recent study found that the overexpression
of mdm-miR828 inhibited anthocyanin synthesis through the cleavage of MdTAS4 in the late
fruit coloration stage, and MdMYB1 was induced in a feedback regulatory mechanism through
binding to the promoter of mdm-MIR828b to promote its expression [82].

Fruit ripening is a complex biological process and is associated with many aspects of
fruit flavor and textural alterations. In persimmon (Diospyros kaki Thunb.), miR395p-3p
and miR858b regulate bHLH and MYB, respectively, which synergistically regulate the
structural genes responsible for tannin biosynthesis [83]. In addition, many miRNAs’ target
genes have been identified through high-throughput sequencing associated with regulating
persimmon fruit ripening, such as miR156-SPL, miR396-UFGT, miR858-MYB19/20 and
miR2991-ADH [83]. Another study on strawberry shows that the overexpression of miR399
can improve fruit quality by targeting PHO2 [84]. A novel miRNA, Fan-miR73, negatively
regulates its target gene, ABI5, to control strawberry fruit ripening [85]. Knocking down pre-
slymiR157 or mature slymiR157 delays tomato fruit ripening by targeting LeSPL-CNR, in turn
regulating the expression of LeMADS-RIN, LeHB1, SlAP2a and SlTAGL1 [86,87]. Additionally,
miR164-NAC6/7 and miR393-AFB2 are associated with fruit ripening in kiwifruit and melon
(Cucumis melo) [88,89] (Table 1). These sophisticated regulatory networks might provide
the accurate regulation of fruit ripening in different plants.

LncRNAs also play important roles in the fleshy fruit-ripening process. The genome-
wide discovery and characterization of novel species-specific lncRNAs in fruits were
conducted in various fleshy fruit species, including tomato [10,90], strawberry [53], ap-
ple [91], grape [92], kiwifruit [93], peach, mume (Prunus mume) [94], sea buckthorn [95] and
melon [96]. These results present the global function of lncRNAs in different fruit species,
which provides new insights into the regulation of fruit quality.

In strawberry, color change in wild varieties of Fragaria pentaphylla (F. pentaphylla) may
be largely regulated by lncRNAs [97]. In tomatoes, silencing two lncRNAs, lncRNA1459 and
lncRNA1840, delayed the fruit-ripening processes, which indicated the positive regulatory
roles of the two members in the fruit-ripening process [10]. Furthermore, knocking down
lncRNA1459 by CRISPR/Cas9 genome editing technology affected lycopene, carotenoid
and ethylene biosynthesis [17]. Moreover, in tomato, 187 lncRNAs were found to be direct
targets of the MADS-box transcription factor (TF) RIPENING INHIBITOR (RIN), which is a
critical TF of fruit ripening [98,99]. In the fleshy fruit species, lncRNAs were also reported
to be the key regulators with miRNAs under sophisticated control to perform their proper
function. Some research has shown that long non-coding RNA (lncRNA) could regulate
miRNAs as endogenous target mimics (eTMs) and participate in anthocyanin accumu-
lation, such as MLNC3.2 and MLNC4.6 in apple [75] and LNC1 in sea buckthorn [76].
In strawberry, the lncRNA FRILAIR serves as a miRNA sponge by functioning as a non-
canonical target mimic of strawberry miR397, which can guide the mRNA cleavage of the
fruit-ripening accelerating gene LAC11a, thereby regulating the fruit-ripening process [100].
Knocking out lncRNA2155 by CRISPR/Cas9 technology delayed tomato fruit ripening with
downregulated ripening-related genes, including RIN, CNR, NOR, ACS4 and PSY1 [98].

Fruit softening and fruit texture are also crucial for optimizing fruit quality. In
addition, several ncRNAs are involved in fruit softening. Knocking down pre-miR156a–c
or their mature SlymiR156a sequences through the VIGS system accelerates tomato fruit
softening after the red ripe stage [87]. Additionally, miR479-BGA, miR2950-CHS, miR22-PE,
miR3627-PAL and miR399-ACO3 are associated with fruit softening in grapes [101] (Table 1).
Furthermore, the overexpression of miR399a can promote the accumulation of fructose
and glucose in wild strawberry fruit [84]. In apple, the overexpression of miR7125 reduces
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lignin biosynthesis by targeting MdCCR during light induction [79]. Taken together, it will
be important to extensively explore the underlying mechanisms in fruit ripening.

