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Abstract: Rapeseed is a significant oil crop, and the size and length of its pods affect its productivity.
However, manually counting the number of rapeseed pods and measuring the length, width, and
area of the pod takes time and effort, especially when there are hundreds of rapeseed resources
to be assessed. This work created two state-of-the-art deep learning-based methods to identify
rapeseed pods and related pod attributes, which are then implemented in rapeseed pots to improve
the accuracy of the rapeseed yield estimate. One of these methods is YOLO v8, and the other is the
two-stage model Mask R-CNN based on the framework Detectron2. The YOLO v8n model and the
Mask R-CNN model with a Resnet101 backbone in Detectron2 both achieve precision rates exceeding
90%. The recognition results demonstrated that both models perform well when graphic images of
rapeseed pods are segmented. In light of this, we developed a coin-based approach for estimating
the size of rapeseed pods and tested it on a test dataset made up of nine different species of Brassica
napus and one of Brassica campestris L. The correlation coefficients between manual measurement
and machine vision measurement of length and width were calculated using statistical methods.
The length regression coefficient of both methods was 0.991, and the width regression coefficient
was 0.989. In conclusion, for the first time, we utilized deep learning techniques to identify the
characteristics of rapeseed pods while concurrently establishing a dataset for rapeseed pods. Our
suggested approaches were successful in segmenting and counting rapeseed pods precisely. Our
approach offers breeders an effective strategy for digitally analyzing phenotypes and automating
the identification and screening process, not only in rapeseed germplasm resources but also in
leguminous plants, like soybeans that possess pods.

Keywords: instance segmentation; deep learning; rapeseed pods; length and width measure; counting

1. Introduction

Brassica napus (B. napus, AACC, 2n = 38), an annual heterotetraploidy plant that is
native to Europe, including the Mediterranean basin and several agricultural areas of
Northern and Western Europe since approximately 7500 years ago, was naturally crossed
and doubled from two diploid species, namely, Brassica oleracea (AA, 2n = 18) and Brassica
rapa (CC, 2n = 20) [1–3]. This plant is a key economic oilseed crop worldwide and accounts
for approximately 13–16% of global vegetable oil production [4–6]. Currently, Brassica
napus dominates rapeseed production in China and accounts for approximately 85% of
the total rapeseed planting area [7,8]. Rapeseed oil is also a valuable feedstock for biofuel
production, particularly biodiesel. The conversion of rapeseed oil into biodiesel offers a
cleaner and more sustainable alternative to fossil fuels and contributes to the reduction in
greenhouse gas emissions and air pollution. China, being one of the world’s largest energy
consumers, has a vested interest in expanding its biofuel production capacity to mitigate
environmental challenges and reduce its reliance on imported fossil fuels. However, with
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the growing demand for renewable energy sources and sustainable agricultural practices,
the cultivation of rapeseed pods has gained renewed attention in the context of the energy
industry in China [9,10].

The value of rapeseed seeds, which are a raw material in the oil industry, is strictly
dependent on varietal yield parameters, which are one of the most important elements
influencing crop production in China [11–13]. The rapeseed yield factor is becoming
increasingly multifaceted as an important grain and oil crop [14]. Several factor components,
such as plant type, plant height, the number of branches, inflorescence number, the number
of fruits in sequence, the number of grains per fruit, and thousand kernel weight, can
influence crop yield [15]. These components include pods, whose number, length, and
width have a substantial influence on yield [16,17]. Thus, enhancement of production
requires the selection of breeding materials with a high proportion of large siliques [18].

Traditional research on crop phenotypes relies on human observation experience,
counting, weighing, and other manual measures, which typically last for a long period and
require considerable human resources; in addition, the findings are often subjective and
extremely inaccurate [19,20]. To solve this problem, scientists frequently employ computer
vision and machine learning technology in crop breeding; these methods can be used for
collection and analysis by high-throughput plant phenotypic imaging and offer a precise
direction for breeding, variety selection, genomics, and phenomics. Moreover, as artificial
intelligence (AI) algorithms have become popular in the last decade, computer vision
and machine learning play a meaningful role in yield estimation, plant recognition and
classification, and plant stress physiology [21,22]. Researchers used a deep learning (DL)
algorithm to create a cell phone integration program for rapeseed pests and diseases [23],
whereas Wen et al. used the random forest algorithm to create a yield estimation model
for oilseed rape based on four years of localized observations in five different regions of
eastern Canada and determined the optimal nitrogen application rate for various growing
regions [22]. In addition, Du et al. presented the plant segmentation transformer network to
segment dense point cloud data with complicated spatial structures gathered by handheld
laser scanning in the pod stage of rapeseed [24]. Han et al. invented a deep learning net
called InceptionV3-LSTM for the intelligent prediction of rapeseed harvest time, and a
convolutional neural network model was applied for variety classification and seed quality
assessment of winter rapeseed [25,26].

