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Abstract: Roses are popular ornamental plants all over the world. Rosa damascena Mill., also known
as the damask rose, is a well-known scented rose species cultivated to produce essential oil. The
essential oils obtained are high in volatile organic compounds (VOCs), which are in demand across
the pharmaceutical, food, perfume, and cosmetic industries. Citronellol, nonadecane, heneicosane,
caryophyllene, geraniol, nerol, linalool, and phenyl ethyl acetate are the most important components
of the rose essential oil. Abiotic factors, including as environmental stress and stress generated by
agricultural practises, frequently exert a selective impact on particular floral characteristics, hence
influencing the overall quality and quantity of rose products. Additionally, it has been observed that
the existence of stress exerts a notable impact on the chemical composition and abundance of aromatic
compounds present in roses. Therefore, understanding the factors that affect the biosynthesis of
VOCs, especially those representing the aroma and scent of rose, as a response to abiotic stress is
important. This review provides comprehensive information on plant taxonomy, an overview of
the volatolomics involving aromatic profiles, and describes the influence of abiotic stresses on the
biosynthesis of the VOCs in damask rose.

Keywords: damask rose; secondary metabolite; VOCs; drought; chemical composition

1. Introduction

Rosa damascena Mill. (damask rose), in the Rosaceae family, is native to Europe and
Middle Eastern nations, including Iran and Turkey [1,2]. It is one of the most well-known
varieties of fragrant roses. Since it is rich in essential oils, it has an intense odour. The
damask rose’s dried petals are used commercially for the production of rose oil, rose water,
rose concrete, and rose absolute, as well as flavourings, cosmetics, and health products [3–5].
They are also cultivated as ornamental landscape plants [6,7]. Rose oil is one of the most
expensive essential oils on the global market due to its low oil content, as one kilogramme
of rose oil can be extracted from approximately 3000 kilogrammes of rose petals [8], and
a shortage of natural and synthetic substitutes [9]. Approximately 4.5 tonnes of rose oil
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are produced annually on a global scale [10]. In the period from 2019 to 2025, the global
rose oil market is anticipated to expand at a CAGR of 6.8%, reaching USD 442 million [11].
Rose oil has also been documented to have pharmacological properties, including antioxi-
dant, antibacterial, and antimicrobial [12,13], anti-inflammatory [14], anticancer [15], and
anti-HIV [16] properties. Essential oils contain predominantly alkanes, alcohols, phenols,
terpenes, and terpenoids. Nonadecane, eicosane, heneicosane, heptadecane, and octade-
cane are the most abundant alkanes, while phenylethyl alcohol, citronellol, geraniol, neral,
linalool, and farnesol are the most abundant terpene and terpenoid compounds [17,18].
Terpenes are the primary volatile organic compounds (VOCs) found in roses, and they play
a significant role in determining the aroma or aromatic profile of roses. These compounds
can be consistently released from several parts of the plant, including flowers, leaves, fruits,
roots, and other minor organs, such as pollen [19]. Nevertheless, this aroma has the ability
to elicit plant defence mechanisms, attract pollinators, and provide sensory pleasure for
humans [20,21]. The olfactory characteristics of roses are distinguished by a pleasant and
fragrant aroma, which exhibits possible nuances of fruity, spicy, earthy, and herbal elements.
The olfactory characteristics may display variation between several cultivars of roses. In
conclusion, the aromatic profile has played a significant role in the selection processes for
its utilisation in various industries such as cosmetics, the perfume business, and medicine.

Nonetheless, biotic and abiotic stresses negatively impact plant growth, development,
and agricultural productivity. According to current climate prediction models, plants are
subject to stronger environmental stresses, such as salinity, drought, and mineral defi-
ciency [22]. Furthermore, stress factors frequently exert opposing selective pressures on
specific floral characteristics such as pigmentation, nectar content, and aroma [23]. Drought
stress is one of the most serious stresses and it is known to harm horticultural produce,
including floriculture. In addition to the evidence of reduced growth and yield losses,
drought stress also impacts the biosynthesis of secondary metabolites [24,25]. They are
necessary for the plant to interact with its environment for adaptation and defence against
viruses, parasites, and herbivores, but do not play a fundamental role in the maintenance
of life processes in plants [23,24]. Terpenes, phenolic acids, flavonoids, alkaloids, tannins,
and VOCs represent the principal secondary metabolites commonly found in plants
mboxciteB26-plants-2613533,B27-plants-2613533,B28-plants-2613533. Nevertheless, a to-
tal of 1700 compounds have been recognised as VOCs, which play crucial roles in the
environmental adaptability and survival of plants [29]. They are released directly from
the blossoms to entice pollinators and promote environmental stress tolerance [30]. It is
expected that, under such stressful circumstances, plants will produce VOCs at higher
concentrations and for longer durations [31].

