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Abstract: Phosphorus (P) availability in soils is often constrained by its accumulation
in non-labile phosphorus (NLP) forms, limiting its accessibility to plants. This study
examines how soil physical properties, chemical characteristics, and climatic conditions
influence phosphorus fractionation and the transformation of NLP into plant-available
labile phosphorus (LP). Utilizing global structural equation modeling (SEM), we found that
silt content enhances organic phosphorus fractions, including NaHCO3-Po and NaOH-Po.
In the upper 30 cm of soil, pH decreases the availability of NaHCO3-Po and NaOH-Po while
stabilizing NLP, highlighting its essential role in phosphorus cycling under acidic conditions.
In deeper soil layers, pH facilitates phosphorus mobilization from NLP pools, with effects
varying across fractions. Long-term studies on Japanese Vaccinium soils reveal that pH
and electrical conductivity (EC) management significantly promote NLP-to-LP conversion,
primarily through NaOH-Po, thereby improving phosphorus use efficiency. These findings
underscore the critical importance of prioritizing chemical property management over
physical modifications to optimize nutrient cycling, preserve soil fertility, and reduce
reliance on external phosphorus inputs in agricultural systems. Our study emphasizes the
need for integrated approaches to achieve sustainable phosphorus management in both
natural and managed ecosystems.

Keywords: structural equation modeling (SEM); phosphorus fractionation; non-labile
phosphorus (NLP); labile phosphorus (LP)

1. Introduction
Nitrogen (N) and phosphorus (P) are vital elements for terrestrial ecosystems, playing

fundamental roles in plant growth, development, and the maintenance of soil health [1,2].
Unlike nitrogen, which is highly mobile in soil, phosphorus predominantly accumulates in
non-labile forms, often creating a bottleneck for plant growth due to its limited bioavail-
ability [3]. This accumulation is shaped by multiple factors, such as soil pH and microbial
activity [4,5]. However, the dynamic interactions between N and P, particularly their rela-
tionship with soil phosphorus pools, remain challenging to monitor and understand [6,7].
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As an essential macronutrient, phosphorus occurs in diverse forms within the soil,
ranging from highly soluble to strongly recalcitrant, profoundly influencing nutrient cy-
cling, microbial activity, and global soil health [8]. Although significant progress has been
made in understanding phosphorus fractions in ecological and agricultural contexts [9,10],
key questions remain about the biochemical pathways and environmental factors driv-
ing the transformation of non-labile phosphorus (NLP) into plant-available forms. This
knowledge gap is particularly pronounced in crops like blueberries, which rely heavily on
symbiotic relationships with mycorrhizal fungi to access phosphorus [11].

Species within the genus Vaccinium, such as blueberries, are shallow-rooted plants
with fine roots that lack root hair, making them inefficient at directly absorbing phosphorus
from the soil [12]. To overcome such limitations, these plants establish mutualistic rela-
tionships with ericoid mycorrhizal (ERM) fungi, which play a crucial role in mobilizing
phosphorus from organic matter and non-labile pools in acidic soils [13]. This symbiosis is
important for overcoming phosphorus limitations in nutrient-poor or acidic environments,
directly contributing to plant productivity and ecosystem resilience [14]. Conversely, many
herbaceous species and crops establish relationships with arbuscular mycorrhizal (AM)
fungi that primarily facilitate the uptake of inorganic phosphorus (Pi) [15]. Together, AM
and ERM fungi play complementary roles in phosphorus cycling, with AM fungi facilitat-
ing inorganic phosphorus uptake and ERM fungi enhancing the utilization of organic and
non-labile phosphorus [16].

Although studies have explored the interactions among AM and ERM fungi, nitrogen
and phosphorus dynamics, and phosphorus-solubilizing bacteria within the root zones of
Vaccinium species [17], little attention has been given to phosphorus fractionation within
these fungal-active layers. Specifically, the mechanisms controlling the conversion of non-
labile phosphorus into bioavailable forms through phosphorus fractionation remain poorly
understood. Our preliminary studies on Japanese blueberry fields revealed substantial
accumulation of non-labile phosphorus within the 0–30 cm soil layer, a zone with the high-
est concentration of symbiotic fungal activity. The accumulation rates varied significantly
among soil types, with phosphorus accumulation reaching 97% in Kuroboku soils (KS), 90%
in Brown Forest soils (BFS), 55% in Red-Yellow soils (RYS), and 87% in Fluvic soils (FS) [18].
These findings highlight the necessity of understanding long-term phosphorus dynam-
ics in fungal-active soils, offering critical insights into nutrient availability and guiding
sustainable phosphorus management practices for Vaccinium plants like blueberries.

Phosphorus availability, a cornerstone of soil fertility and sustainable agriculture, is
influenced not only by microbial and plant–microbe interactions, but also by environmental
variables such as soil pH, temperature, and precipitation [19]. In soils, a significant portion
of phosphorus is bound in recalcitrant forms, such as mineral-bound phosphorus and
organic phosphorus, limiting its accessibility to plants [20]. Microorganisms, particularly
ERM and AM fungi, play a crucial role in mobilizing these recalcitrant forms, converting
them into soluble phosphorus that plants can absorb [21]. However, the precise roles
of phosphorus fractions in regulating the transition from non-labile to labile forms in
symbiotic zones remain unclear.

