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Abstract: As part of our continuing interest in the essential oil compositions of gymnosperms, partic-
ularly the distribution of chiral terpenoids, we have obtained the foliar essential oils of Chamaecyparis
lawsoniana (two samples), Thuja plicata (three samples), and Tsuga heterophylla (six samples) from
locations in the state of Oregon, USA. The essential oils were obtained via hydrodistillation and ana-
lyzed by gas chromatographic techniques, including chiral gas chromatography—mass spectrometry.
The major components in C. lawsoniana foliar essential oil were limonene (27.4% and 22.0%; >99%
(+)-limonene), oplopanonyl acetate (13.8% and 11.3%), beyerene (14.3% and 9.0%), sabinene (7.0% and
6.5%; >99% (+)-sabinene), terpinen-4-ol (5.0% and 5.3%; predominantly (+)-terpinen-4-ol), and methyl
myrtenate (2.0% and 5.4%). The major components in T. plicata essential oil were (−)-α-thujone
(67.1–74.6%), (+)-β-thujone (7.8–9.3%), terpinen-4-ol (2.7–4.4%; predominantly (+)-terpinen-4-ol),
and (+)-sabinene (1.1–3.5%). The major components in T. heterophylla essential oil were myrcene
(7.0–27.6%), α-pinene (14.4–27.2%), β-phellandrene (6.6–19.3%), β-pinene (6.4–14.9%; >90% (−)-β-
pinene), and (Z)-β-ocimene (0.7–11.3%). There are significant differences between the C. lawsoniana
essential oils from wild trees in Oregon and those of trees cultivated in other geographical locations.
The essential oil compositions of T. plicata are very similar, regardless of the collection site. There
are no significant differences between T. heterophylla essential oils from the Oregon Coastal Range
or those from the Oregon Cascade Range. Comparing essential oils of the Cupressaceae with the
Pinaceae, there are some developing trends. The (+)-enantiomers seem to dominate for α-pinene,
camphene, sabinene, β-pinene, limonene, terpinen-4-ol, and α-terpineol in the Cuppressaceae. On the
other hand, the (−)-enantiomers seem to predominate for α-pinene, camphene, β-pinene, limonene,
β-phellandrene, terpinen-4-ol, and α-terpineol in the Pinaceae.

Keywords: Port Orford cedar; western red cedar; Cupressaceae; western hemlock; Pinaceae; gas
chromatography; chiral

1. Introduction

Chamaecyparis Spach is a genus in the Cupressaceae. The World Flora Online currently
recognizes seven species of the genus [1], namely, Chamaecyparis flifera Veitch ex. Sénécl.,
Chamaecyparis formosensis Matsum. (Formosan cypress, endemic to Taiwan), Chamaecyparis
hodginsii (Dunn) Rushforth (Po mu, found in eastern China and Vietnam), Chamaecyparis
lawsoniana (A. Murray bis) Parl. (Port Orford cedar, found in western North America),
Chamaecyparis obtusa (Siebold & Zucc.) Endl. (hinoki cypress, native to Japan), Chamaecyparis
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pisifera (Siebold & Zucc.) Endl. (Sawara cypress, native to Honshu and Kyushi, Japan), and
Chamaecyparis thyoides (L.) Britton, Sterns & Poggenb. (Atlantic white cedar, found in the
eastern United States) [2,3].

The genus Thuja L. (Cupressaceae) is represented by five taxa [4]: Thuja koraiensis Nakai
(found in Jilin Province of China and in North and South Korea) [5], Thuja occidentalis L. (in
eastern North America, the tree ranges from southeastern Canada, Minnesota, Michigan,
and New England, south through the Appalachian Mountains) [6], Thuja plicata Donn ex.
D. Don (two populations in western North America, a coastal population ranging from the
Alaskan panhandle, coastal British Columbia south into coastal northern California, and
an inland population found in the Rocky Mountains of British Columbia heading south
to northern Idaho and western Montana) [7], Thuja standishii (Gordon) Carrière (native to
Japan) [8], and Thuja sutchuenensis Franch. (native to Sichuan Province, China, but probably
extinct in the wild due to deforestation) [9]. The genus has been important to the traditional
healthcare systems in its natural ranges [10,11].

The genus Tsuga (Endl.) Carrière, in the family Pinaceae, is represented by five North
American taxa, namely Tsuga canadensis (L.) Carrière (found in eastern North America), Tsuga
caroliniana Engelm. (native to the Appalachian Mountains), Tsuga heterophylla (Raf.) Sarg.
(found in western North America), Tsuga mertensiana (Bong.) Carrière (found in western
North America), Tsuga jeffreyi (A. Henry) A. Henry (syn. Tsuga mertensiana subsp. jeffreyi (A.
Henry) Silba) [12]; and seven East Asian species, Tsuga chinensis (Franch.) Pritz. (native to
China, Taiwan, Tibet, and Vietnam), Tsuga diversifolia (Maxim.) Mast. (native to the Japanese
islands of Honshū, Kyūshū, and Shikoku), Tsuga dumosa (D. Don) Eichler (native to the eastern
Himalayas), Tsuga forrestii Downie (syn. Tsuga chinensis var. forrestii (Downie) Silba, found
in the northeast Guizhou, southwest Sichuan, and northwest Yunnan provinces of China),
Tsuga sieboldii (Siebold & Zucc.) Carrière (native to the Japanese islands of Honshū, Kyūshū,
Shikoku, and Yakushima), Tsuga thuja A. Murray, and Tsuga ulleungensis G.P. Holman, Del
Tredici, Havill, N.S. Lee & C.S. Campb. (endemic to Ulleungdo island, Korea) [13,14].

Chamaecyparis lawsoniana (A. Murray bis) Parl., Cupressaceae (Port Orford cedar) is a
large tree, around 50 m tall with a trunk up to 3 m in diameter [15]. The foliage has a lacy
feathery appearance with leaves that are overlapping and scalelike, 2–3 mm long; the bark
is thick, silvery-brown, and furrowed (Figure 1) [16]. The natural range of C. lawsoniana
is limited to a small area of coastal Oregon into northern California (Figure 2) [17]. It has
become an important ornamental outside of its natural range, particularly in Europe. Previ-
ous essential oil analyses have been carried out on C. lawsoniana cultivated in Japan [18],
Belgium [19], Egypt [20,21], Iran [22], Spain [23], and Greece [24]. A purpose of the present
study is to characterize the foliar essential oil of C. lawsoniana growing in its natural habitat
in the Oregon Coastal Range.
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Figure 2. Natural range of Chamaecyparis lawsoniana [25]. This image is in the public domain in
the United States because it only contains materials that originally came from the United States
Geological Survey, an agency of the United States Department of the Interior.

Thuja plicata Donn ex D. Don, Cupressaceae (western red cedar) is a large tree, growing
up to 75 m tall with a trunk up to 5 m in diameter; the thick, fibrous, fissured bark is
reddish-brown or grayish-brown; the foliage is displayed as flat, pendant sprays with
overlapping scale-like leaves (Figure 3) [26]. There are two separate ranges of T. plicata, a
Coast–Cascade portion from southeastern Alaska (56◦30′ N) to northwestern California
(40◦30′ N), and a Rocky Mountain section from British Columbia (54◦30′ N) to Idaho and
Montana (45◦50′ N) (Figure 4) [26].

The heartwood of T. plicata has been shown to be a source of tropone monoter-
penoids [27–31] and lignans [32–40], and the dilactone thujin [41], while the bark and
aerial parts have yielded diterpenoid derivatives [42,43]. There have been several investi-
gations on the foliar essential oil compositions of T. plicata growing wild in western North
America [44,45], cultivated in Poland [46,47], cultivated in Serbia [48], and growing wild
in Idaho, USA [49]. In addition, the volatiles from resin extracts of T. plicata cultivated in
Czechia have been reported [50]. In this work, we had the opportunity to collect T. plicata
samples from the Cascade Range of Oregon, so an additional purpose of this study is to
test the hypothesis that the T. plicata from Oregon, a separate population from those from
Idaho, presents differences in essential oil composition.
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Tsuga heterophylla Sarg. (western hemlock) is a tree that grows up to 50 m tall with
a trunk diameter up to 2 m; its leaves are needles, 5–20 mm long and 1.5–2 mm wide; its
cones are small, 15–25 mm long and 10–25 mm wide; its bark is grey-brown, scaly, and
moderately fissured (Figure 5) [51]. The native range of T. heterophylla is from the coast of
southern Alaska, south through coastal British Columbia, Washington, Oregon, and into
coastal northern California (Figure 6) [52]. The coastal range of T. heterophylla divides into
an Oregon Coastal Range and a Cascade Range in Oregon. There is also a Rocky Mountain
population that ranges from British Columbia south to northern Idaho and northwestern
Montana (Figure 6).
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Extracts of the wood of T. heterophylla have yielded lignans, including matairesinol [53],
8-hydroxy-α-conidendrin, 8-hydroxy-α-conidendric acid methyl ester [54], and 8-
hydroxyoxomatairesinol [55]. Foliar volatiles have also been examined [56–58]. The pur-
pose of the current study is to obtain foliar essential oils of T. heterophylla from both the
Oregon Coastal Range and the Oregon Cascades to compare essential oil compositions
from the two separated populations as well as to compare with compositions previously
reported from British Columbia, Canada.