For damask rose farmers, knowledge of the factors influencing volatile metabolomics
is crucial. Changes in these variables may contribute to the evolution of diverse plant genes
that favour the adaptability to environmental conditions at crop locations, resulting in
alterations to the quantity and quality of VOCs [18]. While the interest is overwhelming
regarding the exploitation of the VOCs from roses and the concerns of global warming, there
is not much information regarding the biosynthesis of VOCs, especially those representing
aroma and scent of rose as a response to abiotic stress. This review therefore gives an
overview of the volatolomics involving aromatic profile and describes the influence of
abiotic stresses on the biosynthesis of the VOCs in damask rose. The potential benefit
of this review is to disseminate a comprehensive understanding of the various elements
that impact the biosynthesis of aromatic compounds. This knowledge holds significant
relevance for those associated with rose farming as well as producers within the perfume,
food, pharmaceutical, and cosmetic industries.

2. Taxonomy of Damask Rose

Rosaceae is the 19th largest plant family with more than 3000 species from at least
100 genera [32]. The distribution of families is varied but concentrated, especially in the
northern hemisphere. The most significant genera are Rosa (Rose), Fragaria (Strawberry),
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Malus (Apple), Pyrus (Pear), Prunus (Almond, Apricot, Cherry, Peach, Plum, and others),
Rubus (Blackberry), and Cydonia (European quince) [33,34]. Within the same family, taxo-
nomic classifications have varied significantly due to the numerous proposed categorisation
approaches over the past century [35]. The traditional classification of Rosaceae includes
four subfamilies: Rosoideae, Amygdaloideae (also known as Prunoideae), Maloideae, and
Spiraeoideae (Figure 1) [36]. Rosoideae consists of both woody and herbaceous taxa with
the well-known members including Rosa, Fragaria, and Rubus. Amygdalo ideae mostly
comprise the Prunus genus, which includes peaches, plums, cherries, and almonds. Malus,
Pyrus, Crataegus, and Cydonia are within the Maloideae. Lastly, the Spiraeoideae consists of
woody and herbaceous plants and some well-known ornamental taxa (Spiraea) [37].
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Figure 1. Scientific classification of roses.

In the genus Rosa, almost 200 species and more than 18,000 cultivars have been
documented [38]. Within the genus, it is divided into four subgenera based on their fruit
structure, three of which are monotypic: Hulthemia (Dumort.) Focke, Hesperhodos Cockerell,
and Platyrhodon (Hurst) Rehder. The fourth subgenus, Rosa, harbours about 95% of all
species and is subdivided into 10 cultivars, including R. canina, R. chinensis, R. foetida,
R. gallica, R. gigantea, R. moschata, R. multiflora, R. phoenicea, R. rugosa, and R. wichuraina.
The modern cultivars are mostly interspecific hybrids derived from these cultivars [39,40].
There are several hypotheses surrounding the ancestry of the damask rose. However, it is
believed that the plant has a triparental origin, with R. moschata as the maternal ancestor
and two successive crossings (R. moschata × R. gallica) × R. fedschenkoana Regel (Figure 2).
The complex allotetraploid R. damascena used for cultivation has a steady chromosomal
number (2n = 4x = 28) [41,42].

Damask rose is one of the few fragrant species among the hundreds in the Rosa
genus [40]. It is a shrub that may attain a height of 2.5 metres (Figure 3a). The stems
are extensively covered with curved spikes, and a four-year-old or older plant can yield
between 500 and 600 flowers annually. The flowers have approximately thirty petals that
range in colour from pale to medium pink to pale crimson (Figure 3b) [43]. The optimum
growing temperature is between 15 and 21 degrees Celsius [44]. Common asexual methods
of propagation include suckering, hardwood and semi-hardwood cutting, sprouting, and
grafting [45].
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3. Biosynthesis of the Aromatic Volatiles in Damask Rose

The VOCs can be applied as fragrances, flavouring, and aromas in pharmaceuticals,
foods, and biofuel feedstock. Under particular environmental conditions, plants rely
on VOCs for survival and environmental adaptation, and flowers release VOCs directly
to attract pollinators. When released from vegetative tissues in constitutive or induced
conditions above or below ground, VOCs may repel pathogens and herbivores and/or
attract their natural adversaries. In addition, VOCs are capable of inducing immunological
responses in nearby plants of the same or different species, thereby affecting the entire
regional plant community. In addition to their roles in biotic interactions, VOCs can also
mediate resistance to abiotic stresses like cold and high temperatures [30]. Flowers come
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in different shapes, colours, and odours. Floral scents are complex mixtures of VOCs and
low molecular weight lipophilic metabolites that are released into the atmosphere by a
variety of mechanisms, such as diffusion through the cuticle and/or stomata, active (ATP-
activated) transport through cell membranes by protein channels, or by the destruction
of tissue structures [46,47]. Terpenoids, phenolics, and nitrogen-containing compounds
are the primary contributors to the aroma released by flowers [30,48]. Terpenes are the
isoprene (C5) molecules arranged in a head-and-tail configuration; typically they are
produced in plants through the 2-methylerythritol 4-phosphate (MEP) pathway (producing
monoterpenes (C10), diterpenes (C20), triterpenes (C30), and tetraterpenes (C40)) and the
mevalonate (MVA) pathway (producing sesquiterpenes (C15)). The cytosol synthesises
sesquiterpenes and triterpenes, while the plastids produce monoterpenes, diterpenes,
and tetraterpenes. A further crucial category of secondary metabolites that contribute to
floral aromas is phenolics. These aromatic compounds consist of hydroxyl groups that
have been methylated or glycosylated. There are five identified subgroups of phenols,
including phenolic acids, flavonoids, coumarins, lignins, and tannins. All phenolic chemical
precursors are produced through the shikimic acid and malonic acid pathways. The
shikimic acid pathway is used to produce most phenolic compounds in plants. Alkaloids,
which contain heterocyclic nitrogen atoms, are the third-most-abundant form of secondary
metabolites in plants. In addition to alkaloids, two significant families of N-containing
secondary metabolites, cyanogenic glycosides and glu-cosinolates, are also present [48].