Plant hormones in fruit ripening are necessary, and the molecular mechanism and the
signaling cascades of plant hormones during fruit ripening have been extensively studied in
horticultural plants [102]. Non-coding RNAs are also involved in phytohormone regulation
networks, such as ethylene (ETH), which is the major phytohormone in climacteric fruit
ripening [103,104]. Tomato miR172 targets SlAP2 cleavage to accelerate fruit ripening and
enhance ethylene biosynthesis [105]. Furthermore, slymiR1917 was reported as a negative
regulator of two ET-related CTR4 splicing variants, but it is also regulated to ACS2 and
ACS4, which are key genes for the establishment of the type of ET synthesis pathway [106].
In particular, Ethylene Insensitive 2 (EIN2) is targeted by miR828 [107], therefore for the onset
of ethylene-dependent ripening events, a strong reduction of the expression of both miR394
and miR828 is required in tomato [108]. Moreover, some other miRNAs were found as
regulators of some ET-related genes, such as the overexpression of the miR166-resistant
version of SlREV downregulating EIN3, ERFs, AP2 and CTR3 in tomato [52]. The interplay
may provide a mechanism to enable flexible fruit ripening. Several different types of
non-coding RNAs are involved in regulating the expression of ripening genes, but further
clarification of their diverse mechanisms of action is required. Further investigation might
help to understand whether this behavior is relevant for development and if there are some
other offset mechanisms in terms of time to ripen.

4. Functions of miRNAs and lncRNAs in Fruit Responses to Biotic and Abiotic Stress

Stress tolerance is an important breeding objective and selection criteria in breeding
that is critical for fruit quality, such as disease-resistant varieties, cold-resistant varieties
and drought-resistant varieties. Besides the role of miRNAs and lncRNAs in growth, devel-
opment and ripening, they also act as important signaling components in stress responses.
They are key modulators of the transcriptional and post-transcriptional expression of genes
during defense responses, and they are shown to be required for adaptation to the changes
in ambient environments. Stress-induced changes occur in multiple species and correlate
with a conserved mechanism involving non-coding RNA regulations.

Salinity stress usually causes physiological disorders in fruit crops. During salinity
conditions, numerous gene transcripts are variably regulated by miRNAs. The auxin signaling
plays an important role in the biotic stress response, and the miR393-mediated regulation of
the auxin receptor TIR1 is involved in the response to salt stress resistance and ABA-signaling
pathways [109,110]. Furthermore, the miR396-GRF module was shown in pitaya (Hylocereus
polyrhizus) and Arabidopsis [111,112]. Interestingly, a wide range of miRNAs was induced
in date palms (Phoenix dactylifera L.) and mandarin (Citrus reticulata Blanco) under salt stress
conditions [113,114], which provides insight into plants’ adaptation to salinity.

High or low temperature stress at the fruit development stage is an important fac-
tor that determines fruit quality and fruit storage time, and hot or cold temperatures
influence plant growth and yields. Several miRNAs induced by high-stress conditions
have been identified through the bioinformatic prediction or RLM-5′ RACE-based val-
idation in tomato, suggesting that a miRNA-mediated regulatory network is involved
in high temperature [115]. In Arabidopsis, miR160 repressed ARF10, ARF16 and ARF17
to release the expression level of heat shock protein genes to allow the plants to survive
heat stress [116], while miR160-ARF18 mediated salt tolerance in peanut [117]. In pear, a
novel miRNA, Novel_188, is validated to target Pbr027651.1 to mediate fruit senescence
under high- or low-temperature conditions [118]. Ptr-miR396b was determined to tar-
get 1-aminocyclopropane-1carboxylic acid oxidase (ACO) in response to cold stress in orange
(Poncirus trifoliata) [119]. In mango, bioinformatic analysis reveals that MmiR78769 and
MmiR101928 target phospholipase A and phospholipase D, respectively, both of which are
associated with plant temperature stress-responsive process [120]. Moreover, degradome-
wide analyses have revealed that miR393-TIR1/AFB displays a cold stress-specific response
and miR156-SPL-mediated heat stress response in banana [121].
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In particular, the lncRNAs’ temperature stress responses were found to be very specific.
High temperature-induced LNC_000862 is likely to delay pear fruit senescence by compet-
ing with miR390a to derepress the expression of Pbr031098.1 [122]. LncRNAs involved in
the response of chilling injury in tomato fruit have been systematically identified, providing
a new perspective on lncRNA roles in chilling tolerance in fruits [123]. In mango, the cold-
responsive lncRNA CRlnc26299 can interact with RC12B, which is the low-temperature
and salt-responsive protein [120]. A novel lncRNA, COLD INDUCED lncRNA 1 (CIL1),
is a positive regulator in plant response to cold stress by regulating the expression of
endogenous reactive oxygen species (ROS) in Arabidopsis [124].