2. Results and Discussion
2.1. Essential Oil Compositions
2.1.1. Chamaecyparis lawsoniana

The two C. lawsoniana pale yellow essential oils were obtained in 1.90% and 2.33%
yields. Gas chromatographic analysis led to the identification of 136 components, which
accounted for 97.3% and 96.8% of the total essential oil compositions (Table 1). The major
components in the foliar essential oils were limonene (27.4% and 22.0%), oplopanonyl
acetate (13.8% and 11.3%), beyerene (14.3% and 9.0%), sabinene (7.0% and 6.5%), terpinen-
4-ol (5.0% and 5.3%), and methyl myrtenate (2.0% and 5.4%). There have been several
reports on the essential oil compositions of C. lawsoniana cultivated outside the natural
range of the tree, namely those cultivated in Japan [18], Belgium [19], Iran [22], Spain [23],
Greece [24], and Egypt [20,21]. Not surprisingly, the essential oil compositions show
wide variation, which can be attributed to the different geographical locations of these
cultivated individuals.

Table 1. The foliar essential oil composition (%) of Chamaecyparis lawsoniana from the Oregon
Coastal Range.

RIcalc RIdb Compounds C.l. #1 C.l. #2

923 923 Tricyclene tr tr
925 925 α-Thujene 0.5 0.8
933 933 α-Pinene 0.4 2.3
947 948 α-Fenchene tr tr
949 950 Camphene tr tr
973 972 Sabinene 7.0 6.5
977 978 β-Pinene tr 0.1
978 978 Oct-1-en-3-ol 0.1 0.2
989 989 Myrcene 1.7 1.6

1007 1006 α-Phellandrene tr tr
1017 1017 α-Terpinene 0.8 1.0
1025 1025 p-Cymene 0.2 0.6
1027 1026 2-Acetyl-3-methylfuran - tr
1030 1030 Limonene 27.4 22.0
1034 1031 β-Phellandrene 0.1 0.1
1034 1032 1,8-Cineole tr tr
1035 1034 (Z)-β-Ocimene tr tr
1045 1045 (E)-β-Ocimene 0.1 0.1
1058 1057 γ-Terpinene 2.2 2.7
1070 1069 cis-Sabinene hydrate 0.3 0.3
1085 1086 Terpinolene 0.7 0.7
1089 1090 Fenchone tr tr
1090 1091 p-Cymenene tr 0.1
1101 1099 trans-Sabinene hydrate 0.2 0.2
1107 1105 α-Thujone 0.1 0.1
1113 1113 p-Mentha-1,3,8-triene tr tr
1116 1114 6-Camphenone tr tr
1118 1118 β-Thujone tr tr
1122 1120 trans-p-Mentha-2,8-dien-1-ol 0.1 0.1
1125 1124 cis-p-Menth-2-en-1-ol 0.3 0.3
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Table 1. Cont.

RIcalc RIdb Compounds C.l. #1 C.l. #2

1133 1134 cis-Limonene oxide tr -
1134 1135 2-Vinylanisole tr tr
1136 1137 cis-p-Mentha-2,8-dien-1-ol 0.1 0.1
1139 1139 Nopinone tr tr
1140 1136 trans-3-Caren-2-ol tr tr
1142 1142 trans-p-Menth-2-en-1-ol 0.2 0.2
1146 1145 trans-Verbenol tr tr
1147 1145 Camphor 0.1 0.1
1157 1157 Sabina ketone - tr
1169 1169 Umbellulone tr tr
1172 1170 Borneol tr tr
1176 1176 cis-Pinocamphone tr tr
1179 1179 2-Isopropenyl-5-methyl-4-hexenal 0.1 0.3
1181 1180 Terpinen-4-ol 5.0 5.3
1184 1188 Naphthalene tr -
1187 1186 p-Cymen-8-ol 0.1 0.2
1194 1196 (4Z)-Decenal 0.8 0.6
1195 1195 α-Terpineol 0.2 0.3
1196 1197 (4E)-Decenal 0.3 0.1
1197 1196 cis-Piperitol 0.1 0.1
1200 1201 cis-Piperitenol tr tr
1206 1206 Decanal 0.2 0.1
1207 1208 Verbenone - 0.1
1209 1208 trans-Piperitol 0.1 0.1
1218 1218 trans-Piperitenol tr -
1219 1218 trans-Carveol tr -
1244 1246 Carvone - tr
1256 1258 (4Z)-Decen-1-ol 0.5 0.5
1259 1256 9-Decyn-1-ol 0.4 0.3
1272 1271 1-Decanol tr tr
1276 1276 Methyl nerate 0.2 0.1
1278 1277 Phellandral tr -
1284 1285 Bornyl acetate 0.7 0.9
1290 1289 Thymol - tr
1292 1293 Undec-2-one tr tr
1295 1294 Methyl myrtenate 2.0 5.4
1318 1318 (2E,4E)-Decadienal 0.1 0.2
1319 1319 Methyl geranate tr 0.1
1324 1324 (2E,4E)-Decadien-1-ol tr 0.1
1328 1327 p-Mentha-1,4-dien-7-ol 0.1 tr
1331 1332 trans-Carvyl acetate tr 0.1
1346 1346 α-Terpinyl acetate 1.6 1.5
1357 1357 cis-Carvyl acetate tr tr
1374 1376 α-Ionol tr 0.1
1377 1378 Geranyl acetate tr 0.1
1393 1398 Cedr-8(15)-ene 0.1 0.1
1395 1393 Methyl perillate 0.1 0.1
1398 1401 Undec-10-enal 0.1 tr
1419 1417 (E)-β-Caryophyllene 0.1 -
1421 1421 (E)-α-Ionone tr tr
1423 1423 β-Cedrene - tr
1434 1433 cis-Thujopsene 0.3 1.0
1437 1437 iso-Bazzanene tr tr
1441 1440 Dihydro-β-ionol 0.1 0.1
1445 1446 cis-Muurola-3,5-diene 0.8 0.8
1455 1454 α-Humulene 0.1 tr
1459 1463 cis-Cadina-1(6),4-diene 0.2 0.2
1462 1463 cis-Muurola-4(14),5-diene 1.7 1.6
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Table 1. Cont.

RIcalc RIdb Compounds C.l. #1 C.l. #2

1464 1458 Sabinyl isovalerate 0.4 0.3
1474 1471 β-Acoradiene 0.1 -
1482 1480 Germacrene D 0.1 -
1492 1490 γ-Amorphene 0.2 0.2
1496 1496 trans-Muurola-4(14),5-diene 0.7 0.6
1497 1497 α-Muurolene tr tr
1503 1503 β-Himachalene 0.1 0.5
1505 1506 α-Chamigrene tr tr
1507 1505 Cuparene tr tr
1513 1512 γ-Cadinene tr tr
1515 1515 Cubebol tr tr
1519 1518 δ-Cadinene 1.5 1.8
1520 1519 trans-Calamenene tr tr
1531 1531 10-epi-Cubenol 0.9 0.7
1535 1535 γ-Cuprenene 0.1 0.2
1537 1538 α-Cadinene tr tr
1547 1548 cis-Muurola-5-en-4β-ol 0.4 0.2
1558 1558 cis-Muurola-5-en-4α-ol 0.4 0.3
1571 1571 (3Z)-Hexenyl benzoate tr 0.1
1577 1576 Spathulenol tr 0.1
1582 1587 Caryophyllene oxide tr tr
1604 1606 β-Oplopenone 0.8 1.2
1607 1599 Widdrol 0.1 0.1
1609 1606 Cedrol 0.4 1.4
1616 1614 1,10-di-epi-Cubenol 1.1 1.3
1642 1640 τ-Cadinol 0.3 0.4
1644 1644 τ-Muurolol tr 0.1
1647 1643 Cubenol 0.1 0.2
1655 1655 α-Cadinol 0.5 0.6
1662 1664 ar-Turmerone tr 0.1
1667 1668 β-Turmerone 0.1 0.1
1676 1673 Acorenone A 0.1 0.2
1684 1686 epi-α-Bisabolol - 0.2
1706 1708 cis-Thujopsenol 0.1 0.1
1713 1715 trans-Thujopsenal 0.1 0.5
1733 1735 Oplopanone 0.1 0.1
1874 1875 Oplopanonyl acetate 13.8 11.3
1937 1933 Beyerene 14.3 9.0
1943 1941 Pimaradiene I - 0.1
1963 1968 Sandaracopimara-8(14),15-diene 0.3 0.3
1991 1989 Manoyl oxide 0.2 0.5
1995 1997 Kaur-15-ene 0.2 0.1
2002 1998 Luxuriadiene - 2.7
2037 --- Atis-16-ene tr tr
2043 2045 Kaur-16-ene 0.1 0.1
2050 2049 Abietatriene 0.1 0.1
2240 --- 15-Beyeren-19-ol, methyl derivative 0.4 0.4
2299 2302 trans-Totarol 0.5 0.4