Damask rose is one of the most important aromatic species in the Rosaceae family, and
its essential oils along with high-value products are utilised extensively in the medicinal,
food, perfume, and cosmetic industries. The flowers are rich in vitamin C, and their essential
oils have sedative, antiviral, and antibacterial properties [49]. Citronellol, non-adecane,
heneicosane, -caryophyllene, geraniol, nerol, 1-nonadecane, E-citral (gerani-al), -pinene,
linalool, and phenyl ethyl acetate are the most important components of the essential oil
of damask rose (Table 1). These prominent scent compounds released from the flowers of
damask rose serve as an important quality indicator and primarily determine the price
of rose oil [4,50]. Nevertheless, the main components of musk rose (Rosa moschata) are
phenylethyl alcohol, 1-nonadecene, heneicosane, and n-nonadecane. However, smaller
quantities of phenylpropanoids and other chemicals can be detected [51].

Table 1. Chemical compositions and odour attributes of damask and musk roses.

Compounds Odour Type RI
% Peak Area

References
Damask Rose Musk Rose

Monoterpene hydrocarbons
α-Pinene herbal, green 932 14.153 ±1.028 0.563 ± 0.155 [29,52,53]
β-Pinene herbal, green 974 0.916 ± 0.710 0.036 ± 0.062 [29,52,53]
β-Myrcene herbal, green 988 0.833 ± 0.434 - [29,52,53]
α-Terpinene herbal, green 1014 0.113 ± 0.070 - [29,53]
γ-terpinene herbal, green 1055 0.223 ± 0.152 0.106 ± 0.184 [29,53]
Limonene herbal, green 1027 0.190 ± 0.113 0.123 ± 0.131 [29,50,52,53]

Terpinolene herbal, green 1086 0.060 ± 0.000 - [29,53]
Oxygenated monoterpenes

Hexanol fruity, floral 861 0.050 ± 0.000 - [29,53]
Linalool fruity, floral 1097 0.090 ± 0.014 - [29,50,52,53]

dihydro-β-Ionone woody 1435 - 0.181 ± 0.314 [29,53,54]
(E)-β-Ionone floral 1482 - 1.431 ± 0.252 [29,53,54]
Terpinen-4-ol woody, earthy 1174 0.070 ± 0.000 - [53,54]
β-Citronellol floral, rose 1226 35.530 ± 1.821 - [29,50,52–54]

Neral sweet, citrus 1238 0.615 ± 0.304 - [52–54]
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Table 1. Cont.

Compounds Odour Type RI
% Peak Area

References
Damask Rose Musk Rose

Eugenol spicy 1353 - 1.151 ± 0.088 [52–55]
Geranial fruity, floral 1268 0.345 ± 0.403 - [29,52,53]

2-Phenyl ethyl acetate floral 1254 - 0.377 ± 0.342 [53,54]
2-Phenyl propyl butanoate fruity 1484 - 0.105 ± 0.182 [53,54]

Geranyl acetate fruity, floral 1317 4.906 ± 0.833 - [29,53]
Geranyl propanoate floral 1496 0.640 ± 0.000 - [53,54]

Sesquiterpenes hydrocarbons
Sabinene woody 970 0.340 ± 0.155 - [53,54]

(E)-β-Farnesene woody 1459 0.640 ± 0.000 - [53,54]
α-Selinene n/d 1498 1.580 ± 0.675 - [53,54]

Hexadecen-1-ol n/d 1866 0.180 ± 0.000 - [52–54]
1-Tricosene n/d 2285 - 1.972 ± 0.416 [53,54]

Oxygenated sesquiterpenes
trans-Rose oxide floral 1125 0.200 ± 0.096 - [52,53,56]

Benzaldehyde fruity 957 0.146 ± 0.081 - [53,54]
p-Cymene terpenic 1022 - 0.060 ± 0.104 [53,54]