Drought stress adversely affects fruit crops’ productivity and quality. Drought stress
response modulation via the miRNA pathway has also been found in several plant species.
In tomato, miR159, miR169, miR160, miR167 and miR393 are associated with dehydration
stress tolerance, by controlling hormonal signal transduction, stomatal closure and auxin-
responsive genes [125,126]. The overexpression of miR396 showed lower densities of
stomata and induced drought tolerance in Arabidopsis by suppressing the expression of
GRF [127], which was consistent with the finding that the miR396-GRF module is involved
in stress tolerance in tomato and pitaya [112,125]. Moreover, ABA-induced miR159 inhibits
the transcripts of MYB101 and MYB33 during seedling stress responses in Arabidopsis [128].
A novel lncRNA, named DROUGHT INDUCED lncRNA (DRIR), has a positive role in the
response of Arabidopsis to drought and salt stress [129].

Pathogen defense is associated with fruit quality and postharvest quality. Plants
are constantly exposed to a range of microbial pathogens with different lifestyles and
modes of attack, including fungal, bacterial and viral pathogens, whereas RNA-based
mechanisms largely regulate plant–virus interactions. Many key miRNA regulators of
the stress response in fruits during pathogen infection were identified, such as miRNAs
engineer Botrytis cinerea (B. cinerea) in kiwifruit [130] and specific miRNAs’ response to
stress in Amur grape (vitis amurensis Rupr.) [131]. In particular, Md-miRLn11 targeted an
apple nucleotide-binding site (NBS)–leucine-rich repeat (LRR) class protein coding gene
(Md-NBS) to trigger host immune responses during pathogen infection [132]. SlymiR482e-
3p knocking-out lines showed enhanced resistance to tomato wilt disease and regulated
ethylene signaling by suppressing the expression of ethylene response factors (SlERFs) [133].
The can-miRn37a further confirmed anthracnose resistance in chili (Capsicum annuum L.)
by repressing ERFs and preventing fungal colonization [134]. In tomato, sly-MIR156d/e
were found induced under biotic and abiotic stress [29,135]. In addition, miR159/319 and
miR172 accumulation positively correlated with immune responses during Tomato leaf
curl virus (ToLCV) infection, indicating that miR159/319 and miR172 might be associated
with the response to viral infection in tomato [136]. In pear, pbr-miR156, pbr-miR164, pbr-
miR399 and pbr-miR482 are induced during Apple stem pitting virus (ASPV) infection and
then trigger its target genes to participate in viral defense pathways [137]. Overexpressed
miR396 not only plays roles in drought response in A. thaliana [127] and cold tolerance
in orange [119], but also has resulted in plant tolerance under the attack of necrotrophic
fungal pathogens [138]. Previous reports have shown that lncRNA not only plays essential
roles in diverse biological processes, but also in various stress responses. LncRNA4504
positively regulated methyl jasmonate (MeJA)-induced tomato fruit resistance to B. cinerea
by promoting the accumulation of total phenols and flavonoids and upregulating the
expression of JA signal pathway genes [139].