In this study, we propose that specific phosphorus fractions are strongly associated
with nitrogen and phosphorus accumulation in the soil and that extended Vaccinium culti-
vation modifies the relationship between these fractions and nutrient dynamics. Figure 1
illustrates the predictive model developed in this study to examine the transformation of
non-labile phosphorus (NLP) into its labile form (LP). The model integrates phosphorus
fractions (such as Residual-P, NaHCO3-Po, NaHCO3-Pi, NaOH-Po, NaOH-Pi, HCl-Pi,
Resin-P) with soil chemical properties (such as pH, EC, SOC), soil physical properties (such
as depth, sand, silt, clay), and climatic factors (such as temperature and precipitation). By
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incorporating these variables, we aim to elucidate how these factors collectively influence
phosphorus transformations in long-term-cultivated Vaccinium soils.
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Figure 1. Predictive model for converting NLP to LP using phosphorus fractionation indices in
connection with soil chemical and physical properties, as well as climatic factors.

To test our hypothesis, we constructed a conceptual structural equation model (SEM)
based on global natural soil conditions. This model was then applied to comparative analy-
ses of soils from long-term blueberry fields to assess the impact of sustained fertilization on
phosphorus fractionation and accumulation. The SEM-PLS (structural equation modeling–
partial least squares) method has been extensively applied in soil science to analyze intricate
interactions among various factors [22]. Numerous studies have demonstrated the utility
of SEM for predicting soil ecological dynamics and nutrient transformations [23–25]. By
utilizing SEM-PLS models, we aim to forecast soil phosphorus dynamics, focusing on the
long-term accumulation of nitrogen and phosphorus within blueberry cultivation areas.

This study aims to validate the potential for transforming non-labile phosphorus into
labile forms, providing a theoretical foundation for optimizing low-phosphorus fertilizer
strategies and improving phosphorus use efficiency in Vaccinium soils. Our research will
provide a robust framework for improving phosphorus management strategies in soils
subjected to long-term Vaccinium cultivation, offering new insights into the pathways and
processes governing phosphorus pool conversions. Figure 2 provides a visual represen-
tation of the soil layers in the study area, which forms the basis for understanding the
phosphorus dynamics examined in this study.
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Figure 2. Soil profiles supporting the context of this study.

2. Materials and Methods
2.1. Global Data Collection and Processing

The first dataset utilized in this study was derived from the global soil phosphorus
distribution database compiled by He, Xianjin, et al. [26], which includes information on P
fractions, pH, soil organic carbon (SOC), temperature, and precipitation. The initial dataset
comprised 1857 records, but a series of preprocessing steps were undertaken to ensure data
accuracy and completeness.

Initially, 171 records lacking soil depth information were removed to ensure that
the subsequent analyses accurately reflected soil characteristics at specific depths. This
resulted in a refined dataset referred to as Dataset 1 (see Supplementary File S1: global raw
data.csv). In the second round of data cleaning, records without phosphorus fractionation
data or geographic coordinates were excluded, as these variables were essential for the
geospatial and soil nutrient analyses. The exclusion of these records produced Dataset 2
(see Supplementary File S2: global training data.csv).

To address missing data in the remaining dataset, we utilized the MICE (Multiple
Imputation by Chained Equations) approach implemented through the mice package in
the R programming environment [27], with Predictive Mean Matching (PMM) applied for
imputation. This process generated a complete dataset consisting of 676 records (Dataset 3,
see Supplementary File S3: global predicted data.csv), the global distribution of which is
illustrated in Figure 3A.
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Japan (B).

The dataset was then stratified by soil depth into two groups: 0–30 cm and below 30 cm.
Each group was analyzed separately to assess the connections between soil properties and
environmental factors, with related biome and soil information summarized in Table 1.
The SEM model indicators for each group demonstrated good fit, further confirming the
robustness of the models and their suitability for examining the relationships between soil
properties, environmental factors, and nutrient dynamics across different soils.

Table 1. Summary of literature data by soil depth and biomes.

Soil Depth Biomes Number of Literature
Data

Number of
References

Publication Year
Range

0–30 cm

Desert 17 4 2007–2020
Forest 280 93 1985–2021
Grassland 169 38 1985–2021
Permanent 16 5 1999–2011
Savan 20 10 1992–2019
Shrubland 37 16 1990–2020
Tundra 18 4 2012–2017
Wetland 33 8 2005–2018

Below 30 cm

Desert 1 1 2020
Forest 51 18 1999–2021
Grassland 20 9 1985–2020
Savan 3 1 2011
Shrubland 11 4 2004–2016
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The SEM (structural equation modeling) method was selected to analyze intricate
interactions among various soil properties and phosphorus fractions across diverse ecosys-
tems. Data cleaning procedures were rigorously applied to ensure the accuracy of global
datasets, particularly for depth-specific analysis. Given the greater influence of soil chemi-
cal properties, such as pH, EC, and SOC, on phosphorus mobilization observed in global
models, our analysis of Japanese blueberry soils focused exclusively on these variables,
omitting soil texture and climatic factors which demonstrated weaker effects in global
comparisons.

2.2. Soil Sampling and Processing in Japanese Blueberry Fields

Soil samples were obtained in 2022 from Japanese blueberry fields under continuous
cultivation for over 20 years, encompassing four distinct soil types: Brown Forest soils
(BFS), Kuroboku soils (KS), Red-Yellow soils (RYS), and Fluvic soils (FS), as shown in
Figure 3B. Based on the World Reference Base for Soil Resources (WRB) [28], these soil
types are classified as Cambisols (BFS), Andosols (KS), Acrisols (RYS), and Fluvisols (FS).
For each soil type, samples were collected at depths of 30 cm and 60 cm from around five
randomly selected blueberry trees. At each sampling location, a minimum of 500 g of soil
was collected, then air-dried in a glasshouse, passed through a 2 mm sieve, and finely
ground. A total of 120 samples were stored at 10 ◦C for later analysis.

