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Abstract: Copaifera mildbraedii Desf. is an evergreen tree with an umbrella-like crown. It is distributed
from south-eastern Nigeria eastward to the Central African Republic (CAR). The aim of this study was
to assess the chemical composition and biological activities of C. mildbraedii bark, as well as the chem-
ical composition of the essential oil. Ethyl acetate (EtOAc) and methanol (MeOH) extracts showed a
high total phenolic content (TPC) (149.9 and 148.8 mg GAE/g dry residue (dr), respectively), which
was related to good antioxidant activity (DPPH) with an IC50 of 21.2 and 12.9 µg/mL, respectively.
High-performance liquid chromatography coupled with diode array detector (HPLC-DAD) analysis
revealed seven phenolic compounds with myricitrin (13.3 mg/g dr) and 2,4-dihydroxy-3,6-dimethyl
benzoic acid (30.7 mg/g dr) as major compounds, while gas chromatography-mass spectrometry
(GC-MS) analysis enabled detection of 13 volatile compounds (3 before and 10 after derivatization).
Thirty compounds were identified in the essential oil, which corresponds to 65% of all identified
compounds. Among the latter, E,E-farnesylacetone and γ-gurjunene were considered as major
compounds (8.08 and 10.43%, respectively). The EtOAc extract showed a potent potential, simultane-
ously, against anti-acetylcholinesterase (AChE), anti-15-lipoxygenase (15-LOX), anti-xanthine oxidase
(XOD), and cytotoxic (OVCAR) activities, whereas cyclohexane (CYHA) and dichloromethane (DCM)
extracts showed a cytotoxic effect with high percentages of inhibition (95.2%).

Keywords: bioactivity; chemical composition; Copaifera mildbraedii; chromatography; principal
components analysis

1. Introduction

Tropical forests cover 7% of earth’s land surface [1]. They are the most biologically
diverse environment in the world, and it is not surprising that they have been the source of
many plant species, including medicinal plants [2]. However, compared to other vegetation
types, tropical forests are poorly understood, mainly due to their structural and biological
complexity and the extended time scale. This is largely due to a lack of long-term data on
forest change and changes in determining factors. As a result, the Central African forests
ecology remains hardly known and the literature on species diversity, tree growth, and
phenological rhythms often lacks reference to African data [3]. Nevertheless, about 80%
of the African population use the tree species as medicinal plants in order to treat against
several diseases [4]. According to the World Health Organization (WHO), medicinal plants
would be the best source to obtain a variety of drugs.
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Natural substances are at the origin of the discovery of active ingredients in many
fields: pharmacy, cosmetics, agri-food. The current trend favors their use over derived or
synthetic chemicals. Another need is to analyze natural constituents and understand at the
molecular level their role in ecosystems and on the well-being of living beings. The fields
of environment, health and agriculture are largely concerned with the chemistry of natural
substances. Phytochemistry provides a response to all these needs for these scientific fields
to meet the demands of society.

Copaifera is a genus that belongs in the family Fabaceae that was first described by
Marcgraf and Piso in 1638. The species that belong to this genus are native to the tropical
regions of Latin America (mainly Argentina, Bolivia, and Brazil) and Western Africa (Congo,
Cameroon, Guinea and Central African Republic) [5,6]. The Copaifera genus is commonly
used in folk medicine in African countries. These plants display many pharmacological
properties, including significant potential anti-inflammatory, analgesic and antimicrobial
action [7].

Copaifera mildbraedii Desf. (C. mildbraedii) is a medicinal plant belonging to the Legu-
minosae family. In Africa, it is locally named Ovbia-Leke or Yama-Bilombi in the Central
African Republic [6]. Copaifera mildbraedii is a large (up to 40 m) tree with an umbrella-like
crown and cylindrical bole. It is also characterized by pinnate leaflets in 10 to 20 opposite
pairs [8]. As a tree of the rainforest, it is found in Cameroon, Gabon, Democratic Republic of
Congo, Nigeria and the Central African Republic [9]. In this latter, C. mildbraedii is used in
folk medicine. In particular, the bark of this species is consumed for its anti-inflammatory
and anti-tumor properties [10]. To the best of our knowledge several studies in the literature
focus on the phytochemistry of oleoresin of the different Copaifera species, such as, C. reticu-
late [11], C. multijuga, C. pubiflora and C. trapezifolia [12]. However, despite the traditional
medicinal virtues, little is known about the bark of C. mildbraedii, in terms of the extracts
and essential oil chemical composition, as well as the different biological activities. The
determination of the biochemical composition of C. mildbraedii bark has become of interest
due to its consumption as a local beverage for many therapeutic reasons. The present study
firstly focuses on the determination of the phytochemical composition of C. mildbraedii
bark, collected from the tropical forest of Central African Republic, using spectrometric
analysis (total phenolic content, total flavonoids content and condensed tannin content) and
chromatographic analysis (HPLC and GC-MS). Secondly, an investigation of the biological
activities of different extracts was conducted.

2. Results
2.1. Chemical Composition of Extracts

According to the literature, no studies have been reported before on the effect sol-
vents on extraction yield, Total Phenolic Content (TPC), Total Flavonoid Content (TFC),
Condensed Tannin Concentration (CTC), Total Anthocyanin Concentration (TAC) and
Reducing Sugar Concentration (RSC) of C. mildbraedii bark.