The most effective postharvest technology to maintain fruit quality is to delay the fruit
senescence process, such as cold storage after the fruit is harvested. Thus, in incorporating
the dynamic environments, important alterations in non-coding RNA transcriptomes are
observed in many plant species, which has led to the general view that plants utilize
ncRNAs as part of their arsenal to cope with the wide array of microbial pathogens they
encounter (Table 1). Further investigation might help to find clues to a better understanding
of the consequences of ncRNA attenuation under biotic and abiotic stress and its putative
success under field conditions.
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Table 1. miRNAs and lncRNAs with functional verification in fruit crops.

Fruit Biology Classification Species Non-Coding RNA Targets/Downstream Functionally in Fruit
Quality Research Methods References

Fruit development Fruit size and number

arabidopsis

miR172C APETALA2-like silique fruit expansion stable (MIR172C::GUS,
MIR172CAuxRE::GUS) [21]

miR159a/b MYB33/MYB65
altered growth habit, curled
leaves, small siliques, and
small seeds

T-DNA mutants (mir159ab
double mutant) [40]

apple miR172p AP2 reduced fruit size, altered
floral organ development

stable (MIR172p OE in
tomato) [22,23]

tomato

miR156 SPL fruit growth, ovary and
fruit development stable (AtMIR156b OE) [15]

miR159 SlGAMYB2 (GA
biosynthesis gene) larger fruits STTM-miR159 [41]

miR172d AP2 floral organ identity and
number

CRISPR/Cas9
(slmir172c-dCR) [24]

miR396a/b GRF a larger plant, with bigger
flowers, leaves, and fruits STTM-miR396 [35–37]

miR1917 CTR4 (altered ethylene
response) fruit size, bigger fruit STTM-miR1917 [39]

miR171a SlGRAS24 and SlGRAS40
(altered gibberellin and auxin)

cell number and size,
smaller tomato fruit GRAS24 OE [34]

miR164a NAM2/3 decreased fruit size
CRISPR/Cas9 (slmir164a,
slmir164b, slmir164d,
slmir164CR)

[38]
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Table 1. Cont.

Fruit Biology Classification Species Non-Coding RNA Targets/Downstream Functionally in Fruit
Quality Research Methods References

Fruit development

fruit set

tomato

miR159 SlGAMYB2 (GA biosynthesis
gene)

fruit morphology,
precocious fruit
initiationflattened, fruit
with more locules inside

SlMIR159 OE [11]

miR160 ARF10, ARF16 and ARF17

sugar accumulation, leaf
and flower development,
somatic embryo
development, pear-shaped
fruit

STTM-miR160 [12,46,47]

miR166 SlREV fruit formation
Overexpression of a
microRNA166-resistant
version of SlREV
(35S::REVRis)

[50]

miR168 SlAGO1s fruit initiation and growth

miR168 loss-of-function
(four-point-mutated
miR168-resistant
4m-SlAGO1A and
4m-SlAGO1B)

[56]

pear PbrmiR397a LACs
stone cell formation,
reduced lignin content and
stone cell number

transient (PbrmiR397a OE,
pear), stable (PbrmiR397a
OE, tobacco)

[51]

longan miR160 ARF10, -16, and -17 somatic embryo
development

target mimics
down-regulate miR160 [52]

seed develop-
ment/parthenocarpy tomato

miR159 GAMyb-like1 and GAMyb-like2 parthenocarpy SlMIR159 OE [11]

miR166 SlHB15A parthenocarpic fruit set
used TILLING to screen for
SlHB15A miR166-resistant
alleles

[57]

miR167 SlARF8 parthenocarpy downregulation of miR167 [11]

miR168 SlAGO1s parthenocarpy miR168-resistant
4m-SlAGO1A [56]

miR172 AP2 small parthenocarpic
fruit-like organ

CRISPR/Cas9
(slmir172c-dCR) [24]
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Table 1. Cont.