Benzyl alcohol floral 1029 0.186 ± 0.075 - [53,54]
Benzene acetaldehyde green 1041 - 0.103 ± 0.091 [53,54]
2-Phenylethyl alcohol floral, rose 1110 36.600 ± 2.052 54.152 ± 1.340 [52,53,55]

Methyl eugenol spicy 1402 0.185 ± 0.077 - [52–54]
n-Octadecanol n/d 2072 - 0.491 ± 0.450 [52,53]

Aliphatic hydrocarbons
Hexacosane n/d 2554 0.210 ± 0.000 - [53]

1-Nonadecene n/d 1874 - 15.576 ± 1.708 [29,50,53]
n-Nonadecane n/d 1900 2.350 ± 0.385 8.147 ± 0.143 [29,50,52,53]
Heneicosane n/d 2105 0.210 ± 0.000 8.175 ± 0.801 [50,52,53]

Tricosane n/d 2285 - 1.196 ± 0.071 [50,53]
n-Tetradecane n/d 1401 0.290 ± 0.000 - [53]
n-Pentadecane n/d 1499 - 0.140 ± 0.242 [50,52,53]
1-Heptadecene n/d 1669 - 1.261 ± 0.152 [50,52,53]
n-Heptadecane n/d 1698 0.646 ± 0.61 1.711 ± 0.067 [50,52,53]

Total 97.057 ± 0.347 99.556 ± 0.561

RI: retention indices, n/d = no data. Peak areas (%) are the average mean of the reference data.

4. Agronomic Aspects Influencing the Biosynthesis of Aromatic Compounds in Roses

During flowering, the damask rose requires moderate temperatures and humid air in
order to produce high oil content. This rose has been widely cultivated in many countries,
including Iran, United States, United Kingdom, Bulgaria, Turkey, Japan, and India. It is
predominantly grown in warmer climates, typically at an altitude of 300–1500 m. [18,57].
Since ancient times, damask rose has been cultivated for various purposes, in Iran having a
long history of producing and exporting essential oils around the world [18,58]. Although
it is unclear why plants produce essential oils, these oils are generally the byproducts of
major metabolic processes in plants, particularly under stress conditions [59,60]. Due to the
evolution of various plant genes that promote adaptation to environmental conditions at crop
sites, it is possible to observe an alteration in the quantity and quality of essential oils as a
result of the environmental interactions of these plants [61–63]. The method of propagation,
time of harvesting, air temperature, relative humidity, intensity of sunlight, flower stages,
day period of harvesting, harvest procedures, time and level of pruning, storage of plant
material, and method of distillation are the most influential agronomic factors on essential
oil quality [43]. It was discovered that nutrient provision and irrigation are two of the most
important factors influencing the production of essential oils by plants in a field. As is
common knowledge, soil characteristics also impact plant growth and development, and the
quantity and quality of yields [18]. The chemical elements in the rhizosphere (such as mobile
phosphorus and potassium (K) content) are incorporated into the enzymes participating in the
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biochemical reactions occurring within plants. Soil chemistry can thus influence the essential
oil composition (such as linalool, citronellol, geraniol, eugenol, and so on) as well as the
distribution of chemotypes [64]. Water is also an important environmental factor that affects
plant growth and yield quality, and the quantity of essential oils.

Crude distillation of roses for oil is thought to have originated in Persia in the late
7th century A.D., and spread to the provinces of the Ottoman Empire later in the 14th
century [2]. As a result, a wide range of diversity is expected in Lebanese damask rose
landraces. Different gene complexes favouring adaptation to the environmental conditions
may have evolved over the period of time, leading to the diversity in damask roses and the
complexity of their aromatic profiles [65]. The choice of organic production of an essential
oil crop over conventional production is frequently reported expensive and tedious for
agricultural producers, but the results are especially important for the production system, and
to obtain sufficient quantities of good quality produce [66]. It has been found that the nutrient
concentrations of damask roses from conventional gardens are significantly higher than those
from organic gardens, particularly for nitrogen (N), K, calcium, and iron concentrations,
representing the accumulation of inorganic substances. Paclobutrazol, an antigibberellic,
combined with N supplied in appropriate amounts, and the micronutrients Mn2+, Zn2+, and
Cu2+, improved flower bud formation and flowering, and rose oil yield having a higher
percentage of citronellol [67]. Farmers must decide upon the choice of conventional or
organic agricultural system based on the benefits and challenges of the agricultural sector.
However, one of the major challenges in organic rose oil cultivation is low resistance to major
diseases and pests [10]. The system and agricultural practices used in the cultivation can
have a significant impact on the quality of cosmetic rose products and food supplements.
The essential oil from organic farming provides higher linalool and geraniol content and
lower β-citronellol + nerol concentrations than conventional farming. It has also been found
that combining ecofriendly agricultural practices in organic private farms for damask rose
cultivation resulted in higher antioxidant activity values in rose phytoconstituents from rose
methanolic extracts compared to those from conventional agricultural systems [68].