As a vital branch of machine learning, DL has been widely applied in image recogni-
tion and natural language processing [27,28]. DL, a kind of AI, has made advances in the
study and use of plant phenotypes [29,30]. Convolution neural networks (CNNs) are feed-
forward neural networks that may successfully reduce the dimensions of a large amount
of image information while preserving image characteristics [31,32]. With the progress of
optoelectronic technology and mechanical technology, the combination of AI and plant-
ing has brought numerous methods to environmental sensing [33], such as unmanned
aerial vehicles (UAVs) [34], hyperspectral imaging, computer vision, radar induction, and
physicochemical analysis, to the study of plant phenotypic analysis. Combining UAVs,
machine vision, and lidar technology, OSWSDet, a DL model, was applied to optimize
traditional wheat ear image recognition [35]. The YOLO POD model was created to develop
a production forecasting program to count soybean pods by multi-angle images on video
data collected by field robots [36]. RiceNet, a model based on CNNs and high-throughput
UAV RGB images, was built based on video data gathered by field robots for rice plant
counting, location, and size evaluation [37].

Rapeseed yield is strongly connected to pod characteristics, such as the pod number,
pod length, and pod width [38]; nevertheless, the present investigation approach is time-
consuming and labor-expensive. At present, there are still the following problems in
the cultivation of rapeseed pods, such as the lack of effective monitoring methods for
the quantity and quality of rapeseed pods, and a lack of in-depth understanding of the
growth process and influencing factors of rapeseed pods. Manually measured findings
are frequently imprecise and contain substantial inaccuracies [39]. Given that rapeseed
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pods are generally narrow and have a particular bending angle, appropriate equipment for
measurement is lacking, which results in inaccurate measurement findings.

In this paper, we present a simple and effective method to estimate the number,
length, width, and two-dimensional image area of rapeseed pods using deep learning and
computer vision and observe the length variation patterns of rapeseed pods in different
time periods, such as the green ripening, yellow ripening, and mature periods. It was
the first time that the most recent deep learning algorithms, YOLO v8 and Mask R-CNN,
had been employed to detect yield correlation in rapeseed. Both models’ precision is
above 90%; the length regression coefficient of both methods was 0.991 and the width
regression coefficient was 0.989. This research will help us to deeply understand the natural
growth pattern of rapeseed, improve its breeding and cultivation practices, and enhance
its production and quality in the future. This study applies neural networks to analyze
the phenotypic data information of rapeseed pods, which can be useful for industrial
production. Meanwhile, the study methodologies described in this publication can provide
a reference and guidance for research on other crops.

2. Results
2.1. Rapeseed Pod Detection Based on YOLO v8 Models

We collected 4461 rapeseed pods and randomly placed them on a black velvet back-
ground. We used a Canon EOS 800D camera to capture RGB images and enhance the
data of the images, such as flipping, rotating, cropping, adding noise, blurring, masking,
color transformation, cut out, and other methods, which aimed to increase the model’s
generalization ability and avoid sample imbalance.

Three YOLOv8 configurations (n, s, and m) were first trained and tested to detect
rapeseed pods. A 9:1 ratio was used to divide the dataset into training and validation sets.
The model evaluation curve on precision confidence (P), recall confidence (R), mAP50 and
mAP50-95 of the bound box and mask, FLOPs, parameters (M), and gradients of the model
were obtained by training for 100 epochs (Table 1).

Table 1. YOLOv8 model evaluation metrics.

Model
Box Mask

FLOPs (B) Params (M) Gradients
P R mAP50 mAP50-95 P R mAP50 mAP50-95

YOLOv8n 0.985 0.991 0.991 0.927 0.985 0.987 0.991 0.742 12.0 G 3.41 M 3,409,952
YOLOv8s 0.992 0.998 0.991 0.963 0.99 0.996 0.991 0.782 42.7 G 11.79 M 11,790,467
YOLOv8m 0.995 1.000 0.991 0.972 0.993 0.998 0.991 0.790 110.4 G 27.24 M 27,240,211

Table 1 demonstrates that as the model volume increased, along with the number of
FLOPs, parameters, and gradients, precision, recall, and mAP50-95 progressively reached
1 in comparison with those of other models. When we applied the YOLOv8m model,
the bound box’s precision confidence, the mask’s precision confidence, recall confidence,
mAP50, and mAP50-95 peaked at 99.5%, 0.993, 0.998, 0.991, and 0.79, respectively. The
segmentation result diagram is presented below, with the YOLOv8m model showing the
best performance (Figure 1).