Fruit Biology Classification Species Non-Coding RNA Targets/Downstream Functionally in Fruit
Quality Research Methods References

Fruit ripening fruit color

litchi
miR156a * LcSPL1/2 anthocyanin biosynthesis High-Throughput

Sequencing and Degradome
Analysis

[67]
NEW41 * CHI anthocyanin accumulation

pear miR156 * SPL Red Peel Coloration,
anthocyanin biosynthesis Degradome Library [73]

blueberry
miR156a VcSPL12 anthocyanin accumulation VcMIR156a OE in tomato [66]

miR396 * FtsZs coloration Small RNA and Degradome
Sequencing [77]

miR_n10 * BAG1 coloration

apple

miR172 AP2-MYB10 flavonoidse, reduction in
red coloration miR172 OE [80]

MLNC3.2 and
MLNC4.6 (lncRNA) miR156a-SPL2-like and SPL33 anthocyanin biosynthesis

transient (35S::MLNC3.2,
35S::MLNC4.6,
OE-miR156a)

[75]

miR7125
(light-induced) MYB16/MYB1-CCRs

promoted anthocyanin
synthesis, reduced lignin
biosynthesis

transient (miR7125 OE) [79]

MdLNC499
(lncRNA) MdERF109 fruit coloration

transient (TRV-MdLNC499,
TRV-MdERF109, apple
fruit), stable (MdLNC499
OE, MdLNC499 RNAi,
MdERF109 OE, MdERF109
RNAi, apple calli)

[78]

mdm-miR828 TAS4-MdMYB1 inhibited anthocyanin
synthesis

transient (mdm-miR828 OE,
apple, stable (mdm-miR828
OE, Arabidopsis)

[82]

miR858 * MYB anthocyanin biosynthesis small RNA-seq [26]

sea buckthorn LNC1
(lncRNA)-miR156a SPL9 anthocyanin accumulation transient (TRV-LNC1) [76]
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Table 1. Cont.

Fruit Biology Classification Species Non-Coding RNA Targets/Downstream Functionally in Fruit
Quality Research Methods References

Fruit ripening

fruit color

grape

miR858 VvMYB114 anthocyanin and flavonol
accumulation

Degradom, transient/stable
(VvMYB114 OE, tobacco) [69]

miR156 SPL9 promoted fruit coloration miR156b/c/d OE in tomato [74]

miR3627 * calcium-transporting
ATPase10 anthocyanin accumulation sequencing small RNAs,

bioinformatics analysis [101]

miR828 VvMYB113/VvMYB114 anthocyanin and flavonol
accumulation vvi-miR828 OE, Arabidopsis [69]

arabidopsis

miR828 MYB75, MYB90, and MYB113 anthocyanin accumulation AtmiR828 OE [68]

miR858a MYB2 anthocyanin accumulation,
anthocyanin biosynthesis STTM-miR858 [72]

miR156 SPL9 and SPL15 anthocyanin biosynthesis MIR156b OE [65]

tomato miR858 SlMYB7 and SlMYB48 anthocyanin accumulation STTM-miR858 [70]

kiwifruit miR858 AaMYBC1 anthocyanin biosynthesis transient (miR858 OE) [71]

fruit ripening, fruit
softening and fruit

quality
persimmon

miR395 * bHLH tannin biosynthesis

high-throughput
sequencing [83]

miR156 * SPL tannin biosynthesis

miR396 * Flavonoid
3-O-glucosyltransferase (UFGT) tannin biosynthesis

miR858 * MYB19/20 reduced the content of
proanthocyanidin (PA)

miR2991 * ADH tannin biosynthesis
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Table 1. Cont.

Fruit Biology Classification Species Non-Coding RNA Targets/Downstream Functionally in Fruit
Quality Research Methods References

Fruit ripening
fruit ripening, fruit
softening and fruit

quality

strawberry

FRILAIR
(lncRNA)-miR397 LAC11a delayed fruit ripening

transient (miR397 OE,
Cas13b-miR397, ocotoploid
strawberry)

[100]

fan-miR73 ABI5 fruit ripening 5′ -RACE analysis [85]

miR399 PHO2 flavor, sugar content miR399a OE (woodland
strawberry) [84]

tomato

miR157 SPL-CNR delayed fruit ripening miR157 OE [86,87]

miR156 SPL accelerates tomato fruit
softening VIGS-miR156a [87]

miR172 AP2a
accelerates fruit ripening
with enhanced ethylene
biosynthesis

miR172 OE [105]

miR166 SlREV fruit ripening
35S::REVRis (EIN3, ERFs,
AP2, and CTR3
downregulated)