2.1.1. Yield Extraction, Total Phenolic Content (TPC), and the Reducing Sugar
Content (RSC)

The yield and the TPC were determined for the different extracts of C. mildbraedii. The
bark powder of C. mildbraedii was extracted using four organic solvents of increasing polar-
ity (cyclohexane (CYHA), dichloromethane (DCM), ethyl acetate (EtOAc) and methanol
(MeOH)). The apolar and the medium polar solvents (CYHA), (DCM) and (EtOAc) showed
a very low yield extraction with percentages that did not exceed 1.0%. On the contrary,
the polar solvent (MeOH) highlighted the highest extraction potent with a yield of 6.1%
(Table 1). In general, the yields of polar extracts (MeOH) were about eight-fold higher than
those of the non-polar extracts (CYHA and DCM). The present results were greater than
that reported by Carmo et al. [13] in their work on the bark of C. langsdorffii. Moreover,
among all the different extracts, only the MeOH extract exhibited a reducing sugar content
of 269.2 milligrams of glucose equivalents per dry residue (mg GE/g dr) (Table 1). The
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other solvents were not able to extract the sugar compounds. The previous results of Singh
and Madans [14] showed that the polar solvents were the best solvent for sugar compounds
extracting, which confirms the results found in the current study. The TPC of C. mildbraedii
extracts ranged from 10.0 to 149.0 milligrams of gallic acid equivalents per dry residue
(mg GAE/g dr) (Table 1). Statistically, while there was a significative difference (p ≤ 0.05)
between CYHA and DCM extracts, there was no significative difference (p > 0.05) between
EtOAc and MeOH in terms of their TPC, compared to the other extracts. The EtOAc and
MeOH extracts showed the highest TPC with 149.9 and 148.8 mg GAE/g dr, respectively
(Table 1). The CYHA extract showed a low TPC of 10.0 mg GAE/g dr, followed by the
DCM one with 23.5 mg GAE/g dr (Table 1). The TPC of the C. mildbraedii bark extracts
was higher than found by Sharmin et al. [15], who reported a TPC of 60.8 mg GAE/g dr in
MeOH extract of A. chinensis bark.

Table 1. Extraction yield and chemical composition of Copaifera mildbraedii extracts.

Extracts Yields (%) TPC
mg GAE/g dr

RSC
mg GE/g dr

Cyclohexane 0.7 10.0 ± 0.4 c nd
Dichloromethane 0.5 23.5 ± 0.5 b nd

Ethyl acetate 0.7 149.9 ± 6.0 a nd
Methanol 6.1 148.8 ± 1.9 a 269.2 ± 2.6

nd: not detected. a, b, c: the different superscripts in the same column represent significant differences between the
TPC values according to Tukey’s test when comparing the extracts of the same species (p ≤ 0.05).

2.1.2. Total Flavonoid, Anthocyanin and Condensed Tannin Contents (TFC, TAC, and CTC)

For the TFC, the EtOAc extract of C. mildbraedii showed the highest amount with
6.6 milligrams of quercetin equivalents per of dry residue (mg QE/g dr) (Table 2). The
DCM and MeOH showed a close TFC (1.1 and 1.0 mg CE/g dr, respectively), with no
significative difference (p ≤ 0.05), unlike CYHA extract, which showed no TFC. Statistically,
there was a negative correlation between TPC and TFC (r = −13) (Table 3), which suggests
that the majority of phenolic compounds in the different extracts were not flavonoids.

Table 2. Total flavonoids, anthocyanin, and condensed tannin contents.

Extracts TFC
mg QE/g dr

CTC
mg CE/g dr

TAC
mg (C3GE)/g dr

Cyclohexane nd nd 1.9 ± 0.1 a

Dichloromethane 1.1 ± 0.1 b nd 1.7 ± 0.1 a

Ethyl acetate 6.6 ± 0.3 a 8.4 ± 0.2 0.9 ± 0.0 b

Methanol 1.0 ± 0.8 b nd 0.3 ± 0.0 c

nd: not detected. a, b, c: the different superscripts in the same column represent significant differences between
the TFC and CTC, and TAC values according to Tukey’s test when comparing the extracts of the same species
(p ≤ 0.05).

Table 3. Correlation matrix (Pearson (n)).

Variables TPC CTC TFC TAC DPPH AChE 15-LOX IGROV OVCAR XOD

TPC 1 0.58 −0.13 −0.93 0.90 0.90 0.99 −0.98 0.02 0.97
CTC 0.58 1 0.25 −0.25 0.50 0.48 0.65 −0.73 0.78 0.77
TFC −0.13 0.25 1 0.25 0.26 0.27 −0.15 0.10 0.09 −0.02
TAC −0.93 −0.24 0.25 1 0.86 −0.86 −0.89 0.84 0.33 −0.81

DPPH −0.90 −0.50 −0.26 0.86 1 −1.00 −0.86 0.85 0.15 −0.86
AChE 0.90 0.48 0.27 −0.86 1.00 1 0.86 −0.84 −0.16 0.86

15-LOX 0.99 0.65 −0.15 −0.89 0.86 0.86 1 −0.99 0.13 0.98
IGROV −0.98 −0.73 0.10 0.84 −0.85 −0.84 −0.99 1 −0.22 0.99
OVCAR 0.02 0.78 0.09 0.33 −0.15 −0.16 0.13 −0.22 1 0.27

XOD 0.97 0.77 −0.02 −0.81 −0.86 0.86 0.98 0.99 0.27 1
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Regarding the CTC, among all tested extracts, the EtOAc extract was the only one
which showed any significant content (Table 2). The CTC in this study, which was around
8 mg of catechin equivalents per dry residue mg CE/g dr, which was higher compared to
the content found by Sujarnoko et al. [16]. They found a CTC in the Acacia mangium bark,
which did not exceed 2 mg CE/g dr. Statistically, a good positive correlation was found
between TPC and CTC (r = 0.58) (Table 3). These findings confirm that the condensed tannin
were one of the main phenolic components [17,18]. For the TAC, C. mildbraedii extracts
showed a modest content ranked from 0.3 to 1.9 mg of cyanidin-3-glucoside equivalents per
g of dry residue (mg C3GE/g dr) (Table 2). Statistically, there was no significant (p > 0.05)
difference between the two non-polar extracts (CYHA and DCM) in terms of their TAC,
compared to the EtOAc and MeOH extracts (Table 2). The present results were higher than
those found by Nitiema et al. [19] in their study on Acacia gourmaensis bark extracts.