2.2. Rapeseed Pod Detection Based on the Mask R-CNN Model

In addition, we tested another cutting-edge model, the Mask R-CNN, which uses two
stages of object detection. We utilized the identical dataset with YOLO v8 and performed
tasks akin to those in Section 3.1 of our image processing work. The rapeseed pod instance
segmentation project was built on top of the widely used and well-liked Detectron2 for easy
comprehension and application. As a result, all the dataset registration training and testing
were contained in a single script, which has the advantages of simple comprehension
and suitability for the expansion of other models. Mask R-CNN can successfully identify
rapeseed pods (Figure 2).



Plants 2023, 12, 3328 4 of 16Plants 2023, 12, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Result of the YOLOv8 instance segmentation. 

2.2. Rapeseed Pod Detection Based on the Mask R-CNN Model 
In addition, we tested another cutting-edge model, the Mask R-CNN, which uses two 

stages of object detection. We utilized the identical dataset with YOLO v8 and performed 
tasks akin to those in Section 3.1 of our image processing work. The rapeseed pod instance 
segmentation project was built on top of the widely used and well-liked Detectron2 for 
easy comprehension and application. As a result, all the dataset registration training and 
testing were contained in a single script, which has the advantages of simple comprehen-
sion and suitability for the expansion of other models. Mask R-CNN can successfully iden-
tify rapeseed pods (Figure 2). 

The training program included three components. Prior to direct registration, the 
Labelme annotation file was converted into a typical annotation JSON file for the COCO 
dataset. In addition, settings, such as learning rate and maximum iterations, were altered. 
The major modification in this case was to balance the data amount and avoid overfitting 
due to the lack of datasets available. We employed cosine annealing to tune the learning 
rate optimally to obtain the best results. The initial learning rate was set to 10−3, and Adam 
was selected as the optimizer after SGD and Adam were compared. By contrast, data aug-
mentation techniques, such as flipping, mosaicking, and random scaling, were employed 
to improve the original data to overcome the issue of small data volume. Finally, modeling 
and detection were performed. 

We selected the maximum iterations of 10,000 and 30,000 based on the Mask R-CNN 
model, whose backbones are ResNet50 and ResNet101, respectively. The difference be-
tween the two backbones is that ResNet101 has 51 more bottlenecks on conv4 than Res-
Net50. Table 1 shows that the bound box and segmentation’s average precision (AP), AP50 
and AP75 values increased as the maximum iteration number increased. The AP50 and 
AP75 values indicate that the IoU thresholds for the average accuracy were greater than 
0.5 and 0.75, respectively. The abbreviations APs, APm, and APl, which stand for “AP 
Small”, “AP Media”, and “AP Large”, respectively, denote the size of the object area. The 
higher the number of iterations, the higher the rate is regardless of the controlled varia-
bles. The metric rates also increased as the backbone was upgraded (Table 2). 

Figure 1. Result of the YOLOv8 instance segmentation.

Plants 2023, 12, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 2. Instance segmentation result of using Mask-R-CNN based on Detectron2. 

Table 2. Model evaluation metrics under different training iterations and backbones. 

Backbone  ITER AP AP50 AP75 Aps APm Apl 

Resnet50 

bbox 
10,000 

89.788 97.923 96.916 Nan 91.980 85.866 
segm 74.620 97.900 95.828 Nan 74.559 76.652 
bbox 

30,000 
91.409 97.829 96.711 Nan 93.267 86.174 

segm 75.232 97.856 96.804 Nan 75.216 77.161 

Resnet101 

bbox 
10,000 

91.132 97.924 96.650 Nan 93.168 86.364 
segm 75.129 97.909 95.712 Nan 75.113 76.596 
bbox 

30,000 
92.481 97.997 96.680 Nan 94.356 89.223 

segm 75.465 97.774 95.603 Nan 75.134 78.263 

2.3. Evaluation of the Proposed Rapeseed Pod Detection Model 
We randomly selected samples of different Brassica napus and a limited number of 

Brassica campestris L. rapeseed pods. These pods are produced by numerous plants at dif-
ferent phases of growth. We employed a black velvet background and randomly selected 
test dataset photographs in various lighting circumstances, such as sunny or rainy days. 
The camera used was an iPhone 14 with a 3024 × 4032 or 4032 × 3024 image resolution and 
a 35 mm camera focal length. 

We evaluated a test dataset of 38 images using the best model parameters and exe-
cuted the test code using various YOLO v8 and Mask R-CNN parameter settings. The 
findings showed that Mask R-CNN outperformed YOLO v8 during actual testing, despite 
YOLO v8 having superior training model assessment metrics, including precision, recall, 
AP values, and others. When YOLOv8 was used, the rapeseed stem was confused with 
the rapeseed pod body. However, Mask R-CNN did not encounter this problem (Figure 3). 