[50]

miR828 * EIN2 ethylene-dependent
ripening

high throughput
sequencing [108]

miR1917 CTR4
enhances ethylene response
and accelerates fruit
ripening

miR1917 OE [107]

lncRNA2155
(lncRNA) RIN, CNR, NOR, ACS4, PSY1 delayed fruit ripening CRISPR/Cas9 (lncRNA2155

KO) [98]

lncRNA1459
(lncRNA) PSY1, PDS, ZDS ripening, ethylene

biosynthesis
CRISPR/Cas9 (lncRNA1459
KO) [10,17]

lncRNA1840
(lncRNA) ripening-related genes ripening, ethylene

biosynthesis TRV-lncRNA1840 [10]

kiwifruit miR164 NAC6/7 fruit ripening miR164 OE (kiwifruit callus) [88]

apple miR7125 MYB16/MYB1-CCRs reduced lignin biosynthesis transient (miR7125 OE,
apple fruit) [79]

melon cme-miR393 CmAFB2 delayed fruit ripening cme-miR393-OE [89]
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Table 1. Cont.

Fruit Biology Classification Species Non-Coding RNA Targets/Downstream Functionally in Fruit
Quality Research Methods References

Fruit ripening
fruit ripening, fruit
softening and fruit

quality
grapes

miR479 * BGA

fruit softing deep sequencing,
bioinformatics analysis [101]

miR399 * ACO3

miR397 * LOX

miR3627 * Grip22/PAL

miR2950 * CHS

miR22 * PE

biotic and abiotic
stress in fruit

cold response

arabidopsis CIL1 (lncRNA) ROS enhances cold stress
tolerance T-DNA insertion mutants [124]

orange miR396b GRF cold tolerance ptr-miR396b OE (transgenic
lemon (Citrus limon)) [119]

banana miR393 * TIR1/AFB cold stress-specific response bioinformatics analysis [121]

mango CRlnc26299 *
(lncRNA) RC12B chilling tolerance Computational

Identification [120]

salt tolerance
arabidopsis

miR396 GRF salt tolerance
target mimicry (eTM)
transgene specific to
miR396

[111]

miR393a/b TIR1 salt stress resistance and
ABA signaling pathways mir393ab double mutant [109,110]

pitaya miR396 * GRF stress response bioinformatics analysis [112]

heat tolerance

tomato miR396 * GRF drought and heat stress bioinformatics analysis [125]

arabidopsis miR160 ARF10, ARF16, and ARF17 heat stress tolerance eTM-miR160 [116]

banana miR156 * SPL heat stress response bioinformatics analysis [121]

mango
MmiR78769 and
MmiR101928
(lncRNA)

phospholipase A and
phospholipase D biotic and abiotic stresses Computational

Identification [120]
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Table 1. Cont.

Fruit Biology Classification Species Non-Coding RNA Targets/Downstream Functionally in Fruit
Quality Research Methods References

biotic and abiotic
stress in fruit

heat tolerance pear
Novel_188 Pbr027651.1 mediate fruit senescence transient (Novel_188 OE) [118]

LNC_000862 *
(lncRNA) miR390a-Pbr031098.1 heat tolerance bioinformatics analysis [122]

drought response

arabidopsis

miR396a/b GRF drought tolerance 35S::MIR396a and
35S::MIR396b [127]

miR159 MYB101 and MYB33 drought tolerance miR159 OE [128]

DRIR (lncRNA) genes involved in ABA signaling Enhances Drought and Salt
Stress Tolerance DRIR OE [129]

tomato

miR169 NFYA

drought and heat stress

STTM-miR169 [126]

miR159 * MYB

bioinformatics analysis [125]
miR160 * ARF

miR167 * ARF

miR393 * auxin receptor homologous
genes

pathogen defense

arabidopsis miR396 GRF pathogen defense miR396 target mimics lines [138]

apple Md-miRLn11 Md-NBS pathogen defense bioinformatics analysis [132]

tomato

SlymiR482e-3p NBS-LRR enhanced resistance to
tomato wilt disease slymiR482e-3p KO lines [133]

miR156 * SPL response to ToLCV
infections bioinformatics analysis [29,135]

miR159/319 AP2-like viral response (tomato leaf
curl new delhi virus
(tolcndv))