5. Influence of Abiotic Stressors on Aromatic Profile of Damask Rose

Plants constantly face a variety of biotic and abiotic environmental stresses and thereby
grow and survive in adverse environments using indirect and direct defensive mecha-
nisms [69]. Although natural acclimation responses in flowering plants include changes
in these traits, unusual changes in an environmental factor (e.g., temperature, herbivory)
may alter floral biochemistry to the point where their ability to attract pollinators is com-
promised and reproductive fitness is lost. Lower levels of attractant metabolites and higher
levels of warn-off substances are common trade-offs, disrupting the established balance
acquired by specific floral phenotypes within their respective communities [47,70].

Abiotic stress and climate change are significant constraints to crop production. The
science of plant abiotic stress tolerance encompasses all studies on nonbiotic environmental
factors or stresses that can cause an impact on plant species [71]. Plants frequently face
various abiotic stresses, such as temperature, dehydration, salinity, nutrition, UV radiation,
and heavy metal toxicity. These stressors significantly impact the development of plants,
including plant yield, morphology, and growth, and development is complex in today’s
changing climatic scenario (Figure 4). Crop yield and quality limitations have accelerated
with increased human birth rate, posing an additional threat to natural resources [72].
Abiotic stresses also limit global food demand, and a homeostatic environment promotes
the discovery of underlying mechanisms for the development of climate-resilient crops [73].
Extreme temperature and light density, radiation (UV-B and UV-A), water stress (flooding,
drought, and submergence), mechanical factors, chemical factors (heavy metals and pH),
salinity due to excess Na+, excess or deficiency of essential nutrient elements, gaseous pol-
lutants (sulphur dioxide, ozone), and other commonly occurring stressors in lesser amounts
under field conditions are examples of abiotic stressors in horticultural production. Stresses
such as heat and drought can have unique effects on plant-stress physiology that cannot
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be elucidated by a single type of stress factor [74]. As a result, a variety of physiological
relationships can be projected, necessitating individual innovative approaches. A specific
type of environment for one plant species may not be adaptable to another, and external
abiotic or biotic factors can impose stress on plants, depending on their genetic makeup and
adaptive response. The interaction of environment and abiotic stresses may plague plants,
and these factors impose epigenetic influence on plant behaviour and progeny, bringing
new insights to revisit plant–environment interactions. Volatile terpenoids released from
flowers attract pollinators and protect against biotic and abiotic stresses [75]. For example,
geraniol has antibiotic activity and can be detected with high sensitivity by honeybee anten-
nae [76]. The β-ocimene and linalool are common pollinator attractants with antibacterial
properties [77]. (E)-α-farnesene extracted from Brassica rapa flowers attracted bees rather
than butterflies, and (E)-β-caryophyllene promotes plant fitness and aids in the defence
against pathogenic bacteria [78,79]. Nonbiotic environmental pressures will continue to
pose a significant challenge to sustainable agricultural practices and the natural environ-
ment. The current rate of rapid industrialisation and urbanisation, the growing human
world population, coupled with deteriorating soil, air, and water resources, as well as
climate change, global warming, and greenhouse gas effects, is negatively affecting global
crop productivity. The major tasks ahead of us in plant-stress physiology and sustainable
crop improvement are to compile the very foundation of systems-level information on
plant abiotic stress response and signal transduction pathways, characterise abiotic stress
defence networks, and to produce climate-resilient crop plants having more yield and
quality attributes to feed the world’s growing population [80]. Environmental factors are
responsible for enhancing the production of low floral and essential oil yields, which are
a major problem for farmers and manufacturers alike. This article presents an extensive
review of the VOCs in damask roses when exposed to various stressors.
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5.1. Drought Stress

