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Abstract: Extremely low-frequency magnetic fields are thought to be capable of modulating the
resistance of plants to adverse factors, particularly drought. Magnetic fields in this frequency range
occur in nature in connection with so-called Schumann resonances, excited by lightning discharges in
the Earth–ionosphere cavity. The aim of this work was to identify the influence of a magnetic field with
a frequency of 14.3 Hz (which corresponds to the second Schumann harmonic) on the transpiration
and photosynthesis of wheat plants under the influence of drought. The activity of photosynthesis
processes, the crop water stress index, relative water content and leaf area were determined during
drought intensification. At the end of the experiment, on the 12th day of drought, the length, and
fresh and dry weight of wheat shoots were measured. The results obtained indicate a protective effect
of the magnetic field on plants in unfavorable drought conditions; the magnetic field delayed the
development of harmful changes in the transpiration and photosynthesis processes for several days.
At the same time, in the absence of the stressor (drought), the effect of the electromagnetic field was
not detected, except for a decrease in relative transpiration. In favorable conditions, there were only
minimal modifications of the photosynthetic processes and transpiration by the magnetic field.

Keywords: extremely low-frequency magnetic field; Schumann resonance; drought; Triticum aestivum L.

1. Introduction

Earth’s magnetic field (MF) is of great significance for the formation of the modern at-
mosphere and the evolution of life on Earth [1]. Along with the slowly varying geomagnetic
field (the so-called main geomagnetic field), the biosphere is affected by alternating MFs of
natural and man-made origin. Whereas the geomagnetic field does not change significantly
during the life of an individual living organism, the intensity of variable MFs is perma-
nently changing owing to various natural and man-made factors. This is the reason for the
high interest of researchers in the effects of alternating MFs on living organisms, including
plants [2,3]. Among the frequencies of alternating MFs in the super-low-frequency (SLF
30–300 Hz) and extremely low-frequency (ELF 3–30 Hz) bands, special attention is given
to 50–60 Hz (a pronounced anthropogenic component) [4,5]. Less attention is paid to the
frequencies of oscillations in the Earth–ionosphere resonator (7.8, 14.3, 20.8 Hz), which are
called Schumann resonances (ScR) [6,7]. Despite the fact that the mechanisms of perception
of variable MFs by plants are currently hypothetical, a number of works have reliably
established the influences of MFs on the most important physiological processes, including
photosynthesis, transpiration, respiration, cell division, antioxidant status, etc. [2,8–10].
The observed effects have been recorded mainly for alternating MFs of high intensity. In the
case of alternating MFs of relatively low intensity, the effects are often weakly expressed or
absent under stationary conditions [11,12], but they manifest themselves during transient
processes when the environmental conditions change. In particular, in our previous works,
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such a pattern was established in relation to the activity of photosynthesis and the electric
potential in wheat plants under the action of an alternating MF with a frequency of 14.3 Hz
and an intensity of 3–180 µT, and the greatest effect was revealed under the influence of an
ELF MF of 18 µT [13–15].

It is known that plant responses to changes in environmental conditions are formed
with the participation of intracellular and intercellular signaling systems, the operation of
which plays a decisive role in the development of plant resistance to stress factors [16,17].
The effects of MFs on plant resistance have been studied in relation to stress factors such
as pathogens, salinization, cold stress, etc. [10,17–21]. Particular attention has been paid
to the effects of MFs on drought tolerance owing to the importance of this stressor for
agricultural production. The protective effects of low-frequency MFs in relation to various
crops have been shown [18,20–23]. However, while the effects of MFs on plant resistance to
drought have been established in the case of a preliminary treatment of seeds with MFs
(seed priming), they have not been studied in relation to vegetating plants [21]. It should
be noted that, like other abiotic factors, the same MF causes a more pronounced response
when treating plants in the vegetative stage, rather than seeds [2,3,24–26]. In the case of
seed priming, the influence of MFs is based on regulation at the genome level, which can
provide long-term effects [27,28]. At the same time, in a case when an MF affects vegetating
plants, the response may also be due to the direct influence of the MF on physiological
processes, as well as on the signaling systems that control them.

The above assumption is based on the effects of ELF MFs on the activities of key
signaling systems, including calcium, ROS, and the hormonal system, which have been
identified to date [2,15,21,29–31]. In particular, the influence of an alternating MF with a
frequency of 14.3 Hz on wheat plants has an effect on the activity of antioxidant enzymes—
key participants in ROS signaling [32].