2.2. Chromatographic Fingerprint Analyses using High-Performance Liquid Chromatography
Coupled with Diode Array Detector (HPLC-DAD)

HPLC-DAD analysis of the different C. mildbraedii extracts was completed at 280 nm.
The EtOAc and MeOH extracts chromatograms showed a similarity, in terms of pro-
file and intensity (50 and 2500 mV) (Figure 1). These extracts displayed a large num-
ber of peaks with high intensity, which reach 2500 mV for both EtOAc and MeOH ex-
tracts. CYHA and DCM showed some similarity for the general profile with a very
small number detected compounds. Regarding to the qualitative analysis, the different
C. mildbraedii extracts has revealed seven different phenolic compounds in total (Figure 2;
Table 4). While five phenolic compounds were identified in the MeOH extract, only one or
two compounds were identified in the other extracts. The phenolic compounds 3-amino-4-
hydroxybenzoic acid, 2,4-dihydroxy-3,6-dimethyl benzoic acid, icariin, pinostilbene and
4-hydroxy-3-propylbenzoic acid methyl ester were identified in the MeOH extract with
the concentrations of 0.3, 30.7, 0.4, 0.5 and 0.2 mg/g dr, respectively (Table 4). This find-
ing indicates that the MeOH extract was rich in polyphenols compounds. Interestingly,
2,4-dihydroxy-3,6-dimethyl benzoic acid showed the highest concentrations compared
to the other identified compounds. For the CYHA and EtOAc extracts, two compounds
of each extract were identified. Pinostilbene was the common compound between the
two extracts with a small difference in concentration (1.2 mg/g dr for CYHA and 0.7 mg/g
dr for DCM). In addition, myricitrin (13.3 mg/g dr) and 4-hydroxy-3-propylbenzoic acid
methyl ester (0.5 mg/g dr) were also found in CYHA and EtOAc extracts, respectively
(Table 4). However, 5,7-dihydroxy 4-propylcoumarin (0.5 mg/g dr) was the only identified
compound in the DCM extract (Table 4).

Table 4. Quantification of the compounds detected in the extracts of C. mildbraedii bark extracts using
HPLC-DAD analysis at 280 nm.

N◦ Rt (min) Compounds Concentration (mg/g dr) References

CYHA DCM EtOAc MeOH

1 2.2 3-amino-4-hydroxybenzoic acid nd nd nd 0.3 [20]
2 25.3 Myricitrin nd nd 13.3 nd [21]
3 35.2 2,4-dihydroxy-3,6-dimethyl benzoic acid nd nd nd 30.7 [22]
4 42.0 Icariin nd nd nd 0.4 [23]
5 43.4 5,7-dihydroxy 4-propylcoumarin nd 1.5 nd nd [24]
6 44.7 Pinostilbene 1.2 nd 0.7 0.5 [25]
7 46.13 4-hydroxy-3-propyl benzoic acid methyl ester 0.5 nd nd 0.2 [26]

nd: not detected.
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Figure 1. HPLC chromatograms of C. mildbraedii bark extracts. (CYHA: cyclohexane; DCM:
dichloromethane; EtOAc: ethyl acetate; MeOH: methanol). Peaks: (1) 3-amino-4-hydroxy benzoic
acid; (2) myricitrin; (3) 2,4-dihydroxy-3,6-dimethylbenzoic acid; (4) icariin; (5) 5,7-dihydroxy-4-
propylcoumarin; (6) pinostilbene; (7) 4-hydroxy-3-propylbenzoic acid methyl ester.
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Figure 2. Chemical structures of the compounds detected in the extracts of C. mildbraedii bark extracts
using HPLC-DAD analysis at 280 nm.

2.3. Gas Chromatographic Analysis
2.3.1. Chemical Composition of Essential Oil

According to the literature, no studies on the identification of C. mildbraedii bark es-
sential oil components have been published. The components of the essential oil were
identified by comparing their MS patterns and retention index (RI) with those of known
chemicals published in the literature [27–50]. The chemical composition of the essential
oil of C. mildbraedii bark was quantified using GC-FID and identified via GC-MS. Table 5
shows 30 compounds identified, representing 65% of all compounds detected in the GC-MS
investigation of the essential oil, with 9 sesquiterpene hydrocarbons (26%), 7 oxygenated
sesquiterpenes (22%) and 14 other compounds (17%). Among all the compounds identified,
γ-gurjunene (10.43%), E,E-farnesylacetone (8.08%), and 8,14-cedranoxide (7.34%) were the
predominant compounds, while Z-phytol (3.66%), γ-caryophyllene (3.61%), E-α-santalol
(3.38%), α-acoradiene (2.79%), β-patchoulene (2.72%), Z-isolongifolanone (2.65%), wid-
drol (2.35%) and epiglobulol (2.00%) were the least predominant compounds. Most of
sesquiterpenes presented here (Table 5), such as, δ-elemene, γ-caryophyllene, β-cedrene
and α-guaiene, were described in previous research on the phytochemical profiles of species
in the Copaifera genus [51]. However, more than one compounds were identified for the first
time in the Copaifera bark essential oil, such as, α-longipinene, α-cubebene, β-patchoulene,
Z-β-damascone, E-thujopsene and β-oplopenone.

Table 5. Chemical composition of the essential oil of barks of C. mildbraedii.

N◦ Compounds Area (%) Chemical Formula RI RI from the Litterature

1 δ-elemene 0.29 C15H24 1339 1329 [27]
2 α-longipinene 0.33 C15H24 1351 1351 [28]
3 α-cubebene 0.44 C15H24 1360 1361 [29]
4 Cyclosativene 0.54 C15H24 1371 1371 [30]
5 β-patchoulene 2.72 C15H24 1377 1386 [31]
6 Z-β-damascone 0.17 C13H20O 1383 1386 [32]
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Table 5. Cont.