Figure 2. Instance segmentation result of using Mask-R-CNN based on Detectron2.

The training program included three components. Prior to direct registration, the
Labelme annotation file was converted into a typical annotation JSON file for the COCO
dataset. In addition, settings, such as learning rate and maximum iterations, were altered.
The major modification in this case was to balance the data amount and avoid overfitting
due to the lack of datasets available. We employed cosine annealing to tune the learning
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rate optimally to obtain the best results. The initial learning rate was set to 10−3, and
Adam was selected as the optimizer after SGD and Adam were compared. By contrast,
data augmentation techniques, such as flipping, mosaicking, and random scaling, were
employed to improve the original data to overcome the issue of small data volume. Finally,
modeling and detection were performed.

We selected the maximum iterations of 10,000 and 30,000 based on the Mask R-CNN
model, whose backbones are ResNet50 and ResNet101, respectively. The difference between
the two backbones is that ResNet101 has 51 more bottlenecks on conv4 than ResNet50.
Table 1 shows that the bound box and segmentation’s average precision (AP), AP50 and
AP75 values increased as the maximum iteration number increased. The AP50 and AP75
values indicate that the IoU thresholds for the average accuracy were greater than 0.5 and
0.75, respectively. The abbreviations APs, APm, and APl, which stand for “AP Small”, “AP
Media”, and “AP Large”, respectively, denote the size of the object area. The higher the
number of iterations, the higher the rate is regardless of the controlled variables. The metric
rates also increased as the backbone was upgraded (Table 2).

Table 2. Model evaluation metrics under different training iterations and backbones.

Backbone ITER AP AP50 AP75 Aps APm Apl

Resnet50

bbox
10,000

89.788 97.923 96.916 Nan 91.980 85.866
segm 74.620 97.900 95.828 Nan 74.559 76.652
bbox

30,000
91.409 97.829 96.711 Nan 93.267 86.174

segm 75.232 97.856 96.804 Nan 75.216 77.161

Resnet101

bbox
10,000

91.132 97.924 96.650 Nan 93.168 86.364
segm 75.129 97.909 95.712 Nan 75.113 76.596
bbox

30,000
92.481 97.997 96.680 Nan 94.356 89.223

segm 75.465 97.774 95.603 Nan 75.134 78.263

2.3. Evaluation of the Proposed Rapeseed Pod Detection Model

We randomly selected samples of different Brassica napus and a limited number of
Brassica campestris L. rapeseed pods. These pods are produced by numerous plants at
different phases of growth. We employed a black velvet background and randomly selected
test dataset photographs in various lighting circumstances, such as sunny or rainy days.
The camera used was an iPhone 14 with a 3024 × 4032 or 4032 × 3024 image resolution
and a 35 mm camera focal length.

We evaluated a test dataset of 38 images using the best model parameters and executed
the test code using various YOLO v8 and Mask R-CNN parameter settings. The findings
showed that Mask R-CNN outperformed YOLO v8 during actual testing, despite YOLO v8
having superior training model assessment metrics, including precision, recall, AP values,
and others. When YOLOv8 was used, the rapeseed stem was confused with the rapeseed
pod body. However, Mask R-CNN did not encounter this problem (Figure 3).

In addition, the Mask R-CNN model code developed based on the Detectron2 frame-
work is more concise. Detectron2 has high flexibility and scalability, which allows for fast
and direct training on single or multiple GPU servers while also helping researchers explore
the most advanced algorithm designs effectively. Thus, Mask R-CNN has a faster testing
speed than YOLO v8 (Table 3). A short testing period eases the application of algorithms to
mobile devices and uses less computational power.

Table 3. Precision and test time spent by the DL model.

Model YOLO v8 Mask R-CNN

Precision 91.263 99.181

Test time (Unit: s) 108.97 46.30
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2.4. Detection of Rapeseed Pod Length, Width, and Cross-Sectional Area

We randomly selected different rapeseed pods and placed them on a black velvet cloth.
Along with the rapeseed pods, we placed a one RMB coin with a 25 mm diameter made in
2012 by the People’s Bank of China. With the coin serving as a standard for real-world and
image conversion, we used a collection of 18 images to measure the actual length, width,
and area of two-dimensional images of rapeseed pods using machine vision. The steps are
as follows.

(1) Initially, we spread the rapeseed pods throughout the image and then dispersed
the coins across the far-left side. Then, after reading the image, we used Gaussian blur,
grayscale processing, and threshold processing to process the image (Figure 4). Image noise
was corrected based on the pixel area due to the presence of background impurities.

(2) We extracted the contour of the coin, calculated its bounding rectangle, and con-
structed the perimeter contour after arranging the contour points from the top left to the top
right to the bottom left to the top left. The midpoint between the upper left and upper right
corners was then determined by a midpoint function, which was followed by a midpoint
between the bottom left and lower right corners. The midpoints of the upper left and lower
left corners and the upper right and lower right corners were also calculated.