The purpose of this article is to analyze the effects of a magnetic field with a frequency
of 14.3 Hz (close to the frequency of the second ScR harmonic) in combination with drought
on the water status and photosynthetic activity of wheat plants. The main distinguishing
features of our approach, which made it possible to obtain the results of this article, are
as follows:

• Focus on studying the effect of a low-intensity alternating MF on plants under
stress (drought);

• Focus on the Schumann range (from several Hz to several tens of Hz), particularly the
second ScR harmonic (chosen on the basis of the results of our previous studies);

• The MF acting on plants throughout the entire growing period, particularly during
the development of a response to the stressor;

• The treatment mode chosen based on the assumption that plant signaling systems
play an important role in the responses to the MF and stress;

• The use of a wide range of diagnostic tools that enable the non-invasive monitoring
of the activities of key physiological processes in plants during the entire period
of observation.

2. Results
2.1. Electromagnetic Field Effects on Growth Parameters under Control and Drought Conditions

The experimental magnetic field (frequency 14.3 Hz, magnetic induction 18 µT) did
not cause significant changes in the appearance of the plants: there was no difference in
appearance between the groups “Control” and “MF”. Only the plants exposed to drought
(without MF) showed a loss of turgor (Figure 1).
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Figure 1. Photos of plants in various experimental groups (on the 12th day of drought). 

The experimental magnetic field did not affect the length or fresh and dry weight of 
wheat leaves in normal watering conditions (Figure 2). In the absence of the MF, a 12-day 
drought caused a loss of turgor in the plant shoots and a strong decrease in the fresh 
weight (by 10 times) and dry weight (by 27%). When plants growing under the action of 
the MF were exposed to drought, there was no such severe dehydration: the fresh weight 
of plants in the “Drought + MF” group was twice as much as that of the “Drought” group. 
At the same time, the dry weight and length of the plants in these two groups did not 
differ. Thus, the effects of the magnetic field on the mass and size of the plants did not 
appear in normal watering conditions but manifested under the influence of drought. 

 
Figure 2. Fresh weight, dry weight and length of the wheat shoots grown under exposure to MF 
and drought. # indicates a significant difference compared to the “Control”, p < 0.05; * indicates a 
significant difference between “Drought + MF” and “Drought”, p < 0.05. 

The leaf area of wheat seedlings under normal watering conditions gradually in-
creased. The magnetic field did not modify the leaf area of the “MF” group compared to 
the “Control” (Figure 3). During the drought, the visible leaf surface area decreased. With-
out the experimental magnetic field, the decrease began on the 6th day of the drought. For 
the plants grown in the magnetic field, the decrease in the visible leaf area started only on 
the 10th day of the drought (i.e., it was delayed by 4 days). The decrease in the visible leaf 

Figure 1. Photos of plants in various experimental groups (on the 12th day of drought).

The experimental magnetic field did not affect the length or fresh and dry weight of
wheat leaves in normal watering conditions (Figure 2). In the absence of the MF, a 12-day
drought caused a loss of turgor in the plant shoots and a strong decrease in the fresh weight
(by 10 times) and dry weight (by 27%). When plants growing under the action of the MF
were exposed to drought, there was no such severe dehydration: the fresh weight of plants
in the “Drought + MF” group was twice as much as that of the “Drought” group. At the
same time, the dry weight and length of the plants in these two groups did not differ. Thus,
the effects of the magnetic field on the mass and size of the plants did not appear in normal
watering conditions but manifested under the influence of drought.
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Figure 2. Fresh weight, dry weight and length of the wheat shoots grown under exposure to MF
and drought. # indicates a significant difference compared to the “Control”, p < 0.05; * indicates a
significant difference between “Drought + MF” and “Drought”, p < 0.05.

The leaf area of wheat seedlings under normal watering conditions gradually increased.
The magnetic field did not modify the leaf area of the “MF” group compared to the
“Control” (Figure 3). During the drought, the visible leaf surface area decreased. Without
the experimental magnetic field, the decrease began on the 6th day of the drought. For the
plants grown in the magnetic field, the decrease in the visible leaf area started only on the
10th day of the drought (i.e., it was delayed by 4 days). The decrease in the visible leaf area
during the drought is most likely due to the loss of turgor, since the fresh weight of the
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plants in the drought conditions greatly decreased, and the length of the leaves did not
change significantly (Figures 1–3).
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Figure 3. Dynamics of the leaf area of wheat plants grown under MF and drought conditions. The
abscissa axis shows the days of drought after watering was discontinued. # indicates a significant
difference compared to the “Control”, p < 0.05; * indicates a significant difference between “Drought
+ MF” and “Drought” p < 0.05.