N◦ Compounds Area (%) Chemical Formula RI RI from the Litterature

7 Isolongifolene 0.40 C15H24 1388 1388 [33]
8 γ-caryophyllene 3.61 C15H24 1406 1406 [34]
9 Isocaryophyllene 0.65 C15H24 1413 1417 [35]
10 β-cedrene 1.00 C15H24 1418 1418 [31]
11 E-thujopsene 1.23 C10H14O2 1428 1428 [36]
12 α-guaiene 1.14 C10H16 1439 1444 [35]
13 E-4,5-muroladiene 0.90 C10H14O2 1451 -
14 α-acoradiene 2.79 C15H24 1465 1466 [37]
15 γ-gurjunene 10.43 C21H32O4 1472 1473 [37]
16 2,6-dibutyl-4me-phenol 1.73 C15H24O 1502 1508 [38]
17 8,14-cedranoxide 7.43 C15H24O 1537 1542 [39]
18 Tridecan-1-ol 0.95 C13H28O 1576 1578 [40]
19 β-oplopenone 1.53 C15H24O 1584 1606 [39]
20 Epiglobulol 2.00 C15H26O 1587 1582 [40]
21 Widdrol 2.35 C15H26O 1597 1584 [41]
22 Cedrenol 1.14 C15H24O 1603 1606 [42]
23 Z-isolongifolanone 2.65 C15H24O 1620 1612 [43]
24 10-methylundecan-4-olide 0.65 C12H25O2 1657 1659 [44]
25 E-α-santalol 3.38 C15H24O 1677 1679 [45]
26 Blumenol C 0.69 C13H20O3 1704 1713 [46]
27 Methyl palmitate 0.97 C17H34O2 1911 1911 [47]
28 Isophytol 1.35 C20H40O 1922 1938 [48]
29 E,E-farnesylacetone 8.08 C18H28O 1932 1921 [49]
30 Z-phytol 3.66 C20H40O 2113 2113 [50]

Total identified (%) 65
Sesquiterpene hydrocarbons (%) 26
Sesquiterpene oxygenated (%) 22

Others (%) 17

2.3.2. Volatile Compounds of Extracts

Gas chromatography coupled with mass spectrometry was used to identify the volatile
compounds in the different extracts of C. mildbraedii bark. This is the first report which
investigate the chemical composition of the Copaifera bark extracts. Only three volatile
compounds (hydrocoumarin, 1,5-naphthyridin-4-ol and 1,3-di-O-acetyl-2,4,6 trimethyl-
hexopyranose) were detected without derivation. Except 1,3-di-O-acetyl-2,4,6 trimethyl-
hexopyranose, which was detected in the EtOAc extract, the other two compounds were
detected in the MeOH extract (Table 6). Therefore, a silylation step was performed in
order to identify more volatile compounds. No compounds (derivatized or not derivatized)
were observed in DCM extract. On the other hand, this step led to the identification of
10 compounds in the other extracts (CYHA, EtOAc and MeOH) (Table 6). The volatile
profile from the different extracts showed the presence of five organic compound classes:
phenolic acid, naphthyridines, alcohols, sugar and fatty acid. Except glycerol and D-pinitol,
which were detected in two extracts (EtOAc and MeOH), all the other compounds were
detected only in one extract. GC-MS analysis showed a chemical composition difference
between the different solvents, which depends on their polarities. Based on that, the MeOH
extract was rich with alcohols and sugar compounds such as glycerol and glucopyranose
(Table 6), whereas the fatty acid compounds (palmitic acid, oleic acid and stearic acid) were
found in the CYHA extract.
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Table 6. Volatile compounds identified using GC-MS before and after derivatization of C. mild-
braedii extracts.

N◦ Rt (min) Compounds CYHA DCM EtOAc MeOH

Before derivatization

1 13.01 Hydrocoumarin nd nd nd ++
2 13.72 1,5-naphthyridin-4-ol nd nd nd ++
3 14.56 1,3-di-O-acetyl-2,4,6 trimethylhexopyranose nd nd +++ nd

After derivatization
1 11.50 Glycerol nd nd +++ +++
2 15.29 Erythrose oxime nd nd nd +++
3 15.93 D-erythro-Pentonic acid, 3-deoxy-2-C-(hydroxymethyl)- nd nd nd +
4 15.98 D-psicofuranose nd nd nd +
5 16.18 D-pinitol nd nd +++ +++
6 17.12 Glucopyranose nd nd nd +++
7 17.53 Palmitic acid ++++ nd nd nd
8 18.59 Oleic acid ++ nd nd nd
9 18.74 Stearic acid ++ nd nd nd
10 19.46 Cis-5,8,11-eicosatrienoic acid +++++ nd nd nd

Rt: retention time; nd: not detected; +++++: exrtemely abundant; ++++: high abundant; +++: very abundant; ++:
moderately abundant; +: weakly abundant.