(3) Following the initialization of the measurement index value, we computed the
width of the reference object in the image using Euclidean distance and exchanged the
pixel points representing the area and diameter of the coin. The contour of the rapeseed
pods was tested using the DL model.

(4) The length, width, and pixel points of the area were calculated using the following
definitions. The length is equal to half of the irregular polygonal shape created by the
rapeseed pod body and rafter; the width is determined by dividing the length of the fruit
by the area of the rapeseed pod; and the area is the space encircled by the irregular polygon.
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Finally, we determined the value of exchanging length, width, and coin diameter pixels
and rapeseed pod area pixels and coin area pixels. The formula is as follows:

diameter_ratio = coin_diameter_true/coin_diameter_pixel
area_ratio = coin_area_true/coin_area_pixel
width = width_pixel× diameter_ratio
length = length_pixel× diameter_ratio
area = area_pixel× area_ratio
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The term “diameter_ratio” refers to the ratio of an RMB coin’s real diameter (coin_dimeter_
true) (25 mm) to the coin’s pixel diameter (coin_dimeter_pixel) and is analogous to the
term “area_ratio.” In addition, each rapeseed pod image’s width, length, and area pixels
are indicated by variables, such as width_pixel, length_pixel, and area_pixel, respectively.

(5) As a final step, we depicted the estimated findings in the image (Figures 5 and 6).
Using regression analysis, we compared the length and width acquired by the machine
vision approach with the average rapeseed pod length and width obtained after three
manual measurements, respectively.



Plants 2023, 12, 3328 8 of 16

Plants 2023, 12, x FOR PEER REVIEW 8 of 17 
 

 

The term “diameter_ratio” refers to the ratio of an RMB coin’s real diameter 
(coin_dimeter_true) (25 mm) to the coin’s pixel diameter (coin_dimeter_pixel) and is anal-
ogous to the term “area_ratio.” In addition, each rapeseed pod image’s width, length, and 
area pixels are indicated by variables, such as width_pixel, length_pixel, and area_pixel, 
respectively. 

(5) As a final step, we depicted the estimated findings in the image (Figures 5 and 6). 
Using regression analysis, we compared the length and width acquired by the machine 
vision approach with the average rapeseed pod length and width obtained after three 
manual measurements, respectively. 

 
Figure 5. Image instance of the computed results. Figure 5. Image instance of the computed results.

Plants 2023, 12, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 6. Comparison between manual and machine vision of the length and width of the rapeseed 
pods obtained in regression function images. (a) Discrete relationship between open cv and manual 
measurement of length. (b) Linear function image of the relationship between open cv measurement 
and manual measurement of length. (c) Discrete relationship between open cv and manual meas-
urement of width. (d) Linear function image of the relationship between open cv measurement and 
manual measurement of width. 

Our findings showed that the rapeseed pods ranged in length from 4.7 cm to 15.1 cm 
and in width from 0.2 cm to 0.5 cm when measured manually. The measured sample 
length had an average length of 7.7 cm, a median length of 7.4 cm, a mode length of 6.8 
cm, and widths of 0.35, 0.4, and 0.37 cm. Rapeseed pod lengths, as determined by machine 
vision, ranged from 4.670 cm to 15.351 cm, and their widths ranged from 0.218 cm to 0.444 
cm. The measured sample length had an average length of 7.7 cm, a median length of 7.3 
cm, a mode length of 6.5 cm, and widths of 0.35, 0.36, and 0.37 cm. In regard to the meas-
urement period, machine vision measurement was notably quick, whereas manual meas-
urement consumed considerable time and labor. We calculated the correlation coefficient 
between manual measurement and machine vision measurement techniques using linear 
regression analysis. We discovered that the linear regression function was y = 0.9990x − 
0.00044, and the length regression coefficient for both approaches was 0.991. y = 1.0215x − 
0.0069 is the regression function, and the correlation coefficient of the width was 0.989. As 
a result, no substantial difference was observed in the error between manual and machine 
vision measurements. 

Therefore, in this study, we created a novel method for rapeseed pod identification 
utilizing computer vision technology and DL algorithms. In addition, we created a 
method using machine vision to calculate the size of rapeseed pods, including their length, 
width, and two-dimensional image area. In comparison with the traditional hand-count-
ing method, our proposed method has higher accuracy and precision while also being far 
more efficient. 

  

Figure 6. Comparison between manual and machine vision of the length and width of the rapeseed
pods obtained in regression function images. (a) Discrete relationship between open cv and manual
measurement of length. (b) Linear function image of the relationship between open cv measurement
and manual measurement of length. (c) Discrete relationship between open cv and manual measure-
ment of width. (d) Linear function image of the relationship between open cv measurement and
manual measurement of width.