Monoterpene hydrocarbons 41.2 38.5
Oxygenated monoterpenoids 12.1 16.1
Sesquiterpene hydrocarbons 6.0 6.9
Oxygenated sesquiterpenoids 19.3 19.3
Diterpenoids 16.1 13.6
Benzenoid aromatics tr 0.1
Others 2.6 2.4
Total identified 97.3 96.8

RIcalc = Retention index calculated with respect to a homologous series of n-alkanes on a ZB-5ms column [59].
RIdb = Reference retention index from the databases [60–63]. tr = trace (<0.05%).
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In order to visualize the differences in composition, a hierarchical cluster analysis
(HCA) was carried out based on the percentages of the 30 most abundant components
(Figure 7), and four clusters were identified. Cluster 1 grouped the cultivated sample, the
sample from Greece, with the most remarkable similarity (91.6%) to the wild individuals
due to the moderate amounts of limonene (18.5–27.4%), followed by oplopanonyl acetate
(11.3–15.9%), and beyerene (9.0–17.1%). In addition, Cluster 1 showed a similarity of
74.3% with the samples from Spain, Belgium, and Japan (Cluster 2), which displayed high
amounts of limonene as a major compound (57.6–77.7%). The individual cultivated in
Iran (Cluster 3) was rich in cis-abienol (23.5%), trans-ferruginol (14.3%), α-cadinol (8.8%)
and cis-muurola-4(14),5-diene (8.6%), while the sample from Egypt (Cluster 4) showed
terpinen-4-ol (22.0%) and sabinene (21.0%) as significant compounds. For this reason, these
samples displayed only slight similarity with the Oregon C. lawsoniana essential oils.
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A principal component analysis (PCA) was applied to the constituents present to
evaluate the chemical variety among the C. lawsoniana samples. The F1 and F2 of the
constituents of oil samples explained 81.12% of the chemical variability, and the results
corroborated the HCA analysis by grouping the samples into four main groups (Figure 8).
Among the compounds with amounts above 5%, F1 showed positive correlations with
limonene (11.267), oplopanonyl acetate (2.627), beyerene (2.448), sabinene (0.826), terpinen-
4-ol (0.739), and methyl myrtenate (0.424), and negative correlations with cis-abienol
(−1.380) and trans-ferruginol (−1.191). On the other hand, the F2 component explained
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15.76% of the chemical variability, presenting positive correlations with sabinene (2.894),
terpinen-4-ol (2.850), beyerene (0.909), γ-terpinene (0.898), oplopanonyl acetate (0.868)
and camphor (0.830), and negative correlations with cis-abienol (−2.861), trans-ferruginol
(−1.761), limonene (−1.562), α-cadinol (−1.064), and cis-muurola-4(14),5-diene (−1.006).
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2.1.2. Thuja plicata

The hydrodistillation of T. plicata foliage gave colorless-to-pale-yellow essential oils in
yields of 0.76–1.03%. Gas chromatographic analysis led to the identification of 91 components,
which accounted for 98.7% of the composition in each sample (Table 2). The major compo-
nents in the essential oils were α-thujone (67.1–74.6%), β-thujone (7.8–9.3%), terpinen-4-ol
(2.7–4.4%), and sabinene (1.1–3.5%).

Table 2. The foliar essential oil composition (percentages) of Thuja plicata from the Cascade
Range, Oregon.

RIcalc RIdb Compounds T.p. #1 T.p. #2 T.p. #3

842 842 Ethyl 2-methyl butyrate 0.1 0.1 0.1
924 925 α-Thujene 0.1 0.2 0.2
932 933 α-Pinene 0.4 0.6 0.7
946 948 α-Fenchene tr tr tr
948 950 Camphene tr tr tr
971 971 Sabinene 1.1 3.5 2.6
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Table 2. Cont.

RIcalc RIdb Compounds T.p. #1 T.p. #2 T.p. #3

976 978 β-Pinene tr 0.1 0.1
978 978 Oct-1-en-3-ol tr tr tr
987 989 Myrcene 0.5 1.7 1.0
997 997 Ethyl hexanoate tr tr tr

1016 1017 α-Terpinene 0.3 0.7 0.5
1020 1022 Ethyl 3-methylbut-3-enyl carbonate tr tr tr
1024 1025 p-Cymene 0.6 0.3 0.5
1026 1026 2-Acetyl-3-methylfuran tr tr tr
1028 1030 Limonene 0.5 0.9 0.6
1030 1031 β-Phellandrene tr tr tr
1034 1037 5-Methyl-(5E)-octen-2-one 0.1 tr 0.1
1056 1057 γ-Terpinene 0.6 1.3 0.8
1070 1069 cis-Sabinene hydrate 0.3 0.4 0.2
1084 1086 Terpinolene 0.1 0.3 0.2
1090 1091 p-Cymenene tr tr tr
1095 1093 Ethyl sorbate tr tr tr
1098 1098 Perillene tr tr 0.1
1107 1105 α-Thujone 74.6 67.1 71.7
1120 1118 β-Thujone 8.0 7.8 9.3
1123 1122 trans-p-Mentha-2,8-dien-1-ol tr tr tr
1125 1124 cis-p-Menth-2-en-1-ol 0.2 0.3 0.2
1127 1127 α-Campholenal 0.1 tr tr
1139 1138 trans-Sabinol 0.1 tr 0.1
1141 1141 trans-Pinocarveol tr tr tr
1142 1142 trans-p-Menth-2-en-1-ol 0.1 0.2 0.2
1145 1145 trans-Verbenol 0.1 0.1 0.1
1147 1145 Camphor tr tr tr
1152 1153 neo-3-Thujanol 0.1 0.1 0.1
1157 1157 Sabina ketone 0.2 0.1 0.2
1169 1168 α-Phellandrene epoxide tr 0.1 tr
1169 1169 Ethyl benzoate tr - tr
1171 1171 p-Mentha-1,5-dien-8-ol tr tr tr
1175 1176 trans-Isopulegone 0.1 0.1 0.1
1181 1180 Terpinen-4-ol 2.7 4.4 3.2
1187 1186 p-Cymen-8-ol 0.2 0.2 0.2
1192 1194 p-Mentha-1,5-dien-7-ol 0.1 tr 0.1
1195 1195 α-Terpineol 0.2 0.4 0.3
1198 1197 Methyl chavicol (=Estragole) 0.5 0.8 0.6
1207 1205 Verbenone 0.1 tr 0.1
1209 1208 trans-Piperitol 0.1 0.1 tr
1219 1218 trans-Carveol 0.1 tr 0.1
1238 1238 Carvacryl methyl ether tr tr tr
1242 1242 Cuminal tr tr 0.1
1244 1242 Carvone 0.1 tr tr
1246 1250 Ethyl (2E)-octenoate tr tr tr
1249 1248 Carvotanacetone 0.1 - 0.1
1249 1249 Linalyl acetate - 0.1 -
1260 1260 trans-Sabinene hydrate acetate 0.1 0.1 0.1
1268 1267 neo-3-Thujyl acetate 0.1 0.2 0.2
1282 1280 Phellandral tr - tr
1283 1282 Bornyl acetate 0.1 0.1 0.1
1287 1286 trans-Sabinyl acetate tr 0.1 0.1
1289 1293 3-Thujanyl acetate 0.1 0.1 0.1
1291 1290 Menthyl acetate 0.3 0.5 0.4
1292 1291 p-Cymen-7-ol 0.1 - tr
1297 1300 Carvacrol 0.1 0.1 0.1
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Table 2. Cont.