2.4. Antioxidant Activity

Figure 3 showed the results of the antioxidant activity in the C. mildbraedii bark extracts,
evaluated using the DPPH method. According to the previous knowledge, this is the first study
about the antioxidant activity of extracts from species in the genus Copaifera. The results were
expressed in IC50 value, which indicates that the highest anti-DPPH activity corresponded
to the lowest concentration value. Statistically, there was no significant difference (p > 0.05)
between MeOH, EtOAc and the ascorbic acid standard, compared to the CYHA and DCM
extracts. The MeOH and EtOAc extracts showed a remarkable antioxidant activity with an
IC50 of 12.9 and 21.5 (µg/mL), respectively (Figure 3). These concentrations were in the range
of that obtained using the ascorbic acid, which was around 6.4 µg/mL. The other extracts
showed a high IC50 value, which indicates their low anti-DPPH activity. The CYHA and DCM
extracts showed an IC50 value of 1072.1 and 467.6 µg/mL, respectively (Figure 3). The present
results were within the range of antioxidant values found by Pereira et al. [52] when working
on C. multijuga bark extracts. They found that the polar extract (EtOH) exhibited an IC50 value
of 22.9 µg/mL. Moreover, there was a positive high correlation between the TAC and their
respective antioxidant activity (DPPH) (r = 0.86) (Table 3). Generally, a strong relationship was
found between the phenolic compounds and antioxidant activity [53].
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Figure 3. Antioxidant activity (IC50 µg/mL) of C. mildbraedii extracts using DPPH assay. (CYHA:
cyclohexane; DCM: dichloromethane; EtOAc: ethyl acetate; MeOH: methanol).
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2.5. Anti-Acetylcholinesterase (AChE) Activity

The anti-AChE activity of C. mildbraedii bark has not been studied previously. There
was no significant difference (p > 0.05) between EtOAc and MeOH extracts compared to
the DCM extract. These extracts showed a good anti-AChE activity, with an inhibition
percentage of 66.6 and 67.8%, respectively. However, the DCM and CYHA extracts showed
low or no AChE inhibitory activity (Table 7). These data were in perfect correlation with the
TPC with an r-value of 0.90 (Table 3). These findings suggested that the phenolic compounds
present in C. mildbraedii were powerful compounds able to inhibit the AChE enzyme.

Table 7. Anti-AChE, anti-15-LOX and anti-XOD activities of C. mildbraedii extracts.

Extract Anti-AChE Activity (%) Anti-15-LOX Activity (%) Anti-XOD Activity (%)

CYHA na na 14.5 ± 1.6 c

DCM 39.5 ± 0.7 b na 17.1 ± 1.2 c

EtOAc 66.6 ± 0.5 a 39.7 ± 5.0 a 53.0 ± 3.5 a

MeOH 67.8 ± 4.2 a 25.9 ± 3.3 b 40.9 ± 0.7 b

Galantamine 95.9 ± 0.2
NDGA 95.1 ± 1.8

Allopirinol 92.5 ± 1.9
na: not active; the different superscript in the same column means significant difference (p ≤ 0.05).

2.6. Anti-15-Lipoxygenaseoline (15-LOX) Activity

Organic extracts of C. mildbraedii bark were evaluated for their (15-LOX) enzyme
inhibition and results are presented in Table 7. Statistically, the high TPC in the EtOAc
extract was perfectly correlated with the 15-LOX enzyme inhibition (r = 0.99) (Table 3).
These results indicated that these phenolic acids had stronger inhibitory activity against
15-LOX [54]. While the two non-polar extracts (CYHA and DCM) showed no AChE in-
hibitory activity, the other two extracts (EtOAc and MeOH) showed a low or a medium
activity against 15-LOX. These extracts have a significant difference between them in terms
of 15-LOX inhibition.

2.7. Anti-Xanthine Oxidase (XOD) Activity

The analysis was conducted with 50 µg/mL of each C. mildbraedii bark extract, and the
results are shown in Table 7. Statistical analysis showed a significant difference (p ≤ 0.05)
between the EtOAc and MeOH extracts in terms of their anti-XOD activity, compared to
the other extracts (CYHA and DCM) (Table 7). The EtOAc extract exhibited the highest
anti-XOD activity and its inhibition percentage was 53.0%, followed by the MeOH extract
(40.9%). The CYHA and DCM extracts highlighted a low XOD activity, which does not
exceed the 20%. Tung and Chang [55] tested the anti-XOD activity of Acacia confusa
extracts. They found that the optimal inhibition of the XOD was registered with the EtOAc
extract (59.0%) at 100 µg/mL, which was two times more concentrated than the EtOAc
extract of C. mildbraedii used in the current study. No previous studies were conducted
regarding the XOD inhibition by Copaifera species. None of the identified molecules were
reported to exhibit an inhibition of the XOD activity in the literature.

2.8. Cytotoxic Activity

In order to investigate the cytotoxic activity of C. mildbraedii bark, the different extracts
were evaluated against two ovarian cancer cell lines (IGROV and OVCAR) in vitro. Both
of the cell lines were inhibited using the different C. mildbraedii bark extracts, with differ-
ent percentages. Copaifera mildbraedii bark extracts showed a moderate to high cytotoxic
inhibition effect ranked from 28.8 to 54.6% against OVCAR, and from 36.4 to 95.2% against
IGROV (Table 8). Statistically, there was no significant difference between CYHA and
DCM extracts, as well as between EtOAc and MeOH extracts in terms of IGROV cells
inhibition. In addition, there was a significant difference between the different extracts, in
terms of OVCAR cells line inhibition. Several previous studies showed the potent activity
of coumarin (like 5,7-dihydroxy 4-propylcoumarin) and flavonoid (as icariin) compounds
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towards human ovarian cancer cells, such as OVCAR and IGROV [56]. Moreover, a positive
correlation (r = 0.78) (Table 8) was found between CTC and the OVCAR cells inhibition on
the one hand, and between TAC and IGROV (r = 0.84) (Table 3) on the other hand.

Table 8. Cytotoxic activity of C. mildbraedii extracts against OVCAR and IGROV cell lines.

Extracts OVCAR (%) IGROV (%)

CYHA 45.9 ± 2.8 b 95.2 ± 4.3 a

DCM 35.9 ± 4.5 c 95.2 ± 4.3 a

EtOAc 54.6 ± 1.3 a 36.4 ± 3.9 c

MeOH 28.8 ± 3.5 c 50.7 ± 1.0 b

Tamoxifen 77.4 ± 7.6 a 57.8 ± 1.8 b

The different superscript in the same column means significant difference (p ≤ 0.05).