Phosphorus fractionation was performed following the Hedley method [29], with
modifications introduced by Tiessen and Moir [30], using a sequential extraction procedure.
To determine Resin-P, 0.5 g of soil sample was mixed with 30 mL of deionized water and
two anion exchange resin bags (AEM) and shaken at 25 ◦C for 16 h. The AEM bags were
then removed, placed in 20 mL of 0.5 M HCl, and shaken for 2 h at 25 ◦C to release Resin-P,
which was quantified using the molybdenum blue colorimetric method at 712 nm. For
NaHCO3-extractable phosphorus, the soil residue was centrifuged at 3300 rpm for 20 min,
and the supernatant discarded. The soil was then extracted with 30 mL of 0.5 M NaHCO3,
shaken for 16 h at 25 ◦C, and centrifuged. The supernatant was analyzed for NaHCO3-
Pi after dilution with distilled water and acidification with 0.9 M H2SO4, followed by
colorimetric analysis at 712 nm. NaHCO3-Pt was determined by digesting another aliquot
of the supernatant with ammonium persulfate at 120 ◦C for 1 h, with NaHCO3-Po calculated
as the difference between NaHCO3-Pt and NaHCO3-Pi. Subsequently, the soil residue was
extracted with 30 mL of 0.1 M NaOH under similar conditions. NaOH-Pi was measured
after acidification with 0.9 M H2SO4, and NaOH-Pt was determined after digestion with
ammonium persulfate at 120 ◦C for 90 min, with NaOH-Po calculated as the difference
between NaOH-Pt and NaOH-Pi. The remaining soil was centrifuged, extracted with 20 mL
of 1 M HCl for 16 h at 25 ◦C, and the supernatant analyzed for HCl-Pi. The phosphorus
remaining in the soil after these steps was considered Residual-P, calculated by subtracting
the sum of Resin-P, NaHCO3-P (Pi and Po), NaOH-P (Pi and Po), and HCl-Pi from the total
phosphorus content. All phosphorus fractions were quantified using the molybdenum blue
method at 712 nm.

Soil pH and electrical conductivity (EC) were determined using specific methods and
varying soil-to-water ratios. For pH, a 1:2.5 ratio of soil to distilled water was used, with
measurements taken via a HORIBA glass electrode (D-210P/220P, HORIBA Ltd., Kyoto,
Japan). EC was measured using the AC bipolar method at a 1:5 soil-to-water ratio, utilizing
a HORIBA device (D-210C/220C, HORIBA Ltd., Kyoto, Japan). The soil suspensions were
shaken for 2 h, allowed to equilibrate, and the supernatant was subsequently analyzed for
pH and EC.
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The concentrations of soil organic carbon (SOC) and total nitrogen (N) were measured
through dry combustion, employing a SUMIGRAPH NC-TR22 NC analyzer provided by
Sumika Chemical Analysis Service, Ltd. (Osaka, Japan).

The total phosphorus content was determined through the HNO3-HClO4 digestion
technique [31]. Soil samples were combined with boiling stones and 10 mL of HNO3, then
heated at 200 ◦C. In the next step, HClO4 was introduced, and the heating process was
maintained. Phosphorus levels were subsequently quantified via the molybdenum blue
colorimetric method at a wavelength of 712 nm, using a SHIMADZU UV-1280 spectropho-
tometer (Shimadzu Corporation, Kyoto, Japan).

Nitrogen and phosphorus accumulation in Japanese blueberry fields was assessed by
comparing total nitrogen and phosphorus concentrations in fertilized versus unfertilized soils.

2.3. Identification of AM and ERM Fungal Layers in Vaccinium Soils

The global distribution of Vaccinium species and their associated fungal layers was an-
alyzed using data from the GBIF database [32]. The distribution records were downloaded
and categorized based on the symbiotic association with arbuscular mycorrhizal (AM) or
ericoid mycorrhizal (ERM) fungi.

Problematic records were processed and corrected with the CoordinateCleaner pack-
age in the R system [33], and environmental data were obtained from WorldClim using the
Raster package [34]. The climatic data, such as temperature and precipitation, were parsed
and visualized; the global distribution of Vaccinium species is shown in Figure 4B,D.
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We then filtered the data to identify the 0–30 cm soil layers where fungal activity was
most pronounced based on the temperature and precipitation conditions associated with
active symbiotic zones, as shown in Figure 4A,C. These filters helped distinguish between
fungal-active and inactive soil layers, which were then used for further analysis.

2.4. Statistical Analysis

All data visualization, including graphs and tables, was carried out using R-4.4.0
software, PowerPoint 365, and Excel 365. Redundancy analysis (RDA) was conducted with
Canoco version 5.0, while structural equation modeling (SEM) was implemented using
Smart PLS 4.0. The SEM model fit indices, focusing on phosphorus fractions as key factors
related to soil and environmental data, are shown in Table 2 [35].

Table 2. Fit indices of models with P fractions as core factors in relation to soil and environmental
data.

Figure Caption The Core Factor
in P Fractions SRMR d_ULS d_G Chi-Square NFI Notes

Figure 5A NaOH-Po 0.07 0.53 0.18 485.03 0.93 Global model for the upper 30 cm of soil
Figure 5B NaHCO3-Po 0.07 0.51 0.11 318.30 0.96 Global model for the upper 30 cm of soil

Figure 6A Resin-P 0.08 0.57 0.35 151.53 0.86 Global model for soil layers beneath 30 cm
depth

Figure 6B NaHCO3-Pi 0.08 0.59 0.39 159.06 0.86 Global model for soil layers beneath 30 cm
depth

Figure 6C NaOH-Po 0.07 0.48 0.36 146.59 0.87 Global model for soil layers beneath 30 cm
depth

Figure 6D HCl-Pi 0.08 0.51 0.34 137.73 0.88 Global model for soil layers beneath 30 cm
depth

Figure 8A NaHCO3-Po 0.07 0.57 0.12 165.06 0.96 Global model of forest soil within the upper
30 cm layer