RIcalc RIdb Compounds T.p. #1 T.p. #2 T.p. #3

1315 1322 Myrtenyl acetate 0.1 0.1 0.1
1328 1327 p-Mentha-1,4-dien-7-ol 0.1 0.1 0.2
1335 1335 4-Terpinyl acetate 0.1 0.1 0.1
1345 1346 α-Terpinyl acetate 0.2 0.4 0.2
1348 1349 Citronellyl acetate tr tr tr
1357 1361 Neryl acetate - tr -
1380 1378 Geranyl acetate 0.3 0.4 0.4
1397 1395 Ethyl decanoate tr tr tr
1402 1403 Methyl eugenol tr tr tr
1424 1426 Cuminyl acetate tr tr tr
1447 1448 (E)-Cinnamyl acetate - - tr
1468 1467 β-Acoradiene 0.1 - -
1497 1495 Tridecan-2-one tr tr tr
1520 1520 δ-Cadinene tr 0.1 tr
1581 1578 Furopelargone B 0.1 0.1 -
1604 1601 Longiborneol (=Juniperol) - - 0.1
1605 1607 β-Oplopenone tr 0.1 tr
1657 1655 α-Cadinol tr 0.2 0.1
1664 1664 ar-Turmerone tr tr tr
1669 1668 α-Turmerone 0.1 tr 0.1
1734 1735 Oplopanone 0.1 0.1 0.1
1899 1896 Rimuene 1.0 0.8 0.3
1934 1931 Beyerene 0.9 0.6 0.4
1996 1997 Kaur-15-ene tr tr tr
2038 --- Atis-16-ene tr tr tr
2052 2049 Abietatriene tr tr tr
2243 --- 15-Beyeren-19-ol 0.5 0.5 0.5
2301 2315 trans-Totarol 0.2 0.2 0.1
2319 --- 15-Beyeren-19-ol acetate 1.7 1.9 1.1

Monoterpene hydrocarbons 4.2 9.6 7.1
Oxygenated monoterpenoids 89.2 83.6 88.1
Sesquiterpene hydrocarbons 0.1 0.1 tr
Oxygenated sesquiterpenoids 0.3 0.4 0.3
Diterpenoids 4.4 4.1 2.4
Benzenoid aromatics 0.5 0.8 0.6
Others 0.1 0.1 0.2
Total identified 98.7 98.7 98.7

RIcalc = Retention index calculated with respect to a homologous series of n-alkanes on a ZB-5ms column [59].
RIdb = Reference retention index from the databases [60–63]. tr = trace (<0.05%).

The essential oil compositions of the Oregon T. plicata samples were very similar to
those from our previous collection from northern Idaho [49] as well as those reported by
von Rudloff and co-workers [44], Tsiri and co-workers [46], Lis and co-workers [47], and
Nikolić and co-workers [48]. Indeed, a hierarchical cluster analysis (HCA) reveals very
high similarity between the samples (Figure 9). The cluster analysis shows the greatest
similarity, not surprisingly, between the samples from western North America (>99.94%
similarity). Even the samples cultivated in Poland [47] showed >99.59% similarity to
the North American samples. In comparing the Oregon samples from this work with
those of our previous investigation of samples from Idaho, the concentrations of the major
components are not statistically different (t-test, p > 0.05) (Figure 10). However, the β-
thujone t-test showed a p-value of 0.057. In retrospect, the similarities in essential oil
compositions are consistent with the genomic analysis of T. plicata; there is little genetic
differentiation in this species [64–66].
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The T. plicata samples were subjected to principal component analysis (PCA) to un-
derstand their chemical variability comprehensively. The results, which are highly precise,
revealed that F1 and F2 accounted for a significant 99.99% of the entire chemical variability.
This analysis effectively grouped the samples into four main categories, as illustrated in
Figure 11. F1 demonstrated a positive correlation with α-thujone (6.695), while terpinen-
4-ol (−2.430), sabinene (−2.344), and β-thujone (−1.921), showed negative correlations.
On the other hand, F2 had a positive correlation with sabinene (0.206), but a negative
correlation only with β-thujone (−0.170). Notably, the samples collected in Oregon and
those from Idaho and von Rudloff were found to have similar chemical characteristics, with
α-thujone concentrations close to 70% and sabinene amounts of less than 5.0%.
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2.1.3. Tsuga heterophylla

The hydrodistillation of the foliage from the six T. heterophylla trees yielded colorless
essential oils with yields of 5.28% to 7.75%. Monoterpene hydrocarbons dominated the
essential oils of the T. heterophylla, with myrcene (7.0–27.6%), α-pinene (14.4–27.2%), β-
phellandrene (6.6–19.3%), β-pinene (6.4–14.9%), and (Z)-β-ocimene (0.7–11.3%) as major
products (Table 3). The diterpene beyerene (0.2–9.1%) and benzoic acid (1.7–4.7%) were
also relatively abundant. Cascade Range samples T.h. #1, T.h. #2, and T.h. #3, and Coastal
Range sample T.h. #5 were similar in composition to the samples from Maple Ridge, British
Columbia, Canada, previously reported by von Rudloff [56].
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Table 3. The foliar essential oil compositions (percentages) of the Tsuga heterophylla from the Oregon
Cascade Range and the Oregon Coastal Range.

RIcalc RIdb Compounds Cascade Range Coastal Range
T.h. #1 T.h. #2 T.h. #3 T.h. #4 T.h. #5 T.h. #6

800 797 (3Z)-Hexenal 0.1 0.1 0.1 0.1 0.1 0.2
802 802 Hexanal tr 0.1 tr tr 0.1 0.1
849 849 (2E)-Hexenal 1.5 1.9 1.2 1.7 3.8 3.1
851 853 (3Z)-Hexenol 0.2 0.3 0.2 0.3 0.5 0.4
922 923 Tricyclene 0.1 0.1 0.1 0.1 0.1 0.1
925 925 α-Thujene 0.1 0.1 0.1 0.1 0.1 tr
933 932 α-Pinene 17.1 18.4 14.4 15.3 15.4 27.2
947 948 α-Fenchene tr tr tr tr tr tr
949 950 Camphene 0.3 0.3 0.2 0.3 0.2 0.3
972 972 Sabinene 0.1 0.1 0.2 0.3 0.4 0.2
977 978 β-Pinene 7.4 11.6 12.6 14.9 9.7 6.4
989 989 Myrcene 27.6 19.4 24.3 7.0 17.7 13.7

1005 1005 p-Mentha-1(7),8-diene - - - tr - -
1007 1007 α-Phellandrene 2.2 1.4 0.9 - 1.6 6.0
1009 1008 δ-3-Carene 0.1 0.1 tr tr tr 0.1
1017 1017 α-Terpinene 0.1 0.1 tr - 0.1 0.1
1024 1025 p-Cymene 1.2 0.7 1.3 1.5 1.1 1.8
1029 1030 Limonene 1.7 1.8 1.9 7.2 1.9 7.0
1031 1031 β-Phellandrene 11.6 19.3 19.2 6.6 16.6 8.4
1033 1032 1,8-Cineole - - - tr - -
1035 1034 (Z)-β-Ocimene 11.3 4.3 5.2 0.7 8.0 6.6
1045 1045 (E)-β-Ocimene 0.4 0.2 0.1 tr 0.2 0.2
1050 1051 2,3,6-Trimethylhepta-1,5-diene - - - 0.2 - -
1057 1057 γ-Terpinene 0.1 0.3 0.1 - 0.2 0.1
1065 1068 Acetophenone - - - tr - -
1070 1069 cis-Sabinene hydrate - - - tr - -
1085 1086 Terpinolene 0.4 0.6 0.4 - 0.6 0.6
1090 1091 p-Cymenene - - - - 0.1 -
1090 1090 6,7-Epoxymyrcene 0.1 0.1 0.1 0.3 - tr
1091 1091 Rosefuran 0.1 tr 0.1 0.1 tr tr
1098 1098 Perillene tr tr 0.1 0.2 - tr
1099 1101 Linalool 0.2 0.1 0.1 tr 0.1 0.1
1099 1101 α-Pinene oxide - - - 0.6 - -
1107 1105 α-Thujone - tr - - - -
1119 1119 endo-Fenchol 0.1 tr 0.1 0.1 0.1 tr
1124 1124 cis-p-Menth-2-en-1-ol 0.2 0.3 0.3 0.4 0.3 0.2
1126 1125 α-Campholenal tr tr 0.1 0.1 0.1 tr
1127 1127 (4E,6Z)-allo-Ocimene 0.4 0.1 0.2 - 0.3 0.2
1129 1129 (Z)-Myroxide - - - 0.1 - -
1132 1132 cis-Limonene oxide - - - 0.1 - -
1137 1137 trans-Limonene oxide - - - 0.1 - -
1139 1141 (E)-Myroxide - - - 0.2 - -
1141 1141 trans-Pinocarveol - - - 0.3 0.1 0.1
1142 1142 trans-p-Menth-2-en-1-ol 0.2 0.2 0.2 0.4 0.2 0.2
1146 1146 trans-Verbenol - - - 0.2 - -
1155 1156 Camphene hydrate - - - 0.1 - -
1162 1164 Pinocarvone - - - 0.2 - -
1168 1167 Benzoic acid 1.9 2.8 4.7 1.7 2.2 2.0
1170 1169 Rosefuran epoxide - - - 0.1 - -
1172 1171 p-Mentha-1,5-dien-8-ol - - - - 0.1 0.1
1180 1180 Terpinen-4-ol 0.3 0.5 0.3 0.4 0.6 0.3
1187 1185 Cryptone 0.4 0.4 0.9 2.2 0.5 0.2
1188 1188 p-Cymen-8-ol - - - 3.7 - -
1195 1195 α-Terpineol 1.5 1.0 1.3 1.5 1.6 1.3
1197 1196 cis-Piperitol 0.1 0.1 0.1 - 0.1 0.1
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Table 3. Cont.