2.9. Principal Components Analysis (PCA)

Antioxidant and biological activities measurements of C. mildbraedii extracts were
analyzed using PCA. The results of the PCA are shown in Figure 4. The two principal
components (F1 and F2) explain 87.49% of the total data variance. From this analysis,
the axes of inertia had been withheld, as seen in Table 9. The structuring of accessions
showed 76.7% of the total variation (Figure 4). Axes were retained because they expressed
68.39% (F1) and 19.10% (F2). The loadings in the PCA loading plot express, at the same
time, how well the principal components correlate with the original variables, and the
correlations between the different activities and polyphenols (TPC, TFC and CTC). PC 1
correlated well, i.e., positively, with TPC, anti-15-LOX, anti-XOD activity and anti-AChE
activity with a loading of 0.99, 0.99, 0.98 and 0.92, respectively (Table 10). However, PC
2 correlated well, with the cytotoxic activity (OVCAR) and CTC with the loading of 0.97,
0.75, respectively. However, it is less pronounced with TAC (r = 0.46) (Table 10). Overall,
on the one hand, there was a positive correlation between TPC-15-LOX, TPC-AChE and
TAC-XOD, having Pearson correlation coefficients values of 0.99, 0.90 and 0.97, respectively
(Table 3).
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Table 9. Contribution of the variables (%).

F1 F2

TPC 14.29 0.59
CTC 6.51 29.06
TFC 0.001 5.81
TAC 11.35 11.01

DPPH 12.67 1.44
AChE 12.49 1.61

15-LOX 14.21 0.005
IGROV 14.17 0.45
OVCAR 0.14 48.71

XOD 14.17 1.25

Table 10. Correlations between variables and factors.

F1 F2

TPC 0.99 −0.11
CTC 0.67 0.75
TFC 0.01 0.33
TAC −0.88 0.46

DPPH −0.93 0.17
AChE 0.92 −0.18

15-LOX 0.99 −0.01
IGROV −0.98 −0.09
OVCAR 0.10 0.97

XOD 0.99 0.15

On the other hand, there was a correlation in the negative side of circle between TAC-
DPPH, TAC-IGROV and DPPH-IGROV, having Pearson correlation coefficient values of
0.86, 0.84, 0.84 and 0.85, respectively (Table 3). Figure 4 showed the plots of the factor scores,
and the oval forms grouped the different extracts in three classes. According to Figure 4,
it seems that the CYHA extract possesses the highest antioxidant content (anti-DPPH),
while the DCM extract possesses the highest potential against the IGROV cells line. Both
activities were probably caused by the TAC. Moreover, EtOAc and MeOH extracts were
located close to TPC, 15-LOX and XOD, giving an idea about the richness of this extract by
phenolic compounds, which contributes to the inhibition of the two mentioned activities.

3. Materials and Methods
3.1. Chemicals

All chemicals used were of analytical reagent grade. All reagents were obtained
from Sigma Aldrich (Saint-Quentin, France): ACTHi, acetylcholinesterase, catechin, CYHA,
DCM, DMSO, DPPH, DTNB, EtOAc, Folin–Ciocalteu reagent (2N), gallic acid, HCl, KH2PO4,
MeOH, MTT, NaOH, Na2HPO4, sodium carbonate, tamoxifen, XOD, and 15-LOX.

3.2. Plant Collection

The plant material, the bark of Copaifera mildbraedii, was collected from Boukoko, in the
south of the Central African Republic (Central African Republic) in October 2011. A voucher
specimen was deposited at the Laboratory of Analysis, Architecture and Reactivity of
Natural Substances (Boukoko, Central African Republic) under the code AFM102011.

3.3. Plant Extraction (Extracts and Essential Oil)

The dried powder of C. mildbraedii bark was extracted using solvents of increasing
polarity, with a constant solid/liquid ratio of 1:10 (w/v). The solid–liquid extraction
was carried out for 4 h for each solvent, where the suspension was continuously mixed
using a magnetic agitator. After a filtration step, the solvent was evaporated using a
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rotavapor under vacuum at 35 ◦C. The different residues obtained were evaluated for their
phytochemical composition and their biological activities.

For the essential oil, 1.2 kg of dry bark was used for extraction through hydrodistilla-
tion using a Clevenger-type apparatus during 4 h in the Laboratory of Analysis, Architec-
ture and Reactivity of Natural Substances (Central African Republic). The essential oil was
yellow (visually).

3.4. Total Phenolic Content (TPC)

The TPC of the different extracts of C. mildbraedii bark were quantified using the
same method as Kohoude et al. [57], with slight modifications. In brief, 20 µL of extract
was mixed with 100 µL of sodium carbonate (75 g/L in deionized water), and 100 µL of
Folin–Ciocalteu reagent (0.2 N). The whole was stirred for 30 min and then incubated for
15 min. The absorbance was measured at 765 nm, using a microplate reader. The standard
calibration curve was performed using gallic acid (0–115 µg/mL). Results were expressed
in milligrams of gallic acid equivalents per gram of dry residue (GAE/g dr).

3.5. Total Flavonoid Content (TFC)

The TFC, in the various extracts, were estimated according to the Dowd method as
described by Kohoude et al. [57]. In 96-well microplates, a volume of 100 µL of the diluted
extract (0.5 mg/mL) was mixed with 100 µL 2% solution of aluminum trichloride (AlCl3)
in MeOH. After an incubation of 15 min, the absorbance was measured at 415 nm against
a blank sample (MeOH). Quercetin (2–10 µg/mL) was used as the reference compound
to enable the drawing of the standard curve. The results were expressed in milligrams of
quercetin equivalents per gram of dry residue (mg QE/g dr).