Figure 8B NaOH-Po 0.07 0.50 0.21 258.60 0.93 Global model of forest soil within the upper
30 cm layer

Figure 8C NaHCO3-Po 0.07 0.33 0.07 60.90 0.94 Global model of grassland soil within the
upper 30 cm layer

Figure 8D NaOH-Po 0.06 0.28 0.10 78.09 0.93 Global model of grassland soil within the
upper 30 cm layer

Figure 10A Resin-P 0.06 0.11 0.20 60.60 0.88 Model of Japan’s soil profile in the
uppermost 30 cm

Figure 10B NaOH-Pi 0.05 0.06 0.11 36.41 0.93 Model of Japan’s soil profile in the
uppermost 30 cm

Figure 10C NaOH-Po 0.06 0.09 0.15 48.10 0.92 Model of Japan’s soil profile in the
uppermost 30 cm

Figure 10D NaHCO3-Pi 0.06 0.09 0.17 53.88 0.90 Model of Japan’s soil profile in the
uppermost 30 cm

Figure 10E NaHCO3-Po 0.06 0.09 0.14 45.53 0.89 Model of Japan’s soil profile in the
uppermost 30 cm

Figure 10F HCl-Pi 0.04 0.05 0.11 38.22 0.91 Model of Japan’s soil profile in the
uppermost 30 cm

Figure 10G Residual-P 0.06 0.09 0.17 53.02 0.87 Model of Japan’s soil profile in the
uppermost 30 cm

Figure 11A Resin-P 0.07 0.12 0.10 34.33 0.91 Model of Japan’s soil profile at depths of
30–60 cm

Figure 11B NaOH-Pi 0.06 0.11 0.12 40.77 0.91 Model of Japan’s soil profile at depths of
30–60 cm

Figure 11C NaOH-Po 0.07 0.14 0.15 49.11 0.91 Model of Japan’s soil profile at depths of
30–60 cm

Figure 11D NaHCO3-Pi 0.06 0.11 0.10 33.05 0.93 Model of Japan’s soil profile at depths of
30–60 cm

Figure 11E NaHCO3-Po 0.06 0.10 0.09 31.30 0.90 Model of Japan’s soil profile at depths of
30–60 cm

Figure 11F HCl-Pi 0.06 0.12 0.15 49.48 0.88 Model of Japan’s soil profile at depths of
30–60 cm

Figure 11G Residual-P 0.06 0.10 0.09 32.38 0.92 Model of Japan’s soil profile at depths of
30–60 cm

Figure 13A NaHCO3-Po 0.08 0.62 0.19 88.24 0.93 Global model of symbiotic microbial activity
within the upper 30 cm of soil

Figure 13B NaHCO3-Po 0.06 0.35 0.14 137.84 0.94 Global model of inactive symbiotic microbes
within the upper 30 cm of soil

Figure 13C NaOH-Po 0.06 0.34 0.21 178.55 0.92 Global model of inactive symbiotic microbes
within the upper 30 cm of soil
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3. Results
3.1. SEM Models for N and P Accumulation and Phosphorus Fractionation in Global Soils
(0–30 cm and Below 30 cm)

The structural equation models (SEM) in Figures 5 and 6 illustrate the complex inter-
actions between phosphorus fractions, soil properties, and environmental factors in global
soils at different depths. Within the upper 30 cm of soil (Figure 5), silt content is recognized
as a significant factor that improves the availability of organic phosphorus fractions, such
as NaOH-Po (R2 = 0.29) and NaHCO3-Po (R2 = 0.27), indicating that finer soil particles
enhance phosphorus retention by binding phosphorus to organic matter [36]. Additionally,
soil pH plays a dual role in phosphorus dynamics. It shows a significant negative effect
on organic phosphorus fractions, such as NaOH-Po (β = −0.15, p < 0.01) and NaHCO3-Po
(β = −0.18, p < 0.01), indicating that acidic conditions promote the release of phosphorus
from these non-labile pools. However, pH positively regulates non-labile phosphorus
(NLP), as shown in Figure 5A (β = 0.22, p < 0.01) and Figure 5B (β = 0.21, p < 0.01), suggest-
ing that higher pH enhances the accumulation of NLP. Precipitation also shows a minor but
statistically significant negative impact on NLP (β = −0.05, p < 0.05) and P accumulation
(β = −0.04, p < 0.01). Moreover, the SEM highlights soil organic carbon’s (SOC, R2 = 0.88)
significance in facilitating N accumulation (R2 = 0.37). Both LP and NLP act as critical
intermediaries, directly influencing the accumulation of N and P in soils. This underscores
the critical role of soil chemical properties and organic matter in maintaining N and P
cycling within the upper soil layers, with LP and NLP linking phosphorus fractions to
overall N and P availability.
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Figure 5. SEM model of the relationships among various phosphorus fractions within the upper
30 cm of soil and their interactions with soil and terrain properties, soil chemical properties, and
climatic factors on a global scale. (A) The core factor in phosphorus fractions with NaOH-Po as
the central component. (B) The core factor in phosphorus fractions with NaHCO3-Po as the central
component. Note: Blue arrows represent positive correlations, while red arrows signify negative
ones. Statistical significance is indicated by * for p < 0.05 and ** for p < 0.01. Solid lines correspond to
statistically significant associations, whereas dashed lines represent non-significant interactions. R2

values indicate the explained variance of the respective variables.