RIcalc RIdb Compounds Cascade Range Coastal Range
T.h. #1 T.h. #2 T.h. #3 T.h. #4 T.h. #5 T.h. #6

1197 1195 Myrtenol - - - 0.4 - -
1203 1202 cis-Sabinol 0.3 0.1 0.3 - 0.3 0.5
1207 1205 Verbenone 0.1 0.1 0.1 0.3 0.3 0.1
1209 1208 trans-Piperitol 0.1 0.1 0.1 0.1 0.1 tr
1223 1227 4-Isopropylphenol - - - 0.1 - -
1227 1227 Citronellol 0.1 - - - - -
1228 1229 Thymyl methyl ether 0.7 1.1 0.7 0.1 0.6 0.1
1244 1242 Cuminal - - - 0.5 - -
1246 1246 Carvone - - - 0.1 - -
1256 1254 Piperitone - - - 0.1 - -
1283 1282 Bornyl acetate 0.1 0.2 tr 0.2 0.1 tr
1288 1287 α-Terpinen-7-al - - - 0.1 - -
1293 1291 p-Cymen-7-ol - - - 0.7 - -
1321 1320 Methyl geranate - - - 0.3 - 0.1
1324 1318 4-Hydroxycryptone - - - 0.2 - -
1340 1339 3-Oxo-p-Menth-1-en-7-al - - - 0.3 - -
1347 1348 α-Cubebene - 0.1 - - - -
1376 1375 α-Copaene 0.1 0.1 tr 0.2 0.1 -
1378 1378 Geranyl acetate 0.1 0.1 0.1 0.1 0.1 0.1
1403 1405 Siberene tr 0.1 - - - -
1419 1417 (E)-β-Caryophyllene 0.1 0.1 0.1 - 0.1 0.1
1430 1430 β-Copaene tr tr - - - -
1452 1451 (E)-β-Farnesene tr 0.1 0.1 0.1 0.1 tr
1455 1454 α-Humulene 0.1 0.1 tr 0.1 0.1 tr
1475 1475 γ-Muurolene 0.1 0.2 0.1 0.3 0.1 tr
1481 1480 Germacrene D 0.2 0.2 0.1 - 0.2 0.2
1489 1489 β-Selinene 0.2 0.2 0.1 0.6 0.2 0.1
1492 1490 γ-Amorphene tr 0.1 - - - -
1496 1497 α-Selinene 0.2 0.2 0.1 0.4 0.1 0.1
1498 1497 α-Muurolene 0.3 0.3 0.2 0.4 0.3 0.2
1512 1512 γ-Cadinene 0.5 0.7 0.3 1.4 0.3 0.2
1518 1518 δ-Cadinene 1.0 1.3 0.9 0.5 1.0 0.8
1521 1519 trans-Calamenene tr tr tr 0.1 tr tr
1536 1538 α-Cadinene tr tr tr 0.1 tr tr
1541 1541 α-Calacorene - - - 0.2 - -
1560 1560 (E)-Nerolidol 0.1 0.1 0.1 0.3 0.3 0.3
1576 1574 Germacra-1(10),5-dien-4β-ol - - 0.1 - 0.1 0.1
1609 1611 Humulene epoxide II - - - 0.1 - -
1614 1614 1,10-di-epi-Cubenol tr 0.1 tr 0.1 0.1 tr
1627 1628 1-epi-Cubenol 0.2 0.3 0.1 0.3 0.2 0.1
1641 1640 τ-Cadinol 0.5 0.7 0.6 1.1 0.8 0.6
1643 1644 τ-Muurolol 0.5 0.6 0.7 1.1 1.1 0.7
1646 1645 α-Muurolol (=δ-Cadinol) 0.2 0.2 0.2 0.4 0.4 0.3
1655 1655 α-Cadinol 0.7 0.8 1.9 1.8 2.7 2.1
1657 1660 Selin-11-en-4α-ol 0.1 0.1 0.1 0.3 0.2 0.1
1657 1663 cis-Calamenen-10-ol - - - 0.5 - -
1662 1660 ar-Turmerone 0.3 0.1 0.2 0.6 0.2 0.1
1664 1671 trans-Calamenen-10-ol - - - 0.2 - -
1667 1668 α-Turmerone 0.2 0.1 0.1 - 0.1 0.1
1678 1676 (9Z,12E)-Tetradecadien-1-ol 0.1 0.1 0.2 - 0.3 0.6
1700 1699 β-Turmerone (=Curlone B) 0.2 0.1 0.1 - 0.1 tr
1866 1869 Benzyl salicylate tr 0.1 tr 0.1 - -
1932 1933 Beyerene 3.2 4.4 0.2 9.1 4.5 4.6
1994 1997 Kaur-15-ene 0.1 0.1 - 0.2 0.1 0.1
2049 2049 Abietatriene 0.1 0.1 0.5 1.5 - -
2051 2053 Manool - - - - 0.3 0.2
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Table 3. Cont.

RIcalc RIdb Compounds Cascade Range Coastal Range
T.h. #1 T.h. #2 T.h. #3 T.h. #4 T.h. #5 T.h. #6

2082 2086 Abietadiene 0.1 0.1 0.1 - - -
Monoterpene hydrocarbons 82.0 78.9 81.2 54.1 74.3 78.9
Oxygenated monoterpenoids 4.5 4.2 5.0 14.8 5.1 3.3
Sesquiterpene hydrocarbons 2.8 3.7 1.9 4.3 2.5 1.6
Oxygenated sesquiterpenoids 3.0 3.1 4.3 6.9 6.2 4.4
Diterpenoids 3.5 4.7 0.8 10.8 4.9 5.0
Benzenoid aromatics 1.9 2.9 4.7 2.0 2.2 2.0
Others 1.9 2.4 1.6 2.1 4.7 4.4
Total identified 99.6 99.9 99.5 95.0 99.9 99.6

RIcalc = Retention index calculated with respect to a homologous series of n-alkanes on a ZB-5ms column [59].
RIdb = Reference retention index from the databases [60–63]. tr = trace (<0.05%).

A hierarchical cluster analysis (HCA) was carried out to visualize the similarities
between the T. heterophylla essential oil compositions (Figure 12). The HCA shows that the
British Columbia samples and the Oregon samples #1–#3 and #5 form a relatively large
cluster with >88% similarity. Oregon Coastal Range samples #4 and #6 are qualitatively
similar to the large cluster, but different (with 66% similarity) in that sample #4 showed
a lower myrcene concentration (only 7.0%), while sample #6 showed a relatively low β-
pinene concentration (6.4%); both samples were also low in β-phellandrene (6.6% and
8.4%, respectively). Curiously, a sample collected in 2020 from a single tree growing in
the Hoyt Arboretum near Portland, Oregon, was very different in composition with only
5.7% monoterpene hydrocarbons, including no observed α-pinene [58]. The concentration
of α-terpineol (10.3%) was relatively high in the Hoyt Arboretum sample. It is not clear
what factors may account for the dissimilarity between the Hoyt Arboretum sample and
the other T. heterophylla samples. The Hoyt Arboretum sample was collected in September
2020, while the samples in this present study were collected in April 2023. However, von
Rudloff sampled trees from Vancouver, British Columbia, in both March 1974, and October
1974, which showed no significant difference in the α-pinene concentrations (both 15.3%)
or the α-terpineol concentrations (0.8% and 0.5%, respectively) [56].