Drought stress is one of limitations in agricultural production because it is generally
harmful to plant growth and must be studied in areas where water is scarce for agriculture
and in areas that rely on rainwater [27]. Cell wall maintenance has been linked to drought
resistance. In fact, a decrease in water potential can be avoided by shrinking cellular volume
in water-limited environments due to the elasticity of plant cell walls, and plants have
developed a variety of mechanisms to tolerate drought stress, including a modified root-
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to-shoot ratio, smaller and fewer leaves, and altered stomatal function. Drought reduces
leaf area due to reduced cell expansion and cell division, leaf rolling, and death of apical
leaf portions. Plants with larger leaf areas have a higher transpiration-to-evaporation ratio,
resulting in more efficient water use. A variety of biochemical, physiological, and chemical
changes were induced by drought stress, resulting in membrane injury and cell function
loss, together with a decrease in plant growth [81]. Drought severity and frequency are
expected to increase due to climate change-induced modifications in typical precipitation
patterns. Water scarcity sends a chemical signal through xylem sap to the aerial system,
causing partial stomatal closure to prevent water loss by evaporation. As a result, plants
adopt a water-saving strategy that reduces intracellular CO2, lowering the amount of
NADPH+, H+, and ATP available for CO2 fixation within the Calvin cycle, lowering
NADP+ regeneration and influencing the photosynthetic electron transport chain [82]. Not
only does the production of essential oil in plants rely on the metabolic mode of resource
tissue, but it may also influence stress factors. It is necessary to use appropriate irrigation
to produce each pharmaceutical plant to extract its essential oil and other bioactives. While
the identification of commercial and drought-resistant species is critical, it is also necessary
to investigate the ratio of available essential oil in pharmaceutical plants and observed
water scarcity. Drought stress can stimulate a wide range of aromatic components, with
the number of aromatic components stimulated by fresh leaves increasing in proportion
to the severity of the drought [83]. However, in a study of drought stress on essential oil
composition of damasks rose found no significant difference of chemical profile. In fact
water stress increased yield of the essential oil [84]. Hassan, et al. [85] investigated the
application of Spermine (Spm) or Spermidine (Spd) on some physiological and biochemical
processes to comprehend the potential mechanisms concerning the alleviation of water
stress in damask rose. They concluded that under water stress, foliar administrations
of Spm or Spd at a concentration of 0.5 mM improved growth characteristics, relative
water content (RWC), chlorophyll content, and stomatal conductance. In addition, the
proline content and catalase (CAT) and superoxide dismutase (SOD) enzyme activities
were enhanced by the application of Spm or Spd. As a result, the production of hydrogen
peroxide (H2O2) was inhibited, as was the accumulation of malondialdehyde (MDA);
consequently, membrane stability was maintained, and water stress damage was mitigated.
Farahani, et al. [86] reported that applying Si to the leaves at a concentration of 0.2% in
the spring and summer, especially when under water stress conditions, is a good way to
increase the essential oil content and concentration of geraniol, citronellol, eugenol, and
methyl eugenol, which are the main compounds in rose oil. Kiymaz, et al. [87] found that
the response in yield and quality of the essential oil of R. damascena was a direct result of
the relatively constant water use efficiency. According to the results of the study, irrigation
water level at 0.50 and 80 kg ha−1 treatment produced the highest yield of fresh flowers per
plant. As fertiliser level increased and irrigation level decreased, fresh flower yield, oil yield
per plant, plant height, number of branches, and leaf area decreased. Few changes were
observed in the quality of essential oils as water stress increased with less applied water.
Yousefi [88] evaluated the flower yield and essential oil content in 49 different Iranian
damask rose landraces. It was found that most landraces originating from temperate, warm
temperate, and arid regions produced a greater flower yield and essential oil than those
originating from cool temperate, semi-arid and humid regions. In summary, drought stress
poses a significant threat to crop production, impacting damask rose growth and essential
oil production. Understanding the mechanisms of drought resistance and implementing
appropriate irrigation techniques are crucial for maintaining optimal plant performance
and maximising rose oil yields in drought-prone regions.

5.2. Salt Stress

In general, little is known about the physiological nature of salinity impacts and the bio-
chemical mechanisms occurring under salt stress. Salt stress involves the metabolic processes
particularly in protein synthesis and inorganic N incorporation into amino acids, which is
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largely dependent on the type and amount of salt used and the plant species being studied [89].
Salt stress can occur as a catastrophic occurrence, be applied constantly or intermittently, and
become progressively more severe at any point throughout development [90]. Rock erosion,
capillary increase in brackish groundwater, water inlets from the sea by the coast, restricted
soil drainage, little rainfall, high evaporation rates, and/or climate change along with fer-
tilisation overuse are the main causes of primary salinity [91]. Whether salt shock or stress
will occur depends on how the plants are exposed to salinity [92]. Both the osmotic and
ionic parts of salt stress and salt shock generally stop plants from growing. Osmotic stress
limits water intake, which results in turgor loss and a rise in ion concentration within the cells.
Plants can become toxic from the ionic component, which can also induce cell death from an
excessive ion build-up. Ionic changes occur when there is an imbalance in solutes, such as
when the ratio of K+ to Na+ decreases and Na+ and Cl− increase in the cytosol [93]. Roses
are typically considered to be susceptible to salinity. However, the availability of excellent
water is limited in many rose-growing regions, and soil salinisation is frequent. The effects
of salinity on Rosa species depend on salinity type and concentration, cultivation method,
substrate type, irrigation system, species or cultivar, and rootstock selection [93]. Most often,
higher soil salt concentration adversely affects growth and flowering, which interferes with
the appearance and aroma quality of several rose species [94]. Rose landscape cultivars such
as R. chinensis do not blossom but instead go directly into hibernation under conditions of
salt stress [95]. When mini roses (R. hybrida L. ‘Red Imp’) are exposed to salt stress, they
bloom later and have fewer flowers per plant [96]. Additionally, when the saline level is
moderate or high, garden roses like R. hybrida L. types (‘Caldwell Pin’, ‘Carefree Delight’,
‘Marie Pavie’, and ‘The Fairy’) produce fewer blooms [97]. Furthermore, salt stress impacts
the water potential of plants. When R. chinensis was exposed to saline water, the amount of
leaf water and dry matter decreased [98]. A rise in the salt content in irrigation water also
hurts the height, stem diameter, and dry matter production of rose plants [99]. The effect of
various NaCl concentrations on plant growth has been studied and the quality of essential
oils from R. damascena var. trigintipetala Dieck showed that at a concentration of 500 ppm,
it may be effective for enhancing and stimulating the quality of essential oil constituents
such as citronellol, geraniol, and phenyl ethyl alcohol. The chemical alterations caused by
salinity may represent an adaptation to this factor. In this instance, exposing rose plants to
salinity stress may be a viable method for enhancing essential oil production. In addition,
mitigation of salt-stress effects by foliar application of moringa leaf extract (MLE) or salicylic
acid (SA) was found to enhance the growth, relative water content, proline content, total
phenolic content, activity of antioxidant enzymes CAT and SOD, and chlorophyll content in R.
damascena var. trigintipetala Dieck [100]. Omidi, et al. [101] found that the application of SA,
even at low concentration (0.5 mM), could mitigate the detrimental effects of salinity stress in
R. damascena. Salinity increased the activity of antioxidant enzymes CAT and SOD, as well
as the concentrations of proline, protein, and glycine betaine. Overexpression of antioxidant
genes (ascorbate peroxidase (APX), CAT, peroxidase (POD), Fe-SOD, and Cu-SOD) played
a significant role in Damascus rose salt tolerance. Additionally, 0.5 mM SA increased the
activity of enzymatic and nonenzymatic systems alongside salinity tolerance. Attia, et al. [102]
found that R. damascena salt tolerance at 100 mM NaCl was correlated with the maintenance
of high water and chlorophyll contents. Salt impeded lipid peroxidation by elevating MDA
and H2O2 levels. Leaf SOD, CAT, and guaiacol peroxidase activities decreased in response
to varying concentrations of NaCl, concurrent with a decrease in polyphenol, tannin, and
flavonoid content.