2.2. Electromagnetic Field Effect on Photosynthesis under Control and Drought Conditions

With a normal water supply, the magnetic field did not affect the light-dependent
photosynthesis reaction: the dynamics of Fv/Fm, φPSII, and NPQ in the “Control” and
“MF” groups did not differ (Figure 4). In the absence of the MF, the drought modified all
of the registered photosynthesis parameters. First, φPSII decreased starting from the 8th
day of the drought. Then, the NPQ increased sharply starting from the 9th day. Finally, on
the 10th day after the start of the drought, a sharp decrease in the Fv/Fm began, which
indicated the disintegrity of the photosynthetic apparatus. The magnetic field slowed down
all the registered effects of the drought on the photosynthetic reactions. The changes in
the “Drought + MF” group were similar to those in the “Drought” group but manifested
themselves 1–2 days later. Thus, in our experiment, an MF with a frequency of 14.3 Hz had
a protective effect on photosynthetic reactions in wheat leaves, expressed in the deceleration
of the development of destructive processes in them.

2.3. Magnetic Field Effect on Water Status under Control and Drought Conditions

In the case of regular watering, plants in the “MF” group had a crop water stress
index (CWSI) 20% lower than those in the “Control” group (Figure 5). A lower level
of transpiration was observed in the youngest plants, and from the third day of CSWI
monitoring there was no difference between the plants in the “Control” and “MF” groups.

In the case of drought, on the 3rd day after the cessation of watering, the CWSI was
1.3 times lower than the control. On the 4th–6th days of the drought, it was two times
lower, and on the 8th–11th days, it was three times lower than the control level. In the
“Drought + MF” group, the CWSI also decreased, but with a delay of 1–2 days before the
response. In general, the changes in transpiration in the “Drought” and “Drought + MF”
groups were similar but differed in the time of onset of the decrease in their levels.



Plants 2023, 12, 826 5 of 13
Plants 2023, 12, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 4. Photosynthesis activity indexes for the leaves of wheat plants grown under MF and 
drought conditions. The abscissa axis shows the days of drought after watering was discontinued. 
# indicates a significant difference compared to the “Control”, p < 0.05; * indicates a significant dif-
ference between “Drought + MF” and “Drought” p < 0.05. 

  

Figure 4. Photosynthesis activity indexes for the leaves of wheat plants grown under MF and drought
conditions. The abscissa axis shows the days of drought after watering was discontinued. # indicates
a significant difference compared to the “Control”, p < 0.05; * indicates a significant difference between
“Drought + MF” and “Drought” p < 0.05.



Plants 2023, 12, 826 6 of 13

Plants 2023, 12, x FOR PEER REVIEW 6 of 13 
 

 

2.3. Magnetic Field Effect on Water Status under Control and Drought Conditions 
In the case of regular watering, plants in the “MF” group had a crop water stress 

index (CWSI) 20% lower than those in the “Control” group (Figure 5). A lower level of 
transpiration was observed in the youngest plants, and from the third day of CSWI mon-
itoring there was no difference between the plants in the “Control” and “MF” groups. 

In the case of drought, on the 3rd day after the cessation of watering, the CWSI was 
1.3 times lower than the control. On the 4th–6th days of the drought, it was two times 
lower, and on the 8th–11th days, it was three times lower than the control level. In the 
“Drought + MF” group, the CWSI also decreased, but with a delay of 1–2 days before the 
response. In general, the changes in transpiration in the “Drought” and “Drought + MF” 
groups were similar but differed in the time of onset of the decrease in their levels.

 

Figure 5. Coefficient of relative transpiration of wheat leaves grown under MF and drought condi-
tions. The abscissa axis shows the days of drought after watering was discontinued. # indicates a 
significant difference compared to the “Control”, p < 0.05; * indicates a significant difference between 
“Drought + MF” and “Drought” p < 0.05. 

During regular watering, the MF did not affect the relative water content (RWC) in 
the plants and soil (Figure 6). 