In comparing the compositions of the samples from the Oregon Cascade and Coastal
ranges, there are no significant differences between their major components (α-pinene,
β-pinene, myrcene, α-phellandrene, limonene, β-phellandrene, (Z)-β-ocimene, benzoic
acid, and beyerene) (Figure 13). This result is consistent with the previous study by von
Rudloff [56], who found no significant differences in the compositions of trees located in
the British Columbia Coastal Range and those of trees from the Rocky Mountains. The
low level of genetic diversity can be explained by past vegetation history. That is, genetic
diversity in T. heterophylla, as well as T. plicata, is likely to be diminished due to a population
bottleneck during the last glacial maximum [67].

A PCA analysis of the T. heterophylla samples also was carried out and F1 and F2
explained a variability of 88.08%. The results observed corroborated the HCA analysis
displaying a separation into four groups (Figure 14). The F1 samples showed positive
correlations with samples rich in myrcene (6.818), β-phellandrene (5.459), α-pinene (5.347),
β-pinene (2.342), and (Z)-β-ocimene (0.990), and negative correlations with thymyl methyl
ether (−2.407), γ-cadinene (−2.280), terpinolene (−2.246), δ-cadinene (−2.207), α-cadinol
(−2.120), α-terpineol (−2.078), benzoic acid (−1.868), τ-cadinol (−1.808), beyerene (−1.711),
α-phellandrene (−1.612), and limonene (−0.620). On the other hand, F2 showed positive
correlations with beyerene (2.804), α-pinene (1.087), and α-terpineol (1.072), but negative
correlations with terpinolene (−1.086), α-phellandrene (−0.940), (Z)-β-ocimene (−0.895),
γ-cadinene (−0.832), and benzoic acid (−0.796).
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foliar essential oils from the Oregon Cascade Range and the Oregon Coastal Range. t-test p-values:
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2.2. Enantiomeric Distribution

Enantioselective GC-MS analyses were carried out on the C. lawsoniana, T. plicata, and
T. heterophylla foliar essential oils (Tables 4–6, respectively).

In C. lawsoniana (Table 4), (−)-α-thujene, (+)-cis-sabinene hydrate, (−)-bornyl acetate,
and (+)-δ-cadinene were the only enantiomers detected. In addition, (+)-sabinene (enan-
tiomeric excess, ee = 98.8 and 99.2%), (+)-limonene (ee = 99.6 and 99.8%), and (+)-trans-
sabinene hydrate (ee = 89.9 and 92.6%) were the dominant enantiomers, while (+)-α-pinene
(ee = 60.4 and 93.8%), (+)-terpinen-4-ol (ee = 45.0 and 34.4%), and (+)-α-terpineol (ee = 33.0
and 36.4%) were the major enantiomers in C. lawsoniana essential oil.

The exclusive enantiomers observed in T. plicata foliar essential oils (Table 5) include
(−)-α-thujene, (+)-sabinene, (+)-β-pinene, (−)-α-thujone, and (+)-β-thujone. Although
neither (−)-sabinene nor (−)-β-pinene were detected, a relatively large myrcene peak
(RI = 1031) in the chiral GC-MS may have masked any (−)-sabinene or (−)-β-pinene,
however. (+)-α-Pinene (95.5–99.0%), (+)-limonene (96.7–97.1%), (+)-cis-sabinene hydrate
(96.8–97.6%), (+)-terpinen-4-ol (70.3–75.2%), and (+)-α-terpineol (60.6–64.5%) were also
dominant enantiomers.
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Table 4. The enantiomeric distribution (percent of each enantiomer) of the chiral terpenoids in
Chamaecyparis lawsoniana.

Compounds RIdb RIcalc C.l. #1 C.l. #2

(+)-α-Thujene 950 n.o. 0.0 0.0
(−)-α-Thujene 951 951 100.0 100.0
(−)-α-Pinene 976 977 19.8 3.1
(+)-α-Pinene 982 981 80.2 96.9
(+)-Sabinene 1021 1018 99.6 99.4
(−)-Sabinene 1030 1031 0.4 0.6
(+)-β-Pinene 1027 1027 100.0 100.0
(−)-β-Pinene 1031 n.o. 0.0 0.0
(−)-Limonene 1073 1077 0.1 0.2
(+)-Limonene 1081 1079 99.9 99.8
(+)-cis-Sabinene hydrate 1199 1199 100.0 100.0
(−)-cis-Sabinene hydrate 1202 n.o. 0.0 0.0
(+)-trans-Sabinene hydrate 1231 1231 96.3 95.0
(−)-trans-Sabinene hydrate 1235 1236 3.7 5.0
(+)-Terpinen-4-ol 1297 1293 67.2 72.5
(−)-Terpinen-4-ol 1300 1298 32.8 27.5
(−)-Bornyl acetate 1344 1346 100.0 100.0
(+)-Bornyl acetate n.a. n.o. 0.0 0.0
(−)-α-Terpineol 1347 1348 31.8 33.5
(+)-α-Terpineol 1356 1356 68.2 66.5
(−)-δ-Cadinene 1563 n.o. 0.0 0.0
(+)-δ-Cadinene 1576 1575 100.0 100.0

RIdb = Retention index from our in-house database based on commercially available compounds available from
Sigma-Aldrich and augmented with our own data. RIcalc = Calculated retention index based on a series of
n-alkanes on a Restek B-Dex 325 capillary column. n.o. = not observed. n.a. = no reference compound available.

Table 5. The enantiomeric distribution (percent of each enantiomer) of the chiral terpenoids in
Thuja plicata.

Compounds RIdb RIcalc T.p. #1 T.p. #2 T.p. #3

(+)-α-Thujene 950 n.o. 0.0 0.0 0.0
(−)-α-Thujene 951 953 100.0 100.0 100.0
(−)-α-Pinene 976 979 4.5 1.2 1.0
(+)-α-Pinene 982 983 95.5 98.8 99.0
(+)-Sabinene 1021 1020 100.0 100.0 100.0
(−)-Sabinene 1030 n.o. 0.0 0.0 0.0
(+)-β-Pinene 1027 1027 100.0 100.0 100.0
(−)-β-Pinene 1031 n.o. 0.0 0.0 0.0
(−)-Limonene 1073 1075 2.9 2.9 3.3
(+)-Limonene 1081 1081 97.1 97.1 96.7
(+)-cis-Sabinene hydrate 1199 1197 97.2 97.6 96.8
(−)-cis-Sabinene hydrate 1202 1200 2.8 2.4 3.2
(+)-α-Thujone 1213 n.o. 0.0 0.0 0.0
(−)-α-Thujone 1222 1221 100.0 100.0 100.0
(+)-β-Thujone 1230 1227 100.0 100.0 100.0
(−)-β-Thujone n.a. n.o. 0.0 0.0 0.0
(+)-Terpinen-4-ol 1297 1293 75.2 70.3 74.4
(−)-Terpinen-4-ol 1300 1298 24.8 29.7 25.6
(−)-α-Terpineol 1347 1347 35.5 39.4 37.8
(+)-α-Terpineol 1356 1355 64.5 60.6 62.2

RIdb = Retention index from our in-house database based on commercially available compounds available from
Sigma-Aldrich and augmented with our own data. RIcalc = Calculated retention index based on a series of
n-alkanes on a Restek B-Dex 325 capillary column. n.o. = not observed. n.a. = no reference compound available.
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Table 6. The enantiomeric distribution (percent of each enantiomer) of the chiral terpenoid compo-
nents in the foliar essential oil of the Tsuga heterophylla from Oregon.