Our findings showed that the rapeseed pods ranged in length from 4.7 cm to 15.1 cm
and in width from 0.2 cm to 0.5 cm when measured manually. The measured sample length
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had an average length of 7.7 cm, a median length of 7.4 cm, a mode length of 6.8 cm, and
widths of 0.35, 0.4, and 0.37 cm. Rapeseed pod lengths, as determined by machine vision,
ranged from 4.670 cm to 15.351 cm, and their widths ranged from 0.218 cm to 0.444 cm.
The measured sample length had an average length of 7.7 cm, a median length of 7.3 cm, a
mode length of 6.5 cm, and widths of 0.35, 0.36, and 0.37 cm. In regard to the measurement
period, machine vision measurement was notably quick, whereas manual measurement
consumed considerable time and labor. We calculated the correlation coefficient between
manual measurement and machine vision measurement techniques using linear regression
analysis. We discovered that the linear regression function was y = 0.9990x − 0.00044,
and the length regression coefficient for both approaches was 0.991. y = 1.0215x − 0.0069
is the regression function, and the correlation coefficient of the width was 0.989. As a
result, no substantial difference was observed in the error between manual and machine
vision measurements.

Therefore, in this study, we created a novel method for rapeseed pod identification
utilizing computer vision technology and DL algorithms. In addition, we created a method
using machine vision to calculate the size of rapeseed pods, including their length, width,
and two-dimensional image area. In comparison with the traditional hand-counting
method, our proposed method has higher accuracy and precision while also being far
more efficient.

3. Materials and Methods
3.1. Plant Experimental Materials and Image Acquisition

In this experiment, the “Zhejiang University 630” rapeseed variety from Zhejiang
University was used and planted in the Farming Park of Zhejiang A&F University (119.72 E,
30.25 N), Lin’an District, Hangzhou City, Zhejiang Province, China. Rapeseed pod is dried
in the sun after harvest. The photos were taken by a Canon EOS 800D camera with a black
flocked cloth backdrop and a 70 cm lens from the table. The image resolution of the dataset
is 2400 × 1600.

3.2. Experimental Operation Environment

A Windows 11 operating system was used in this experiment. The CPU configuration
was a 12th Gen Intel(R) Core (TM) i5-12400F 2.50 GHz, and the GPU used an NVIDIA
GeForce RTX 3060 graphics card with 8 GB. Anaconda3 was used to develop the training
virtual environment, and the code running environment was Python 3.8, PyTorch 1.9.1, and
torchvision 0.15.0. During the training process, NVIDIA CUDA11.3 was used to reduce
training time. During the training phase, the image resolution was randomly adjusted to
640 × 640. We use Labelme software to manually label rapeseed pod data as a training
dataset [40] (Figure 7).
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3.3. Rapeseed Pods Data Augmentation

As we all know, a sufficient sample size will have a better effect on the training of
deep learning models. Generally speaking, the larger the sample size, the better the trained
model, and the stronger the generalization ability of the model. Therefore, we use image
rotation and flipping, image scaling, random cropping, etc., to process rapeseed pod data.
Data enhancement can increase the amount of data trained and improve the generalization
ability of the model and can also increase the noise data to improve the robustness of
the model.

3.4. YOLO v8 Model Design

YOLO v8 is a cutting-edge, state-of-the-art (SOTA) model, which builds on the success
of previous YOLO versions and introduces new features and improvements to further
boost performance and flexibility. As a one-stage object detection method, it has the same
advantages as YOLO v1-YOLO v7. Only once does it need to extract features to achieve
object detection, which is faster than other two-stage algorithms [41–44].

The backbone of YOLO v8 chose the C2f module instead of the C3 module, and the
number of blocks per stage changed from [3, 6, 9, 3] to [3, 6, 6, 3], and its biggest change
was that Anchor Base was replaced by Anchor Free, referring to the ideas of TOOD and
YOLO v6 ppyoloe. YOLO v8 is extensible and supports all previous versions of YOLO’s
framework; it is easy to switch between different versions and compare their performance,
which makes YOLO v8 ideal for users who want to take advantage of the latest YOLO
technology while still being able to use existing YOLO models. The YOLO v8 structure is
shown in Figure 8.
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3.5. Design of a Mask R-CNN Model Based on Detectron2

Mask R-CNN, the best model of ICCV2017, is a compact and flexible universal object
instance segmentation framework that can not only detect targets in the image but provide
high-quality segmentation results for each target [45]. Mask R-CNN is a very flexible
framework that performs well in instance segmentation tasks. Its ancestor, the R-CNN
algorithm, introduced in 2014, also known as Regions with CNN Features, is a classic
work that applies deep learning to object detection and greatly improves object detection
performance with excellent feature extraction ability of convolutional networks. Through
numerous versions of improvements, including milestone Fast R-CNN and Faster R-CNN,
as well as the Mask R-CNN we use, the object detection problem has been further optimized,
with progress in implementation, speed, and accuracy [46,47].