In the deeper soil layer (below 30 cm, Figure 6), silt content has a positive effect on
NaOH-Po, but negative effects on Resin-P, NaHCO3-Pi, and HCl-Pi, though none of these
relationships are significant (p > 0.05), indicating a weaker influence compared to the
upper soil layers. Soil pH exhibits significant positive effects on Resin-P and HCl-Pi, while
its positive impact on NaHCO3-Pi is not significant. Conversely, pH shows a significant
negative effect on NaOH-Po, highlighting its contrasting roles in phosphorus dynamics.
Precipitation significantly enhances NLP in Figure 6B,C, while temperature in Figure 6C
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significantly reduces NLP. Overall, SOC and N accumulation are consistently positively
and significantly correlated across Figure 6A–C, underscoring the critical role of soil or-
ganic carbon in driving nitrogen accumulation at this depth. However, in Figure 6A, LP,
represented by Resin-P, shows a significant negative effect on both SOC and N accumu-
lation, suggesting that labile phosphorus, in the form of Resin-P, may inhibit nitrogen
accumulation or compete with SOC in this particular model.
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deeper than 30 cm and their associations with soil and terrain properties, soil chemical properties,
and climatic factors on a global scale. (A) The core factor in phosphorus fractions with Resin-P as
the central component. (B) The core factor in phosphorus fractions with NaHCO3-Pi as the central
component. (C) The core factor in phosphorus fractions with NaOH-Po as the central component.
(D) The core factor in phosphorus fractions with HCl-Pi as the central component. Note: Blue arrows
represent positive correlations, while red arrows signify negative ones. Statistical significance is
indicated by * for p < 0.05 and ** for p < 0.01. Solid lines correspond to statistically significant
associations, whereas dashed lines represent non-significant interactions. R2 values indicate the
explained variance of the respective variables.

Figure 7 offers additional insights into the interactions among phosphorus fractions,
soil properties, and climatic factors across two soil layers. Within the upper 30 cm of soil
(Figure 7A), total N accounts for the largest proportion of phosphorus variation (61.7%),
followed by silt content (16.6%), pH (8.3%), and clay content (4.2%). pH positively correlates
with stable phosphorus forms like HCl-Pi, while it is negatively associated with organic
fractions such as NaOH-Po and NaHCO3-Po. In the below 30 cm layer (Figure 7B), pH is
the dominant factor (38.1%), followed by SOC (26.8%) and temperature (10.4%). At this
depth, the influence of silt decreases, and phosphorus becomes increasingly stabilized in
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less labile and more stable forms like HCl-Pi, which are less readily available for plant
uptake. Overall, Figure 7 emphasizes the pivotal influence of pH and SOC on phosphorus
cycling, aligning with the insights presented in Figures 5 and 6.
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3.2. SEM Models for Nitrogen and Phosphorus Accumulation and Their Fractionation Across
Various Biomes in Global Soils Within the Top 30 cm

Comparative SEM analyses across forest and grassland biomes (Figure 8) reveal
notable differences in phosphorus fractionation and nutrient accumulation driven by
biome-specific soil properties. In forest soils (Figure 8A,B), although silt content had a
positive impact on NaHCO3-Po and NaOH-Po, the effects lacked statistical significance
(p > 0.05). Conversely, depth exhibited a markedly negative effect on both NaHCO3-Po
(β = −0.17, p < 0.01) and NaOH-Po (β = −0.12, p < 0.01), highlighting the role of deeper
soils in reducing phosphorus availability. Climatic factors, including temperature and
precipitation, also played a role, with temperature exerting a significant positive effect on
N accumulation, and precipitation showing a minor but measurable effect on phosphorus
dynamics. NLP and LP positively influenced both P and N accumulation, with NLP
having the most pronounced impact on P accumulation (β = 0.79, p < 0.01). The model
also demonstrated that SOC (R2 = 0.90) played a central role in N accumulation but did
not directly influence P accumulation, underscoring the importance of organic matter in
regulating nitrogen cycling in forest ecosystems [37].

In contrast, grassland soils (Figure 8C,D) exhibited distinct phosphorus fractionation
patterns. Silt content had a positive effect on NaHCO3-Po and NaOH-Po; however, the
relationships did not reach statistical significance (p > 0.05). pH did not have a pronounced
effect on LP, but it negatively influenced both NaHCO3-Po (β =−0.24, p < 0.01) and NaOH-Po
(β =−0.17, p < 0.05), while positively affecting NLP (p < 0.01). Unlike forest soils, temperature
and precipitation had weaker and non-significant effects on NLP, LP, and N accumulation
in grasslands. Notably, only N accumulation was successfully modeled in grasslands, with
NaHCO3-Po and NaOH-Po showing significant positive effects. Additionally, LP exhibited a
strong positive impact on N accumulation in the NaOH-Po model.
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Figure 8. SEM models of the interactions among various phosphorus fractions within the upper
30 cm of soil and their relationships with soil and terrain properties, soil chemical properties, and
climatic factors in forest soils (A,B) and grassland soils (C,D). Note: Blue arrows represent positive
correlations, while red arrows signify negative ones. Statistical significance is indicated by * for
p < 0.05 and ** for p < 0.01. Solid lines correspond to statistically significant associations, whereas
dashed lines represent non-significant interactions. R2 values indicate the explained variance of the
respective variables.

The redundancy analysis (RDA) in Figure 9 further confirms these biome-specific
trends. In forest soils (Figure 9A), total nitrogen (65.3%) and silt content (15.3%) were
the primary contributors to phosphorus distribution, with pH (8.3%) and clay (4.2%)
also playing significant roles. The positive correlation between pH and HCl-Pi suggests
that soil acidity enhances phosphorus retention in mineral-bound forms. In grasslands
(Figure 9B), silt content (45.1%) and SOC (17.9%) were the dominant factors, with significant
contributions from pH (9.6%) and clay content (9.0%). SOC’s positive association with
NaOH-Po and NaHCO3-Po highlights the critical role of organic matter in phosphorus
cycling regulation within grassland soils.