Compounds RIdb RIcalc
Cascade Range Coastal Range

T.h. #1 T.h. #2 T.h. #3 T.h. #4 T.h. #5 T.h. #6

(−)-α-Pinene 976 976 53.0 73.8 59.3 76.6 44.5 38.3
(+)-α-Pinene 982 981 47.0 26.2 40.7 23.4 55.5 61.7
(−)-Camphene 998 1001 72.1 79.9 75.0 84.9 71.5 62.3
(+)-Camphene 1005 1006 27.9 20.1 25.0 15.1 28.5 37.7
(+)-Sabinene 1021 1021 100.0 100.0 100.0 59.6 100.0 83.2
(−)-Sabinene 1030 1028 0.0 0.0 0.0 40.4 0.0 16.8
(+)-β-Pinene 1027 1027 2.2 1.9 2.1 3.6 3.5 8.3
(−)-β-Pinene 1031 1030 97.8 98.1 97.9 96.4 96.5 91.7
(−)-α-Phellandrene 1050 1051 3.5 11.4 8.2 n.o. 7.1 1.7
(+)-α-Phellandrene 1053 1052 96.5 88.6 91.8 n.o. 92.9 98.3
(−)-Limonene 1073 1074 67.6 81.3 77.8 92.6 76.5 85.8
(+)-Limonene 1081 1081 32.4 18.7 22.2 7.4 23.5 14.2
(−)-β-Phellandrene 1083 1083 76.7 93.5 91.9 95.2 90.0 36.8
(+)-β-Phellandrene 1089 1088 23.3 6.6 8.1 4.8 10.0 63.2
(−)-Linalool 1228 1228 68.2 16.7 60.8 48.1 30.2 54.7
(+)-Linalool 1231 1231 31.8 83.3 39.2 51.9 69.8 45.3
(+)-Terpinen-4-ol 1297 1297 42.2 31.8 38.0 30.9 34.1 48.2
(−)-Terpinen-4-ol 1300 1300 57.8 68.2 62.0 69.1 65.9 51.8
(−)-Bornyl acetate 1344 1345 100.0 100.0 100.0 100.0 100.0 100.0
(+)-Bornyl acetate n.a. n.o. 0.0 0.0 0.0 0.0 0.0 0.0
(−)-α-Terpineol 1347 1347 76.5 82.7 85.7 89.6 77.6 62.9
(+)-α-Terpineol 1356 1353 23.5 17.3 14.3 10.4 22.4 37.1
(+)-Germacrene D 1519 n.o. 0.0 0.0 0.0 n.o. 0.0 0.0
(−)-Germacrene D 1522 1524 100.0 100.0 100.0 n.o. 100.0 100.0
(−)-δ-Cadinene 1563 n.o. 0.0 0.0 0.0 0.0 0.0 0.0
(+)-δ-Cadinene 1576 1577 100.0 100.0 100.0 100.0 100.0 100.0
(−)-(E)-Nerolidol 1677 1677 32.1 17.3 20.2 15.6 37.0 47.4
(+)-(E)-Nerolidol 1680 1679 67.9 82.7 79.8 84.4 63.0 52.6

RIdb = Retention index from our in-house database based on commercially available compounds available from
Sigma-Aldrich and augmented with our own data. RIcalc = Calculated retention index based on a series of
n-alkanes on a Restek B-Dex 325 capillary column. n.o. = not observed. n.a. = no reference compound available.

The enantioselective GC-MS of T. heterophylla essential oil (Table 6) showed α-pinene
and linalool to be virtually racemic. The (+)-enantiomers were the predominant stereoiso-
mers for sabinene, α-phellandrene, and (E)-nerolidol, while the (−)-enantiomers predomi-
nated for camphene, β-pinene, limonene, terpinen-4-ol, and α-terpineol; (−)-bornyl acetate,
(−)-germacrene D, and (+)-δ-cadinene were the only enantiomers detected.

Based on this current work and previous studies of enantiomeric distributions of
chiral monoterpenoids in conifer essential oils, there are some interesting trends (Table 7).
(+)-α-Pinene is the dominant enantiomer in essential oils of the Cupressaceae, but, although
it is not consistent, (−)-α-pinene generally predominates in the Pinaceae. Similar trends
are seen for camphene, β-pinene, and limonene; the (−)-enantiomers are dominant in
the Pinaceae while the (+)-enantiomers dominate the essential oils of the Cupressaceae.
Although (+)-sabinene seems to be virtually exclusive in the Cupressaceae, the enantiomeric
distribution is inconsistent in the Pinaceae. (−)-β-Phellandrene is clearly dominant in
Pinaceae essential oils, but there are insufficient data to draw a conclusion regarding the
Cupressaceae. (−)-Terpinen-4-ol and (−)-α-terpineol are slightly favored in the Pinaceae
while the (+)-enantiomers are slightly favored in the Cupressaceae. There are not enough
data regarding the enantiomeric distributions of linalool to draw a conclusion regarding
the distribution trend.
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Table 7. The enantiomeric distribution (percent of each enantiomer) of the chiral terpenoids in members of the Pinaceae and Cupressaceae.

α-Pinene Camphene Sabinene β-Pinene Limonene β-Phellandrene Linalool Terpinen-4-ol α-Terpineol

Pinaceae (+) (−) (+) (−) (+) (−) (+) (−) (+) (−) (+) (−) (+) (−) (+) (−) (+) (−) Ref.

Abies concolor 72 28 4 96 n.o. n.o. 1 99 11 89 1 99 71 29 39 61 14 86 [68]
Abies lasiocarpa var. lasiocarpa 24 76 3 97 n.o. n.o. 1 99 6 94 0 100 30 70 31 69 n.o n.o [49]
Abies procera 43 57 0 100 a n.o. n.o. 2 98 0 100 2 98 n.o. n.o. 48 52 8 92 [58]
Picea engelmannii subsp. engelmannii 37 63 7 93 n.o. n.o. 4 96 5 95 11 89 32 68 44 56 47 53 [49]
Picea pungens 36 64 7 93 100 0 3 97 4 96 7 93 26 74 42 58 48 52 [69]
Pinus contorta subsp. contorta 27 73 n.o. n.o. n.o. n.o. 0 100 13 87 1 99 n.o. n.o. 53 47 35 65 [70]
Pinus contorta subsp. latifolia 13 87 21 79 n.o. n.o. 2 98 12 88 1 99 20 80 44 56 6 94 [49]
Pinus contorta subsp. murrayana 20 80 n.o. n.o. n.o. n.o. 2 98 0 100 1 99 0 100 40 60 3 97 [58]
Pinus edulis 64 36 29 71 18 82 3 97 30 70 1 99 34 66 37 63 24 76 [71]
Pinus flexilis 5 95 2 98 100 0 3 97 33 67 3 97 n.o. n.o. 43 57 9 91 [70]
Pinus monophylla 70 30 43 57 n.o. n.o. 3 97 31 69 1 99 n.o. n.o. 34 66 26 74 [71]
Pinus ponderosa var. ponderosa 27 73 22 78 n.o. n.o. 2 98 40 60 1 99 9 91 36 64 3 97 [70]
Pseudotsuga menziesii var. glauca 18 82 2 98 2 98 2 98 18 82 3 97 7 93 34 66 17 83 [49]
Tsuga heterophylla n.o. n.o. n.o. n.o. n.o. n.o. n.o. n.o. 0 100 0 100 n.o. n.o. 30 70 13 87 [58]
Tsuga heterophylla 42 58 26 74 92 8 4 96 20 80 19 81 54 46 37 63 21 79 t.w.

Cupressaceae

Chamaecyparis lawsoniana 89 11 n.o n.o. 99 1 100 0 99 1 n.o. n.o. n.o. n.o. 70 30 67 33 t.w.
Juniperus horizontalis 81 19 63 37 100 0 100 0 83 17 31 69 61 39 67 33 51 49 [72]
Juniperus osteosperma 99 1 93 7 100 0 100 0 98 2 n.o n.o n.o. n.o. 67 33 100 0 [73]
Juniperus scopulorum 92 8 52 48 100 0 100 0 90 10 47 53 88 12 53 47 54 46 [72]
Thuja plicata 83 17 n.o. n.o. 100 0 85 15 96 4 n.o n.o n.o. n.o. 74 26 68 32 [49]
Thuja plicata 98 2 n.o. n.o. 100 0 100 0 97 3 n.o n.o n.o. n.o. 73 27 62 38 t.w.

a Enantiomer misassigned in the original report. n.o. = not observed. t.w. = this work (mean values).
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3. Materials and Methods
3.1. Plant Material