Mask R-CNN is an extension of Faster R-CNN and adds a new branch for predicting
object masks on the bounding box recognition branch in parallel, whose structure is very
similar to Faster R-CNN, but there are also three main differences: the relatively excellent
Resnet FPN structure in the basic network is used because multi-layer feature maps are
conducive to multi-scale object and small object detection; the RoI Align method is proposed
to replace RoI Pooling to improve accuracy; and mask branch is added to predict each pixel
category. The Mask R-CNN structure is shown in Figure 9.
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3.5.1. Feature Extraction Network

The FPN basic network based on Resnet is a multi-layer feature combination structure,
including bottom-up, top-down, and horizontal connections, which can fuse shallow,
middle, and deep features, so that the features have strong semantics at the same time [48].
Mask R-CNN adds a P6 layer to the FPN, and P5 is pooled to the maximum in order to
obtain a larger receptive field feature. To filter the feature map corresponding to RoI, the
following formula is given:

k =
[
k0 + log2

(√
wh/224

)]
where k represents which feature map to take a specific anchor on, 224 represents the
pre-training image size, k0 defaults to 4, and the corresponding level of RoI with a size of
224 × 224 is 4, which is rounded after calculation.

3.5.2. RoI Align

In order to solve the miss alignment problem caused by RoI Pooling, RoI Align
retains all floating points, obtains the value of multiple sample points through bilinear



Plants 2023, 12, 3328 12 of 16

interpolation, and then maximizes the support of multiple sample points to obtain the final
value of the point.

3.5.3. Loss Task Design

Mask R-CNN adopts an FCN (Fully Convolutional Network) network structure, uses
convolution and deconvolution to build an end-to-end network, and finally classifies each
pixel to achieve segmentation. Also, after obtaining the characteristics of the region of
interest, add the Mask branch to avoid competition between classes. The loss function is
divided into three parts, and the formula is as follows:

L = Lcls + Lbox + Lmask

where Lcls and Lbox represent class loss and bounding box regression loss, respectively, and
Lmask represents segmentation loss. The Sigmoid function is applied to each pixel on the
mask, sent to the cross-entropy loss, and finally averaged.

Detectron2 is a software system studied by Facebook AI Research (FAIR), which
inherits and reconfigures the previous Detectron and utilizes the PyTorch deep learning
framework to replace the first generation of Caffe, which trains faster and integrates
advanced object detection and semantic segmentation algorithms. For a large number of
trained models, plug-and-play is very convenient, including end-to-end implementation
of Faster R-CNN, Retina-Net, and Fast R-CNN for object detection, Mask R-CNN for
instance segmentation, Key-point R-CNN for pose segmentation, and Panoptic FPN for
panoramic segmentation. It contains fewer growing features than the first, such as all-
optical segmentation, dense, Cascade R-CNN, a rotating bounding box, etc. [49].

4. Discussion

Pods are a crucial part of several crops. As a plant grows, the pod can shield the
seed from biotic and abiotic pressures and lessen the harm caused by environmental
and nonenvironmental variables. In addition, the pod may continually supply nutrients
and room for the growth and development of seeds by serving as a basic photosynthetic
organ during plant maturity. The observation and measurement of pod-related traits have
grown in importance over the last several decades. Traditional evaluations of pod features,
however, have depended on time- and labor-intensive human observations for a number
of years. In this study, we created a novel method for rapeseed pod identification utilizing
computer vision technology and DL algorithms. In addition, we created a method using
machine vision to calculate the size of rapeseed pods, including their length, width, and
two-dimensional image area. In comparison with the traditional hand-counting method,
our proposed method has higher accuracy and precision and is also far more efficient.