 
Figure 6. The relative water content (RWC) in the leaves of wheat plants and in the soil. The abscissa 
axis shows the days of drought after watering was discontinued. # indicates a significant difference 
compared to the “Control”; * indicates a significant difference between “Drought + MF” and 
“Drought”. 

Figure 5. Coefficient of relative transpiration of wheat leaves grown under MF and drought condi-
tions. The abscissa axis shows the days of drought after watering was discontinued. # indicates a
significant difference compared to the “Control”, p < 0.05; * indicates a significant difference between
“Drought + MF” and “Drought” p < 0.05.

During regular watering, the MF did not affect the relative water content (RWC) in
the plants and soil (Figure 6).
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Figure 6. The relative water content (RWC) in the leaves of wheat plants and in the soil. The
abscissa axis shows the days of drought after watering was discontinued. # indicates a significant
difference compared to the “Control”; * indicates a significant difference between “Drought + MF”
and “Drought”.

In the case of the drought, the magnetic field action was expressed in a significantly
higher value of the RWC index of the leaves in the “Drought + MF” plant group (64%)
compared to the “Drought” (27%) on the 12th day after watering was discontinued. At the
same time, the MF contributed to the preservation of a higher level of soil RWC, namely,
13% in the “Drought + MF” group compared to 10% in the “Drought” group.

Thus, in normal watering conditions, there was no effect of the experimental MF on
the growth, photosynthesis and water status of the wheat plantlets. A protective effect
of the magnetic field on the plants was observed in unfavorable drought conditions: the
magnetic field delayed the development of adverse changes for several days.
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3. Discussion

The experiments showed that continual exposure to an MF with a frequency of 14.3 Hz
(the second ScR harmonic) and a magnitude of 18 µT did not affect the morphometric
parameters (shoot length, dry and fresh weight) of wheat plants in normal conditions
(Figure 1). In the experiments of other authors using similar exposure parameters, either
there was also no effect of the MF on the morphometric parameters, or there was a stimula-
tion caused by the MF [2,9,10,18,19]. However, when analyzing and comparing the results,
it should be taken into account that the existing literature, as a rule, concerns the short-term
irradiation of seeds with MFs of high intensity and different frequencies, which differs from
our exposure conditions. This may influence the results obtained for the following reasons:
the effects of short-term, abrupt exposure and continual exposure differ significantly; the
effect on seeds may differ from the effect on plants in the vegetative stage; the strength and
direction of the response depend on the intensity of the factor, owing to the complex shape
of the dose–response relationship; and the effects of the selected frequency (corresponding
to the ScR), hypothetically, may differ from the effects of other frequencies [7,26].

Morphometric parameters of plants are largely determined by the activities of photo-
synthetic processes. In our experiments, the MF did not affect the main indicators of the
light-dependent stage of photosynthesis (Fv/Fm, ΦPSII, NPQ) when plants were grown in
the absence of the stressor (groups “Control” and “MF”) (Figure 4). This agrees with the
data from the literature, according to which the activity of photosynthesis, as well as the
morphometric parameters, does not change under the action of MFs with characteristics
similar to ours [13,14,18]. At the same time, some studies have demonstrated the stimu-
lating effect of the MF [2,8–10]. It has been shown that the MF influence is realized due
to both changes in the number of structural components (photosynthetic pigments and
individual photosynthetic enzymes, for example, Rubisco) and changes in the activity of
the light-dependent reactions associated with the electron transport chain and changes in
the rate of absorption of CO2 [2,8,10,13,14,19,33,34].

Despite the fact that, in the absence of the stressor, exposure to the MF does not
affect integral indicators of the state of plants such as the morphometric parameters and
photosynthesis activity, the effect of the MF on stomatal conductivity has been observed.
In the presence of the MF, the stomatal conductivity, estimated by the value of the CSWI
index, was at a lower level compared to the control during the growth of wheat seedlings
(Figure 5). It is reported in the literature that the MF increases the water content in the body,
reduces the magnitude of water and osmotic potentials, and, in general, “improves” water
balance [8,10,19,20,35]. This effect can be based on both structural (an increase in the width
and area of the veins or an increase in the amount of cuticular wax around the stomata)
and functional changes (including a decrease in stomatal conductivity under the influence
of the MF), as described in a number of works [18,27,36]. As a potential mechanism of
the influence of the MF on stomatal conductivity, one can assume a change in the content
of the phytohormone ABA, which controls the process of transpiration in plants. In turn,
it should be emphasized that the pathways of ABA synthesis and signaling are closely
related to ROS [37], and ROS signaling processes are now considered to be one of the main
mechanisms of MF influence on plants [2]. In view of the lack of data in the literature on the
effects of MFs on the hormonal system of plants, such an assumption requires additional
experimental verification.