3.6. Determination of Condensed Tannins Content (CTC)

The CTC was determined through the vanillin method as described by Kohoude et al. [57],
with minor modifications. The diluted solution (0.5 mg/mL) of each extract (50 µL) was
mixed with 100 µL of vanillin solution (1% in 7 M H2SO4) in an ice bath. Then, this mixture
was shaken and incubated at room temperature (20 to 25 ◦C) for 15 min. The absorbance
of all samples was measured at 500 nm. Catechin was used as the reference to create the
calibration curve and the results were expressed in milligrams of catechin equivalents per
gram of dry residue (mg CE/g dr).

3.7. Determination of Total Anthocyanins Content (TAC)

The TAC contained in the various extracts of C. mildbraedii was determined using
the pH differential absorbance method as described by Kohoude et al. [57]. Two buffer
solutions were prepared: The first solution consisted of hydrochloric acid and potassium
chloride (pH 1.0 and 0.2 M, respectively). The second buffer solution was a mixture of acetic
acid and sodium acetate (pH 4.5 and 1 M, respectively). Briefly, 180 µL of the buffer solution
was added to 20 µL of extract. The reading was made on two wavelengths at 510 and
700 nm after 15 min of incubation. The following equation was applied for the calculation:

TAC = [(A510 − A700) pH 1.0 − (A510 − A700) pH 4.5].

The results were expressed in milligrams of cyanidin-3-glucoside equivalents per gram
dry residue (mg C3GE/g dr).

3.8. Determination of Reducing Sugars Content (RSC)

The RSC quantification of C. mildbraedii extract was carried out according to the
procedure used by Kohoude et al. [57], with minor modifications. The reaction mixture
contained 100µL of each extract (0.5 mg/mL) and 150µL of DNS solution (0.05 M). After
shaking and incubation for 5 min in a water bath at 100 ◦C, 750µL of water was added.
The absorbance of the mixture was measured, after a second stirring, at 530 nm against a
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blank. The reducing sugar amount was determined in milligrams of glucose equivalent per
gram of dry residue (mg GE/g dr).

3.9. Chromatographic Fingerprint Analyses using High-Performance Liquid Chromatography
Coupled with Diode Array Detector (HPLC-DAD)

HPLC analysis was performed using Ultimate 3000 Pump-Dionex and Thermos Sep-
aration model UV-150 detectors (Thermo Fisher Scientific, Waltham, MA, USA) as re-
ported by Rahmani et al. [58]. The separation was completed on a column of RP-C18-type
(25 cm × 4.6 mm, 5 µm) at room temperature (20 to 25 ◦C). Elution was performed at a
flow rate of 1.2 mL/min, using a mobile phase that consisted of acidified water (pH 2.65)
(solvent A), and acidified water/acetonitrile (ACN) (20:80 v/v) (solvent B). The samples
were eluted according to the following linear gradient: from 0.1 B to 30% B for 35 min, from
30 B to 50% B for 5 min, from 50 B to 99.9% B for 5 min, and finally a return to 0.1% B for
15 min. All the extracts were prepared at the concentration of 20 mg/mL in the mixture
acidified water/ACN (80:20 v/v), then filtered through a filter (Sigma Aldrich, Millex-HA
0.45 µm filter, St. Quentin, France). After that, 20 µL of each extract was injected and the
detection was made at a wavelength of 280 nm. The phenolic compounds were identified
through a comparison of the retention time of known standards and then quantified using
their calibration curves.

3.10. Gas Chromatographic Analysis
3.10.1. Essential Oil Analysis

The chemical identification and quantification of the essential oil were completed ac-
cording to the previous work of Kohoude et al. [57]. Gas chromatography-flame ionization
detection (GC-FID) analyses was carried on a Varian Star 3400C × chromatograph (Les Ulis,
France) fitted with a fused silica capillary DB-5MS column (5% phenylmethylpolysyloxane,
30 × 0.25 mm, film thickness 0.25 µm). Chromatographic conditions initially were began
from 60 to 260 ◦C, then the temperature rose with a gradient of 5 ◦C/min and 15 min
isotherm at 260 ◦C. After that, a second gradient was applied to 340 ◦C at 40 ◦C/min. For
analysis reasons, petroleum ether was used to dissolve the essential oil. One microliter
was injected in the split mode ratio of 1:10 and the helium was used as the carrier gas
at 1 mL/min. The injector was operated at 200 ◦C. For the gas chromatography-mass
spectrometry (GC-MS) system (Varian Saturn 2000 ion trap GC/MS with CP-3800 GC),
it was used with the same chromatographic conditions as GC-FID. The MS system was
adjusted for an emission current of 10 µA and electron multiplier voltage between 1400 and
1500 V. The trap temperature was 250 ◦C and that of the transfer line was 270 ◦C and
the mass scanning was from 40 to 650 amu. The identification of the compounds was
performed through (i) comparison of their retention index (RI) relative to C5-C24 n-alkanes
obtained on a nonpolar DB-5MS column, with those provided in the literature and (ii) by
comparison of their mass spectra with those recorded in NIST 08, reported in published
articles or using co-injection of available reference compounds. The percentage composition
of the essential oil was measured using the normalization method from the GC peak areas,
assuming identical mass response factor for all compounds.

3.10.2. Volatile Compounds of Extracts

The volatile compounds identification from the different organic extracts, before or
after derivatization, was carried with the same equipment GC-MS. The analysis was carried
out following this gradient: 5 min at 60 ◦C, then 60–270 ◦C at 15 ◦C/min, 6 min at 270 ◦C,
from 270 to 300 ◦C at 50 ◦C/min and finally stable at 300 ◦C for 4.5 min. The entire
chromatographic program lasted 30 min. The derivatization method consisted of the
method as described by Kohoude et al. [57], with minor modifications.
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3.11. Antioxidant Activity

The anti-radical activity of the extracts was determined through the method as de-
scribed by Kohoude et al. [57], slightly modified. In a 96-well microplate, 20 µL of each
extract was added to 180 µL of the methanolic DPPH solution (0.2 mM). The mixture was
stirred for 30 s and then incubated for 30 min in the dark. The reading was made at 524 nm.
The inhibition percentage of the extracts was calculated using the following equation:

% inhibition = 100 × (Ablank − Asample)/Ablank

The antioxidant activity of the extract was expressed as IC50, which defines the con-
centration of the extract that reduces the free radical by 50% (DPPH). Ascorbic acid was
used as a standard.