The foliage of C. lawsoniana was collected from two separate trees (C. lawsoniana #1
and #2) on 15 April 2023, from the Van Duzer Forest, Oregon Coastal Range. The trees were
identified in the field by W.N. Setzer using a field guide [16] and were verified through a
comparison with samples from the New York Botanical Garden [74]. A voucher specimen
(WNS-Cl-6886) has been deposited into the herbarium at the University of Alabama in
Huntsville. The fresh foliage from each tree was frozen (−20 ◦C) and stored frozen until
distillation. Foliage of T. plicata was collected from three different individual trees (T. plicata
#1-#3) located near Mt. Hood Village, Oregon, on 14 April 2023 (Table 8). The trees were
identified by W.N. Setzer [16,75] and a voucher specimen (WNS-Tp-6850) has been de-
posited into the herbarium at the University of Alabama in Huntsville. The fresh foliage
was immediately frozen and stored frozen (−20 ◦C) until distillation. Tsuga heterophylla
foliage from three individual trees (T. heterophylla #1-#3) was collected on 14 April 2023 near
Mt. Hood Village, Oregon (Cascade Range) and from three individual trees (T. heterophylla
#4-#6) on 16 April 2023 near Ross Lodge—Boger, Oregon (Coastal Range) (Table 8). The
trees were identified in the field by W.N. Setzer using a field guide [16] and were verified
through a comparison with botanical samples from the C. V. Starr Virtual Herbarium [76].
A voucher specimen, WNS-Th-6897, has been deposited into the herbarium at the Uni-
versity of Alabama in Huntsville. The foliage was frozen (−20 ◦C) and stored frozen
until hydrodistillation.

Table 8. The collection and hydrodistillation details for the Chamaecyparis lawsoniana, Thuja plicata,
and Tsuga heterophylla foliar essential oils.

Sample Date Collection Site Mass
Foliage

Mass Essential
Oil Yield, Color

C. lawsoniana #1 15-Apr-23 45◦2′16′′ N, 123◦48′29′′ W,
116 m asl 82.74 g 1.5694 g 1.897%,

pale yellow

C. lawsoniana #2 15-Apr-23 45◦2′19′′ N, 123◦48′30′′ W,
117 m asl 158.78 g 3.6999 g 2.330%,

pale yellow

T. plicata #1 14-Apr-23 45◦20′58′′ N, 121◦59′39′′ W,
362 m asl 81.66 g 0.6684 g 0.814%,

pale yellow

T. plicata #2 14-Apr-23 45◦20′58′′ N, 121◦59′46′′ W,
359 m asl 91.83 g 0.6932 g 0.755%,

colorless

T. plicata #3 14-Apr-23 45◦20′58′′ N, 121◦59′51′′ W,
359 m asl 54.91 g 0.5653 g 1.030%,

colorless

T. heterophylla #1 14-Apr-23 45◦20′58′′ N, 121◦59′40′′ W,
362 m asl 70.39 g 3.7160 g 5.279%,

colorless

T. heterophylla #2 14-Apr-23 45◦20′58′′ N, 121◦59′44′′ W,
360 m asl 62.83 g 3.9040 g 6.214%,

colorless

T. heterophylla #3 14-Apr-23 45◦20′59′′ N, 121◦59′51′′ W,
359 m asl 50.53 g 3.1256 g 6.186%,

colorless

T. heterophylla #4 16-Apr-23 45◦2′15′′ N, 123◦48′29′′ W,
114 m asl 78.89 g 4.3224 g 5.479%,

colorless

T. heterophylla #5 16-Apr-23 45◦2′17′′ N, 123◦48′30′′ W,
117 m asl 95.21 g 5.9732 g 6.274%,

colorless

T. heterophylla #6 16-Apr-23 45◦2′18′′ N, 123◦48′30′′ W,
117 m asl 61.30 g 4.7489 g 7.747%,

colorless

3.2. Hydrodistillation

The fresh/frozen foliage of each sample was chopped and hydrodistilled for three
hours using a Likens-Nickerson apparatus [77–79] with the continuous extraction of the
distillate with dichloromethane (Table 8). Enough water to immerse the plant material was
used for the hydrodistillation. The condenser was chilled (10–15 ◦C) using a refrigerated
recirculating pump. Each plant sample was hydrodistilled once. The dichloromethane was
evaporated using a stream of warm air.
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3.3. Gas Chromatographic Analysis

The C. lawsoniana, T. plicata, and T. heterophylla foliar essential oils were analyzed
via GC-MS, GC-FID, and chiral GC-MS as previously described [73]. The essential oil
compositions were determined by comparing both MS fragmentation and RI values with
those reported in the Adams [60], FFNSC3 [61], NIST20 [62], and Satyal [63] databases. The
percent compositions were determined from raw peak areas (GC-FID) without standardiza-
tion. Enantiomeric distributions were determined via the comparison of RI values with
authentic samples (Sigma-Aldrich, Milwaukee, WI, USA), which were compiled in our
in-house database.

3.4. Statistical Analyses

For the hierarchical cluster analysis (HCA) of C. lawsoniana, the eight essential oil
compositions were treated as operational taxonomic units (OTUs), and the percentages of
the 30 most abundant essential oil components (α-pinene, sabinene, myrcene, α-terpinene,
limonene, γ-terpinene, camphor, terpinen-4-ol, citronellol, p-cymen-7-ol, methyl myrte-
nate, α-terpinyl acetate, 6-epi-β-cubebene, cis-cadina-1(6),4-diene, cis-muurola-4(14),5-
diene, γ-amorphene, δ-cadinene, β-oplopenone, 1,10-di-epi-cubenol, τ-cadinol, α-cadinol,
oplopanonyl acetate, beyerene, sandaracopimara-8(14),15-diene, manoyl oxide, abieta-
triene, cis-abienol, pimara-7,15-dien-3-one, trans-totarol, and trans-ferruginol) were used to
describe the chemical associations between the C. lawsoniana essential oil samples. Pearson
correlation was used to measure similarity, and the unweighted pair group method with
arithmetic average (UPGMA) was used for cluster definition. The HCA analysis was car-
ried out using XLSTAT v. 2018.1.1.62926 (Addinsoft, Paris, France). The HCA for T. plicata
was carried out as described above using 15 essential oil compositions and the four most
abundant essential oil components (sabinene, α-thujone, β-thujone, and terpinen-4-ol).
The 16 major components of the T. heterophylla essential oils (α-pinene, β-pinene, myrcene,
α-phellandrene, limonene, β-phellandrene, (Z)-β-ocimene, terpinolene, benzoic acid, α-
terpineol, thymyl methyl ether, γ-cadinene, δ-cadinene, τ-cadinol, α-cadinol, and beyerene)
were used to reveal the chemical associations between the 12 T. heterophylla essential oil
samples as described above (Pearson correlation was used to measure similarity, and the
UPGMA method was used for cluster definition).

Principal component analysis (PCA), type Pearson correlation, was carried out to
verify the previous HCA analysis using the main essential oil components (as described
above). The PCA analyses were carried out using XLSTAT v. 018.1.1.62926 (Addinsoft,
Paris, France).

Student’s t-test [80,81] was used to evaluate the differences in the concentrations of
sabinene, α-thujone, β-thujone, and terpinen-4-ol between the Oregon and the Idaho essen-
tial oil samples of Thuja plicata. Similarly, the t-test was used to compare the concentrations
of α-pinene, β-pinene, myrcene, α-phellandrene, limonene, β-phellandrene, (Z)-β-ocimene,
benzoic acid, and beyerene in the Coastal Range and Cascade Range essential oil samples
of Tsuga heterophylla. Minitab® v. 19.2020.1 (Minitab, LLC, State College, PA, USA) was
used to carry out the t-tests.

4. Conclusions

The present work revealed that wild-growing native Chamaecyparis lawsoniana essential
oils show significant differences compared to the essential oils from trees cultivated in other
geographical locations. On the other hand, essential oils of Thuja plicata are very similar,
regardless of the collection site. Likewise, there are no significant differences between
the Tsuga heterophylla essential oils from the Oregon Coastal Range and those from the
Oregon Cascade Range. Both T. plicata and T. heterophylla likely have diminished genetic
diversity, likely due to population bottlenecks during the last ice age. An examination of
the distribution of monoterpenoid enantiomers indicates that the (+)-enantiomers seem
to dominate α-pinene, camphene, sabinene, β-pinene, limonene, terpinen-4-ol, and α-
terpineol in the Cuppressaceae, while the (−)-enantiomers seem to predominate for α-
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pinene, camphene, β-pinene, limonene, β-phellandrene, terpinen-4-ol, and α-terpineol in
the Pinaceae. It would be interesting to see if these trends in enantiomeric distributions
continue with additional research on the essential oils of gymnosperms.
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