As the most interesting result obtained in this work, it is necessary to note the effect
of a low-frequency MF on wheat plants, which is weakly expressed under normal condi-
tions but manifests itself far more strongly in the presence of an additional stress factor,
namely drought. The MF had a pronounced protective effect, as indicated by the higher
morphometric parameters of plants from the “Drought + MF” group compared to plants
from the “Drought” group (Figure 1). The observed effect of the MF on plants during the
vegetative stage is in good agreement with earlier findings indicating that the effect of MFs
on seeds increases the resistance of adult plants to various unfavorable factors, including
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drought, salinization, excessive contents of heavy metals, cooling, damage by pathogens,
etc. [10,18–20,38].

When analyzing the mechanisms of the protective effect of MFs in drought conditions,
most attention was paid to the activity of photosynthesis owing to its close relationship
with plant growth. During the experiments, it was shown that both in the “Drought” group
and in the “Drought + MF” group, water deficiency caused a decrease in the morphometric
parameters and an inhibition of photosynthesis, which was expressed first as a regulated de-
crease in activity (an increase in NPQ and a decrease in ΦPSII) and then as a violation of the
structural integrity of the photosynthetic apparatus (a decrease in Fv/Fm) (Figures 3 and 4).
It was found that the protective effect of the MF observed in our experiments is expressed
mainly in a shift of the time of onset of drought-induced responses, rather than in a change
in their magnitude. This pattern was shown for both the morphometry and estimated by
leaf area and for all parameters of the activity of the photosynthetic apparatus.

The intensity of photosynthesis in drought conditions may decrease owing to (1) the
lack of CO2 due to the closure of the stomata and (2) disturbances in the activity of
individual photosynthetic processes, followed by the occurrence of structural damage
caused by the lack of water in the tissues [39–42]. The closing of stomata to conserve
water and the opening of stomata to maintain CO2 concentration in drought conditions are
competing processes [42]. Apparently, in our experiments, the decrease in photosynthesis
was mainly a consequence of the decrease in the water content in the tissues and not of a
CO2 deficiency caused by the closure of stomata. This is indicated by the parameters of
the dynamics of these characteristics. Our experiments showed that in drought conditions,
stomatal conductivity rapidly decreases (Figure 5), but the decrease in photosynthesis
activity (Figure 4) begins only a few days afterwards. At the same time, the beginning of
the decrease in photosynthesis coincides with the beginning of the decrease in the water
content (Figure 6). It should be noted that, despite the difference in dynamics, stomatal
conductivity and water content in tissues are closely related. The water content in the
tissues of wheat plants remains at a high level for a long time, even at the onset of water
deficiency in the soil (Figure 6). This is apparently associated with the early decrease in the
conductivity of the stomata (Figure 5). Since the decrease in stomatal conductivity is one
of the earliest responses to drought, one can assume that it is initiated by the propagation
of some highly sensitive remote stress signals from the root that can cause the stomata
to close [41,43]. The MF shifted the time of the beginning of the decrease in stomatal
conductivity and then that of the water content of plants in the “Drought + MF” group
(Figures 5 and 6). This result correlates well with the effects of the MF on the dynamics of
photosynthetic and morphometric parameters during drought.

The most likely reason for the longer maintenance of water in plants in the case of the
increased MF is the initially different level of stomatal conductivity (Figure 5). The lower
level of transpiration in plants exposed to the MF could contribute to a slower loss of water
from the soil during the onset of drought as compared to the control. This may underlie
the shift in the onset of the response to drought for all the other studied parameters.

In view of the known effects of MFs on the ROS content and activity of the antioxidant
system [2,21,29,31], it can be assumed that the protective effect of the MF during drought
may also be partly due to a modification of the redox balance maintenance system. In our
earlier work, we showed the effect of an MF with identical parameters on the activity of
antioxidant enzymes in wheat [32]. Considering that the damage during drought is closely
associated with an increased level of ROS, this assumption seems reasonable but requires
further analysis.