3.12. Anti-Acetylcholinesterase (AChE) Activity

The AChE activity was determined using the Ellman colorimetric method as previously
described by Kohoude et al. [57], with some modifications. In a 96-well microplate, 50 µL of
0.1 mM sodium phosphate buffer (pH = 7.5), 125 µL of DTNB, 25 µL of diluted plant extract
(0.5 mg/mL) and 25 µL of enzyme solution were mixed and incubated for 15 min at 25 ◦C.
Thereafter, 25 µL of ACTHi was added. Then, the final blend was incubated for 25 min at
room temperature, and then the absorbance was measured at 421 nm. Galantamine has
been used as a reference. The Ablank was measured without extract. The enzyme activity
inhibition percentage was calculated as: % inhibition = 100 × (Ablank − Asample)/Ablank.

3.13. Anti-15-Lipoxygenaseoline (15-LOX) Activity

Linoleic acid (substrate) was oxidized in vitro to a conjugate diene using 15-lipoxygenase.
The anti-15-LOX activity was evaluated via the spectrophotometric measurement of the
conjugated diene at 234 nm [57]. The different diluted extracts (20 µL) were mixed with
170 µL of sodium phosphate buffer (pH = 7.4), 60 µL of linoleic acid (3.5 mM) and 20 µL
of enzyme solution (15-LOX). The mixture was incubated at 25 ◦C for 10 min and the
absorbance was determined at 234 nm. The percentage of the enzyme activity was plotted
against the concentration of each extract. The nordihydroguaiaretic acid (NDGA) was used
as a reference. The Ablank was measured without extract. The enzyme activity inhibition
percentage was calculated as: % inhibition = 100 × (Ablank − Asample)/Ablank.

3.14. Anti-Xanthine Oxidase (XOD) Activity

The XOD activity was measured spectrophotometrically using the procedure of Ko-
houde et al. [57], slightly modified. The xanthine solution (1 mM) was prepared by dissolv-
ing this substrate in 25 mL of 0.1 mM sodium phosphate buffer (pH = 7.5). The xanthine
oxidase enzymatic solution was prepared by diluting xanthine oxidase enzyme (1 U/mL)
to a final concentration of 0.1 U/mL. Briefly, 50 µL of diluted plant extract (0.2 mg/mL),
60 µL of 70 mM sodium phosphate buffer (pH = 7.5) and 30 µL of the enzymatic solution
were mixed together, giving a final extract concentration of 50 mg/L in each well of a
96-well microplate. After 25 min of incubation, 60 µL of substrate solution was added
and then the absorbance was measured at 295 nm after 5 min. Allopurinol was used as a
reference. The Ablank was measured without extract. The XOD activity was expressed as
the inhibition percentage of XOD enzyme, calculated as: % inhibition = 100 × (Ablank −
Asample)/Ablank.

3.15. Cytotoxic Activity

The anti-proliferation activity of the different extracts of C. mildbraedii bark was esti-
mated against two human ovarian cancer cell lines: IGROV and OVCAR (American-Type
Culture Collection) as described by Kohoude et al. [57]. Cells were distributed in 96-well
plates at 3 × 104 cells/well in 100 µL. After that, 100 µL of the corresponding culture
medium (Dulbecco’s Modified Eagle Medium (DMEM)) containing sample at various



Plants 2024, 13, 877 15 of 18

concentrations were added. Cell growth was estimated using the MTT assay. MTT is a
water-soluble tetrazolium salt with a yellow coloration. Metabolically active cells are able
to convert the dye to water-insoluble dark blue formazan through reductive cleavage of
the tetrazolium ring. The extracts were re-solubilized in the dimethyl sulfoxide (DMSO)
followed by dilution in the buffer, whereby the DMSO does not exceed 1%. Doxorubicin
was used as a positive control. The cells activity inhibition percentage was calculated as:
% inhibition = 100 × (Ablank − Asample)/Ablank.

3.16. Statistical Analysis

In this study, the measurements were made in three repetitions. Analysis of variance
(one-way ANOVA) using SPSS 20.1 (version 20.0.2004) was able to calculate the data for
significance. Tukey’s test was used to determine statistical differences between solvents.
The determination of the relationship between TPC, TFT, TAC, CTC and biological activities
was assessed using Pearson correlation analysis (r). Principal component analysis (PCA)
was performed using XLSTAT (version 2014.5.03) for the visualization of discrimination
between different parameters.

4. Conclusions

To the best of our knowledge, this study is the first work to highlight biological
activities of C. mildbraedii bark extracts as well as their chemical composition and essential
oil. The physico-chemical composition of C. mildbraedii bark showed that EtOAc extract
highlighted the highest amount of TPC, TFC, CTC and TAC. In addition, C. mildbraedii
bark showed a moderate anti-15-LOX activity and an active AChE and cytotoxic effect.
GC-MS/GC-FID analysis enabled us to identify new compounds, such as α-longipinene
and α-cubebene in the essential oil of C. mildbraedii bark. Among the identified phenolic
compounds, 2,4-dihydroxy-3,6-dimethyl benzoic acid showed the highest concentration,
which exceeded the level of 30 mg/g dr. Overall, PCA proved that there was a positive
correlation between TPC and 15-LOX on the one hand, and between TPC and AChE on
the other hand. These data suggest that this plant could be a valuable source of secondary
metabolites that have beneficial properties and a promising source of health products.
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