3.3. SEM Models for N and P Accumulation and Phosphorus Fractionation in Japanese Blueberry
Soils at Depths of 0–30 cm and 30–60 cm

Within Japanese blueberry soils, the SEM models (Figures 10 and 11) elucidate the
intricate dynamics between phosphorus fractions and soil attributes across multiple depths.
In the upper 30 cm of soil (Figure 10), pH showed contrasting effects on phosphorus
fractions, negatively influencing Resin-P (β = −0.70, p < 0.01), NaHCO3-Pi (β = −0.60,
p < 0.01), and Residual-P (β = −0.30, p < 0.05), while positively affecting more stable forms
like NaOH-Po (β = 0.54, p < 0.01), NaHCO3-Po (β = 0.31, p < 0.01), and HCl-Pi (β = 0.21,
p < 0.05). pH exhibited a strong positive influence on NLP in most models, except for a
negative effect in Figure 10C, and negatively impacted LP in several models (Figure 10B–G).
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Redundancy analysis (Figure 12) similarly revealed that pH had a consistently negative
association with labile phosphorus fractions, including Resin-P and NaHCO3-Pi, across
both soil layers. This suggests that higher pH levels reduce P availability by promoting the
formation of insoluble phosphorus compounds, further corroborating the SEM findings.
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EC had negative effects on Resin-P (β = −0.62, p < 0.01) and NaHCO3-Pi (β = −0.37,
p < 0.01) but promoted stable phosphorus forms, such as NaOH-Po (β = 1.09, p < 0.01),
NaOH-Pi (β = 0.91, p < 0.01), HCl-Pi (β = 0.83, p < 0.01), and Residual-P (β = 0.31,
p < 0.05). These findings align with the RDA results (Figure 12), which highlighted a
weaker but notable influence of EC, particularly in the deeper soil layer, where its indi-
rect role in modulating phosphorus cycling becomes more pronounced. NLP positively
influenced both N and P accumulation in several models, while LP showed positive ef-
fects on N and P accumulation, except in Figure 10D, where it had a negative effect on N
accumulation.

As we move to the 30–60 cm layer of soil (Figure 11), similar patterns persist, but cer-
tain effects become more pronounced. pH continued to negatively affect Resin-P (β =−0.54,
p < 0.01), NaHCO3-Pi (β = −0.43, p < 0.01), and Residual-P (β = −0.14, p < 0.01), while posi-
tively influencing NaOH-Po (β = 0.38, p < 0.01), NaHCO3-Po (β = 0.50, p < 0.01), and HCl-Pi
(β = 0.22, p < 0.01). pH significantly promoted NLP in most models, except for a negative
effect in Figure 11C, and it had a negative impact on LP in multiple models. EC followed a
similar trend as in the upper layer, negatively affecting labile phosphorus fractions but pro-
moting stable forms like NaOH-Po (β = 0.85, p < 0.01), NaOH-Pi (β = 0.68, p < 0.01), HCl-Pi
(β = 0.59, p < 0.01), and Residual-P (β = 0.78, p < 0.01). NLP positively influenced both N
and P accumulation, though in Figure 11C, it negatively impacted N accumulation without
significance. LP typically exhibited a negative impact on N accumulation but contributed
positively to P accumulation, with Figure 11F showing positive effects on both. Climatic
factors also emerged as key drivers of phosphorus dynamics (Figure 12). In the surface
layer, annual precipitation was identified as a dominant factor influencing P fractions,
while, in the deeper layer, annual temperature played a more significant role. These results
underscore the interplay between soil properties and environmental drivers in shaping
depth-dependent phosphorus availability.
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properties within the upper 30 cm of soil in Japanese blueberry fields. (A) The core factor in phos-
phorus fractions with Resin-P as the central component. (B) The core factor in phosphorus fractions 

Figure 10. SEM model illustrating the interactions among various phosphorus fractions and soil
properties within the upper 30 cm of soil in Japanese blueberry fields. (A) The core factor in phos-
phorus fractions with Resin-P as the central component. (B) The core factor in phosphorus fractions
with NaOH-Pi as the central component. (C) The core factor in phosphorus fractions with NaOH-Po
as the central component. (D) The core factor in phosphorus fractions with NaHCO3-Pi as the
central component. (E) The core factor in phosphorus fractions with NaHCO3-Po as the central
component. (F) The core factor in phosphorus fractions with HCl-Pi as the central component.
(G) The core factor in phosphorus fractions with Residual-P as the central component. Note:
Figure 10C,E are adapted from previously published work by Lu et al., 2024 [20]. Blue arrows
represent positive correlations, while red arrows signify negative ones. Statistical significance is
indicated by * for p < 0.05 and ** for p < 0.01. Solid lines correspond to statistically significant
associations, whereas dashed lines represent non-significant interactions. R2 values indicate the
explained variance of the respective variables.



Plants 2025, 14, 189 15 of 27

Plants 2025, 14, 189 15 of 29 
 

 

with NaOH-Pi as the central component. (C) The core factor in phosphorus fractions with NaOH-
Po as the central component. (D) The core factor in phosphorus fractions with NaHCO3-Pi as the 
central component. (E) The core factor in phosphorus fractions with NaHCO3-Po as the central com-
ponent. (F) The core factor in phosphorus fractions with HCl-Pi as the central component. (G) The 
core factor in phosphorus fractions with Residual-P as the central component. Note: Figure 10C,E 
are adapted from previously published work by Lu et al., 2024 [20]. Blue arrows represent positive 
correlations, while red arrows signify negative ones. Statistical significance is indicated by * for p < 
0.05 and ** for p < 0.01. Solid lines correspond to statistically significant associations, whereas dashed 
lines represent non-significant interactions. R2 values indicate the explained variance of the respec-
tive variables. 