In general, the obtained results indicate that the effect of the low-frequency MF on
wheat plants is much more pronounced in the presence of an additional factor than without
the stressor. The observed effect is consistent with the earlier reported effects of MFs with
similar characteristics on the activity of photosynthesis and the magnitude of the electric
potential, which were also more pronounced in “transitional” (during the transition from
darkness to light), rather than stationary, conditions [13–15].
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4. Materials and Methods
4.1. Experiment Design

The objects of the study were wheat plantlets (Triticum aestivum L.). The plants were
sprouted and grown for 14 days and then divided into two groups: one group (NO MF)
was in a geomagnetic field, while the other (MF) grew when an electromagnetic field was
applied with a frequency of 14.3 Hz and magnetic induction of 18 µT (Figure 7). During
this time, the watering of all the plants was regular—once every 2 days.
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Figure 7. Scheme of the experiment.

The experimental alternating magnetic field was created using coaxially arranged
Helmholtz coils mounted on a wooden device with lighting. A region of a homogeneous
magnetic field with a diameter of 20 cm was located in the center between the coils
(Figure 8A). The given value of the magnetic field amplitude was a calculated value based
on the geometry and current of the coils. The presence (absence) of the magnetic field was
monitored with a simple inductive sensor. The control samples were based on a similar
design, but without Helmholtz coils (Figure 8B).

After two weeks, each of the groups was divided into 2 parts (Control and Drought).
The control plants continued to be watered in the same mode. In the drought groups,
watering was discontinued completely.

After the watering of the plants was discontinued, the activity of photochemical
processes, leaf area and the transpiration coefficient were registered. On days 4, 8 and 12 of
drought, the relative water content in the plant leaves and in the soil was determined. At
the end of the experiment, on the 12th day of drought, the length and fresh and dry weight
of the wheat shoots were measured.

4.2. Measurement of Growth Parameters

The length of the wheat plants was measured on the second leaf. The fresh and dry
weights of the plantlets were registered. For the dry weight estimation, the plants were
dried for 4 h at 85 ◦C to a constant weight.

The total area of plant leaves from one vegetative vessel was determined by chlorophyll
fluorescence using the Data Analysis Software Version 5.6.7-64b for Plant ExplorerPro+

(PhenoVation, Wageningen, The Netherlands).
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4.3. Measurement of Photosynthesis and Leaf Area

The photosynthesis activity was measured using the PAM imaging system Plant
ExplorerPro+ (PhenoVation, Netherlands). Seedlings were adapted to dark conditions for
20 min. The first saturation pulse (SP) with an intensity of 2881 µmol m−2s−1 was used for
the estimation of the initial and maximum rates of photosystem II fluorescence (F0 and Fm,
respectively). Actinic light (AL) with an intensity of 136 µmol m−2s−1 was used on the first
SP. Parameters of photosystem II, including the potential quantum yield of photosystem II
(Fv/Fm), the effective quantum yield of photosystem II (φPSII) and the non-photochemical
quenching of the chlorophyll fluorescence (NPQ), were calculated on the basis of F0, Fm
and Fm′ in accordance to the following standard equations: Fv/Fm = (Fm − F0)/Fm,
φPSII = (Fm′ − F)/Fm, NPQ = (Fm − Fm′)/Fm′. The leaf area was measured using the
software of Plant ExplorerPro+ [44,45].

4.4. Determining Transpiration and the Water Content

The relative transpiration was estimated using the crop water stress index (CWSI) and
was determined using a thermal imager Testo 885 (Testo, Lenzkirch, Germany). Each group
of plants was photographed simultaneously with reference samples of absolutely wet and
dry standards. The obtained images with temperature values were processed using IRSoft
software. On the thermogram of each experimental group, 20 independent points on the
leaves, as well as on the reference samples, were noted. The CWSI was calculated by the
following equation [46,47]:

CWSI = (Tdry − T)/(Tdry − Twet).

The relative water content (RWC) in the plant tissues and soil was calculated using the
ratio of fresh weight (FW) and dry weight (DW) of the leaves. The relative water content
was calculated by the following equation:

RWC (%) = 100(FW − DW)/FW.
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4.5. Statistics

Three independent experiments were performed. In each of them, the experimental
groups were represented by at least 6 repetitions. The mean value and the standard error
of the mean were calculated using MS Excel 2016. The reliability of the differences between
the groups was assessed by Student’s t-test.
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