Pod research is essential to increase seed production because seed quantity, seed
weight, and the number of pods per plant are all thought to be variables influencing
yield component attributes [50]. Leguminous plants and several oil crops have been the
subject of extensive research on pod traits over the last three years, ranging from the
use of molecular technology in breeding 3.0 to the fusion of “Biotechnology, Artificial
Intelligence, and Big Data Information” technologies in breeding 4.0. Numerous novel
studies focused on the use of DL and machine vision technologies to gather and analyze
crop phenotypes in high throughput, which will significantly increase breeding efficiency.
Li et al. suggest a DL framework to determine the phenotype of soybean maturity, which
can be measured with speed, accuracy, and high throughput [51]. Through phenotypic
analysis, Fabian et al. determined a specific correlation between the weight of cocoa beans
and their pods [52]. Using a biotechnology technique, the researchers examined the pod
color of two broad bean kinds and offered assumptions about the causes of variations in pod
color brought on by chlorophyll changes [53]. Using a computed tomography scanner to
capture 10 two-dimensional light projection images of peanut pods, Domhofer et al. sought
to identify key factors, such as kernel weight and shell weight, that have an important
influence on peanut prices [54]. The majority of pod studies are still being conducted
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from the perspectives of weight or color or technical utilization of commercial software. In
addition, the use of DL, specifically on rapeseed pods, has not been extensively studied.
Researchers had previously used ImageJ to identify comparable traits in rapeseed pods.
Since this recognition method relies on sophisticated graphics software and the detection
requires manual photo processing, it will be difficult to incorporate it into portable detection
equipment for field trait detection in the future [55]. The technique created in this study
has the ability to capture and produce pod-related phenotypic data simultaneously while
processing a large number of pictures at high throughput. This can greatly improve
research efficiency.

In this paper, we developed an instance segmentation approach for rapeseed pods in
Brassica napus and utilized for the first time the popular DL Mask R-CNN model based on
Detectron2 and YOLO v8, which was not released until January 10, 2023. The YOLO series
of models, such as the variant of YOLO v5, has made progress in road defect detection.
Machine learning, like Graph Cooperative Learning Neural Networks, can perform better
on data augmentation [56,57]. According to our findings, YOLO v8 and Mask R-CNN
trained extremely effectively, with YOLO v8 showing a marginal outperformance. Mask
R-CNN exhibited higher segmentation and recognition rates, which reached nearly 100%,
on the test dataset of freshly harvested rapeseed pods from various types or growth stages.
In this study, Mask R-CNN was developed on Detectron2, a library that combines a number
of pre-training deep learning models, including Faster R-CNN, Retina Net, and Panoptic
FPN. In this experiment, the Detectron2-based system surpasses YOLO v8 with its tiny
and quick characteristics in terms of speed and accuracy. Detectron2 is typically used to
deliver Excellent accuracy and a speedy training speed. The application of Detectron2
made rapeseed pod phenotypic data more useful for use in field research by minimizing
the complexity of space and significantly reducing the computing time. Regarding AI
security and maintenance costs, Detectron2 currently presents a more favorable outlook
due to its swifter iteration pace and more frequent updates. The adoption of an estimator
instead of Slim has led to increased code complexity, but it has also resulted in nearly
comprehensive test coverage and standardized annotations [58–61]. Furthermore, because
Detectron2 incorporates several widely employed deep learning models for object detection
and instance segmentation, it possesses the potential for future compatibility with a broader
range of agricultural and industrial production scenarios. These scenarios may include tasks
like recognizing plant fructifications and identifying crop pests, extending its applicability
beyond the sole measurement of rapeseed pod phenotype omics data [62–66]. By combining
machine vision, we also determined the length, width, and two-dimensional image area of
the rapeseed pods in the image using a single coin as a reference. The advantages of our
approach over the conventional manual measurement method include minimal labor costs,
quick calculation times, and high accuracy.

5. Conclusions and Future Work

In conclusion, we have successfully developed an innovative DL-based approach
for the segmentation and collection of phenotypic data related to rapeseed pods. This
represents a valuable addition to the existing methodologies employed in rapeseed pod
analysis. Both of our models have demonstrated strong performance in recognizing rape-
seed pods. Nevertheless, it is important to acknowledge the limitations of our method.
For instance, our research has indicated that accurately calculating the length, width, and
area of rapeseed pods with significant curvature remains a challenge. Our strategy is more
effective when applied to rapeseed pods with less pronounced curvature. Additionally, our
research necessitates the physical harvesting of rapeseed pods for identification, and we
aspire to explore the possibility of directly identifying and quantifying phenotypic traits of
rapeseed pods in field conditions in the future.

As modern agricultural practices increasingly embrace mechanization, our research
findings hold the potential to significantly benefit the field of rapeseed phenotype recog-
nition. This could lead to the optimization of mechanized rapeseed harvesting processes,
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enhancing the efficiency of rapeseed industrial agricultural product production, including
protein and oil. Furthermore, by expanding our dataset, testing a wider range of rapeseed
varieties, and improving the environmental conditions for rapeseed growth during testing,
we may extend the applicability of our approach to future genomics analyses of rape-
seed pod characteristics. This methodology could also prove valuable for genome-wide
association studies of rapeseed pod properties in planting fields.

Our approach offers breeders an effective means of digitally analyzing phenotypes and
automating the identification and screening processes, not only for rapeseed germplasm
resources but also for pod-bearing leguminous plants, like soybeans.
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