5.3. Nutrient Stress

Nutrient management that incorporates organic and inorganic fertilisation has a positive
impact on soil organic matter and available plant nutrients, resulting in long-term crop
production. Furthermore, nutrient availability is important in this regard [103,104]. Producers
are unable to maximise damask rose production and quality due to a lack of information
and technical skill on the optimum levels of various nutrients. Macro and micronutrient
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treatments are critical in this regard [105]. Nutrient management is critical for economic and
environmental sustainability. N is essential in the synthesis of plant constituents via the action
of various enzymes. N fertilisation has an impact on both the quantity and quality of essential
oil. In general, N applications increase oil yield in aromatic plants by increasing biomass yield
per unit land area, leaf area development, and photosynthetic rate [106,107]. Phosphorus (P) is
essential for many metabolic processes. It is found in nucleic acids, phospholipids, coenzymes,
Deoxyribonucleic acid (DNA), nicotinamide adenine dinucleotide phosphate (NADP), and,
most notably, adenosine triphosphate (ATP). It activates the coenzymes to produce amino
acids, which are used in protein synthesis, and decomposes carbohydrate production in
photosynthesis along with the glycolysis, respiration, and fatty acid synthesis. K is one of
the most important elements for plant nutrition, accounting for 1–5% of crop dry matter;
it plays a critical role in crop growth, yield, and quality. Plant height, main and secondary
branch numbers, as well as leaf and stem dry weights increased with K and/or zinc (Zn)
application, compared to control plants, with the combined treatments showing the greatest
improvement [108]. Ghavam [18] reported the results of a study of the effects of irrigation
water and soil physico-chemical characteristics on the essential oil yield of the damask rose.
It was found that essential oils obtained from the Yazdel site had the highest concentrations
of citronellol and geraniol (29.05% and 6.85%), which directly correlated with soil K and
phosphorus content, and inversely correlated with soil acidity, electrical conductivity (EC)
values, lime, N, and organic carbon contents. Additionally, micronutrients are important for
the development of high yielding, high-quality products. However, only small quantities of
micronutrients are required. Plants’ physiological and metabolic processes can be impacted
by even small micronutrient deficiency [105,109]. Including Zn promotes photosynthetic and
other metabolic activities that increase the levels of various plant metabolites needed for cell
division and elongation [110]. Furthermore, the positive effects of nutrients, particularly Zn,
on plant growth may be due to their requirement in tryptophan synthesis (as the precursor of
Indole-3-acetic acid: IAA) and stimulation of IAA enzyme synthesis, as well as its effect on
improving growth hormone biosynthesis [106].