 

Figure 11. SEM model depicting the interactions among various phosphorus fractions and soil prop-
erties within the 30–60 cm soil layer in Japanese blueberry fields. (A) The core factor in phosphorus
fractions with Resin-P as the central component. (B) The core factor in phosphorus fractions with
NaOH-Pi as the central component. (C) The core factor in phosphorus fractions with NaOH-Po as
the central component. (D) The core factor in phosphorus fractions with NaHCO3-Pi as the central
component. (E) The core factor in phosphorus fractions with NaHCO3-Po as the central component.
(F) The core factor in phosphorus fractions with HCl-Pi as the central component. (G) The core factor
in phosphorus fractions with Residual-P as the central component. Note: Figure 11C,E is adapted
from previously published work by Lu et al., 2024 [20]. Blue arrows represent positive correlations,
while red arrows signify negative ones. Statistical significance is indicated by * for p < 0.05 and ** for
p < 0.01. Solid lines correspond to statistically significant associations, whereas dashed lines represent
non-significant interactions. R2 values indicate the explained variance of the respective variables.
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factors and soil properties in 0–30 cm soil layer (A) and 30–60 cm soil layer (B). Note: Annual temp. 
refers to Annual Temperature, while Annual precip. refers to annual precipitation. The temperature 

Figure 12. RDA analysis of Japanese blueberry field’s phosphorus fractionation concerning climatic
factors and soil properties in 0–30 cm soil layer (A) and 30–60 cm soil layer (B). Note: Annual temp.
refers to Annual Temperature, while Annual precip. refers to annual precipitation. The temperature
and precipitation data were sourced from the Japan Meteorological Agency [38]. Asterisks (*) denote
statistical significance, with * p ≤ 0.05 and ** p ≤ 0.01.

Moreover, in the global SEM model, soil pH and soil organic carbon (SOC) emerged as
the primary drivers of phosphorus fractionation, playing a pivotal role in converting NLP to
LP. These results are consistent with those observed in the Japanese blueberry soils, where
pH and EC played dominant roles in phosphorus dynamics. However, the more localized
analysis revealed a complex interplay in the Japanese blueberry soils, where pH and EC
regulated the transformation of NLP to LP through specific phosphorus fractions. In the
0–30 cm soil layer, NaOH-Po emerged as the key fraction driving this transformation, while,
in the 30–60 cm soil layer, the critical fractions included Resin-P, NaOH-Po, NaHCO3-Po,
and Residual-P.



Plants 2025, 14, 189 17 of 27

3.4. SEM Models Addressing Nitrogen and Phosphorus Accumulation and Phosphorus
Fractionation in Active and Inactive Symbiotic Fungal Layers

To enhance our understanding of the interaction between Vaccinium plants and their
associated symbiotic fungi, we first analyzed the environmental requirements (tempera-
ture and precipitation) for arbuscular mycorrhizal (AM) and ericoid mycorrhizal (ERM)
fungi symbiosis (Figure 4). Figure 4 compares temperature (Figure 4A) and precipitation
(Figure 4C) in symbiotic environments for AM and ERM fungi associated with Vaccinium
plants, alongside their global distribution (Figure 4B,D). The temperature for AM fungi
shows a median of approximately 5 ◦C, ranging from −10 ◦C to 15 ◦C, while ERM fungi
exhibits a higher median temperature of 14 ◦C with a broader range of −5 ◦C to over 25 ◦C.
Precipitation shows a median value of 1000 mm for AM fungi and 1100 mm for ERM fungi,
indicating that ERM fungi prefer slightly wetter environments.

Using these findings, we filtered phosphorus fractionation data from the upper 30 cm
of soil (the rhizosphere for Vaccinium plants and their symbiotic fungi) across global soils,
focusing on areas within the optimal ranges for AM and ERM symbiosis (temperature:
5–14 ◦C, precipitation: 800–1500 mm). This allowed us to model the phosphorus dynamics
in symbiotic active and inactive layers (Figure 13).
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Figure 13. SEM models illustrate the interactions among various phosphorus fractions within the
symbiotic microbial activity layer (A) and the inactive symbiotic microbial layers (B,C). Note: Blue
arrows represent positive correlations, while red arrows signify negative ones. Statistical significance
is indicated by * for p < 0.05 and ** for p < 0.01. Solid lines correspond to statistically significant
associations, whereas dashed lines represent non-significant interactions. R2 values indicate the
explained variance of the respective variables.

In the symbiotic microbial activity layer (Figure 13A), silt had a positive but non-
significant effect on NaHCO3-Po (R2 = 0.39), while depth significantly negatively influenced
NaHCO3-Po. pH also showed a negative effect on NaHCO3-Po (β = −0.24, p < 0.05).
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NaHCO3-Po positively influenced NLP and LP, subsequently promoting the accumulation
of both P (R2 = 0.95) and N (R2 = 0.36). Temperature had a significant positive impact on N
accumulation. In contrast, in the inactive microbial layers (Figure 13B,C), silt significantly
influenced NaHCO3-Po (R2 = 0.37), but soil properties did not significantly impact NaOH-
Po (R2 = 0.36). pH negatively influenced both NaHCO3-Po and NaOH-Po. Similar to
the active layer, NLP and LP continued to drive the accumulation of P and N, though
temperature and precipitation played a lesser role.

3.5. Summary of Key Findings from SEM Models

Due to the complexity and abundance of the SEM structural models presented in
this study, we have provided a concise summary to enhance reader comprehension. The
summary of key findings from SEM models is presented in Table 3, offering a clear overview
of the main relationships and insights derived from the analyses.

Table 3. Summary of key findings from structural equation models.