MicroRNA profiling
[136]

miR172 TCP, bHLH [136]

LncRNA4504
(lncRNA) JA signal pathway genes pathogen defense (Botrytis

cinerea) TRV-lncRNA4504 [139]

pear

pbr-miR156 * pbRPS6

viral defense bioinformatics analysis [137]
pbr-miR164 * pbNAC

pbr-miR399 * pbTLR

pbr-miR482 * pbRX-CC

The asterisk (*) represents bioinformatics analysis data.
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5. Conclusions and Perspective

It can be inferred that miRNA and lncRNA are important regulators in fruit crops. In
both dry and fleshy fruit systems, specific miRNAs and lncRNAs are identified, and their
roles are essential in the organization of a functional final organ structure, fruit ripening and
stress tolerance (Table 1 and Figure 1). Functional studies have revealed that some miRNA
regulatory modules are universally important to fruit crops; for instance, miR828/miR858-
MYB regulates anthocyanin accumulation, miR396-GRF regulates plant growth and stress
response, miR156-SPL regulates fruit metabolism, and miR172-AP2 regulates fruit size and
anthocyanin biosynthesis (Figure 2). Thus, miRNA-mediated genetic engineering methods
could represent an effective approach for the development of superior characters. This
is probably an economic way to develop important agricultural traits or innovations by
fine-tuning miRNAs instead of suppressing a large number of genes, and it will also allow
breeders to obtain a commercially valuable crop species in a short time.
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Figure 2. Models of miRNA regulatory modules in fruit crops. (A) The miR828/miR858-MYB module
regulates anthocyanin accumulation in Arabidopsis, tomato, apple, grape, kiwifruit and persimmon,
respectively. (B) The miR396-GRF module regulates plant growth and stress response in Arabidopsis,
tomato, orange and pitaya, respectively. (C) The miR156-SPL module regulates fruit metabolism in
Arabidopsis, apple, pear and persimmon, respectively. (D) The miR172-AP2 module regulates fruit
size and anthocyanin biosynthesis in Arabidopsis, tomato and apple.
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The involvement of miRNAs in several agriculturally important traits that have been
improved to date using CRISPR/Cas9 include crop productivity, quality, and biotic and
abiotic stress resistance [140]. For example, generating mutations in MIR396e and MIR396f
increases the grain size and modulates the shoot architecture in rice using a multiplex
CRISPR/Cas9-based genome engineering tool [141]. For fruit crops, few studies are avail-
able on the CRISPR/Cas9 editing of miRNA family and lncRNA mutants, and much more
work is needed to decipher miRNA-mediated regulatory networks. In addition, many
genome editing tools are continually developed, thus finding valuable editing switch sites
that are important for creating new agronomic traits instead of one or several gene edits.
This is a broadly adopted regulatory strategy during plant evolution and it is practical
for crop improvement. A growing body of evidence shows the prime editing system
applied in plants [142–144], suggesting that the prime editing tool would be a promising
technology to introduce the desired modification and breed elite crop varieties in fruit
crops. We believe that with further understanding of miRNA- and lncRNA-based cellular
regulatory networks, additional technologies will emerge for the improvement of fruit
agricultural traits.

In particular, a better characterization of the miRNAs and lncRNAs, which can coordi-
nate the main steps of fruit development and ripening in different plant species, may result
in the development of novel strategies for fruit crop management. One of the most impor-
tant challenges in the future will be to functionally analyze more miRNA modules and
lncRNA networks in fruit crops, as well as the further achievement of efficient transgene-
free genome editing via the CRISPR system in fruit crops. We outline future perspectives in
developing miRNA/lncRNA-based breeding strategies for fruit crop improvement and
applying genome editing tools for modulating agriculturally important traits.
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