Nutrient management is essential for balancing high floral yield with high quality
oil production—two essential ingredients for profitable production of damask roses. It
is a demanding crop that requires a steady supply of plant nutrients [108]. According to
Shohayeb, et al. [111], R. damascena cultivated in the Shafa and Hada Mountains exhibited
varied soil macro- and micronutrient concentrations, indicating that the soil water in each
environment was alkaline. As a consequence, the rose produces citronellol, geraniol, and
eugenol, three of the five components that make up high-quality rose essential oil. In
another study, Kumar, Sharma, Kaundal, Sharma and Thakur [109] reported that foliar
application of essential oils of damask rose using MgSO4, CuSO4, and ZnSO4 showed that
MgSO4 + ZnSO4 at 1% resulted in higher citronellol and nerol content. In addition, the
essential oils produced from the flowers of plants treated with ZnSO4 at 1% contain Z-rose
oxide (2.3%), E-geraniol (26.5%), noadecene (1.5%), nonadecane (6.8%), docosane (0.6%),
and heneicosane (2.6%) compared to other nutrient groups. In a similar study, Pal et al.
(2016) investigated the interaction effects of nutrients and plant hormones on the secondary
metabolite production of the damask rose. It was shown that the application of Ca(NO3)2
at 4 g L−1 increased the percentage of essential aromatic compounds, i.e., β-citronellol
+ nerol, linalool, E-geraniol, and Z-citral, thereby recommending the use of Ca(NO3)2 in
combination with plant hormones to effectively improve flower yield and essential oil
content in R. damascena [112]. Nevertheless, for plants to thrive, nutritional input is still
required. The ecology or soil environment is essentially constrained. To increase yields and
superior quality, it is vital to research and comprehend each region.

6. Molecular Bases of Abiotic Stress Response in Roses

The molecular intricacies underlying the impact of combined abiotic stress on plant
growth has been extensively studied. With the advent of increased bioinformatics research,
there are now open-source datasets compiling the commonly expressed plant genes in
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response to abiotic stresses, such as salinity, drought, and metal exposure. Rose, being one
of the important ornamental and cosmetic crops, has been reported for its limited yield and
quality owing to drought. In R. chinensis, production of a cascade of osmotic protective
agents such as sugars, amino acids, starches, and lipids were observed in response to
drought stress. Genes linked to carbohydrate synthesis were found to be upregulated,
which was evident with an increased accumulation of sugars in the plants exposed to
drought. This was primarily reported to occur via the trehalose phosphate synthase (TPP1)
pathway [113]. In R. chinensis, transcription factors belonging to the family AP2/ERF are be-
lieved to be responsible for rose’s drought stress regulation, while reports suggest the active
involvement of a rose gene encoding the ethylene-responsive factor 109 (ERF109). However,
there is a need for a detailed investigation into the molecular basis for its involvement.
Furthermore, Jia, et al. [114] suggested that the basic helix–loop–helix (bHLH) transcription
factors such as bHLH162 and bHLH35, and those from the MYB family, are particularly
essential for the drought and cold responses in R. chinensis. In R. damascena, upregulation of
antioxidant genes such as the APX, CAT, POD, Fe-SOD, and Cu-SOD was found to occur in
response to salinity tolerance [101]. Hessini et al. [82] reported that the drought tolerance in
R. damascena was mediated mainly via the increasing synthesis of antioxidants coupled with
an orderly regulation of lipoxygenase (LOX) and acetylcholinesterase (AChE) activities. In
another study, El-Sharnouby, et al. [115], concluded that the exposure to salinity stress stim-
ulated and improved the quality of damask rose essential components such as citronellol,
geraniol, and phenylethyl alcohol, via the MVA and shikimate pathways, respectively. In a
similar study, foliar-applied silicon (Si) and water deficit stresses were found to influence
the floral essential oil composition of R. damascena. Based on numerous reports, there is a
suggestion that the utilisation of the is application results in an increase in methyl eugenol
and n-heptadecane, along with a decrease in alkane compounds. Additionally, drought
stress leads to a 1.5-fold increase in geraniol, eugenol, and citranolol, implying the effect
of abiotic stress on the aromatic profile of the crop [116]. Therefore, there is a need for
extensive evaluation of the mechanistic bases of abiotic stress response by damask roses to
understand their functioning and improve yield and quality. Figure 5 illustrates the overall
molecular response of damask rose to abiotic stressors.
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7. Conclusions

In conclusion, abiotic stresses influence the aroma of damask rose. This review high-
lights the abiotic stress conditions of drought, salinity, and nutrient deficiency. Drought
stress can stimulate a wide range of aromatic components, with the number of aromatic
components increasing. The occurrence of drought conditions is an appropriate opportu-
nity to enhance the essential oil content and concentration of geraniol, citronellol, eugenol,
and methyl eugenol, which serve as the main compounds in rose oil. Exposing rose plants
to salinity stress may be a viable method for enhancing essential oil production by improv-
ing and stimulating the quality of constituents such as citronellol, geraniol, and phenylethyl
alcohol. Moreover, citronellol and geraniol concentrations correlated directly with soil K
and phosphorus content. We considered the main mechanisms involved in the most severe
agricultural stress in crop production. The knowledge gained from this work collectively
improves and increases our understanding of stress factors affecting the biosynthesis of
the VOCs in damask rose. Finally, the above findings can be integrated with the already
available information to improve plans for preventing stress(es) and improvising crop
production impacted by the changing environment.
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