Figure
Caption

The Core Factor in P
Fractions (Key Variables) Path Relationships Significance (p-Value) Key Findings

Figure 5A NaOH-Po
(pH, NLP, Silt, LP)

pH positively affects NLP; silt
positively affects NaOH-Po;
NLP positively affects LP.

pH→NLP (p < 0.01).
Silt→NaOH-Po (p < 0.01).
NLP→LP (p < 0.01).

pH and silt content regulate
phosphorus availability and
retention in upper soils. Acidic
conditions promote the release
of phosphorus from these
non-labile pools.

Figure 5B NaHCO3-Po
(pH, NLP, Silt, LP)

pH positively regulates NLP;
silt positively affects
NaHCO3-Po; NLP positively
affects LP.

pH→NLP (p < 0.01).
Silt→NaHCO3-Po (p < 0.05).
NLP→LP (p < 0.05).

Higher pH enhances NLP.
Precipitation reduces
phosphorus accumulation.

Figure 6A
Resin-P
(pH, NLP, LP, SOC, N
Accumulation)

pH positively regulates NLP
and Resin-P; Resin-P
positively affects NLP, LP,
SOC, and N accumulation;
NLP positively affects LP.

pH→NLP (p < 0.01).
pH→ Resin-P (p < 0.05).
Resin-P→NLP (p < 0.01).
Resin-P→LP (p < 0.01).
Resin-P→SCO and N Accumulation (p < 0.01).

SOC and N accumulation are
consistently positively and
significantly correlated. Weak
silt influences deeper soils.

Figure 6B NaHCO3-Pi
(pH, NLP, LP, Precipitation)

pH positively regulates NLP;
NaHCO3-Pi positively affects
NLP and LP; precipitation
positively affects NLP.

pH→NLP (p < 0.01).
NaHCO3-Pi→NLP (p < 0.01).
NaHCO3-Pi→LP (p < 0.01).
Precipitation→NLP (p < 0.05).

Precipitation drives NLP
accumulation in deeper soil
layers.

Figure 6C
NaOH-Po
(pH, NLP, Precipitation,
Temperature)

pH positively regulates NLP,
while its effect on NaOH-Po is
negative; NaOH-Po
positively affects NLP;
precipitation positively affects
NLP, while temperature
negatively affects NLP.

pH→NLP (p < 0.01).
pH←NaOH-Po (p < 0.05).
NaOH-Po→NLP (p < 0.01).
Precipitation→NLP (p < 0.05).
Temperature←NLP (p < 0.01).

Precipitation drives NLP
accumulation, whereas
temperature reduces NLP
accumulation in deeper soil
layers.

Figure 6D HCl-Pi
(pH, NLP, LP)

pH negatively regulates NLP,
while its effect on HCl-Pi
is positive; HCl-Pi positively
affects NLP; NLP positively
affects LP.

pH←NLP (p < 0.05).
pH→HCl-Pi (p < 0.01).
HCl-Pi→NLP (p < 0.01).
NLP→LP (p < 0.01).

In the SEM model depicting
the dynamics of HCl-Pi in
deeper soil layers, the
regulation of LP by NLP is the
most significant.

Figure 8A
NaHCO3-Po
(pH, NLP, LP, P and N
Accumulation, SOC)

pH positively regulates NLP,
while its effect on NaHCO3-Po
is negative; NaHCO3-Po
positively affects NLP and LP;
NLP and LP positively affects
P and N accumulation; N
accumulation positively
affects SOC.

pH→NLP (p < 0.01).
pH←NaHCO3-Po (p < 0.01).
NaHCO3-Po→NLP and LP (p < 0.01).
NLP and LP→P and N Accumulation (p < 0.01).
N Accumulation→SOC (p < 0.01).

Depth reduces phosphorus
availability in forest soils. SOC
played a central role in N
accumulation but did not
directly influence P
accumulation in forest
ecosystems.

Figure 8B
NaOH-Po
(pH, NLP, LP, P and N
Accumulation, SOC)

pH positively regulates NLP,
while its effect on NaOH-Po
is negative; NaOH-Po
positively affects NLP; NLP
and LP positively affect P and
N accumulation; N
accumulation positively
affects SOC; NLP positively
affects LP.

pH→NLP (p < 0.01).
pH←NaOH-Po (p < 0.01).
NaOH-Po→NLP (p < 0.01).
NLP and LP→P and N Accumulation (p < 0.01).
N Accumulation→SOC (p < 0.01).
NLP→LP (p < 0.05).

Climatic factors influence N
and P accumulation in forest
soils.

Figure 8C
NaHCO3-Po
(pH, NLP, LP, N
Accumulation)

pH positively regulates NLP,
while its effect on NaHCO3-Po
is negative; NaHCO3-Po
positively affects NLP, LP, and
N accumulation; NLP
positively affects LP.

pH→NLP (p < 0.01).
pH←NaHCO3-Po (p < 0.01).
NaHCO3-Po→NLP, LP and N Accumulation
(p < 0.01).
NLP→LP (p < 0.01).

Unlike forest soil, temperature
and precipitation had weaker
and non-significant effects on
NLP, LP, and N accumulation
in grasslands soil.
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Table 3. Cont.

Figure
Caption

The Core Factor in P
Fractions (Key Variables) Path Relationships Significance (p-Value) Key Findings

Figure 8D
NaOH-Po
(pH, NLP, LP, N
Accumulation)

pH positively regulates NLP,
while its effect on NaOH-Po
and LP is negative; NaOH-Po
positively affects NLP and N
accumulation; LP positively
affects N accumulation; NLP
positively affects LP.

pH→NLP (p < 0.01).
pH←NaOH-Po and LP (p < 0.05).
NaOH-Po→NLP and N Accumulation
(p < 0.01).
LP→N Accumulation (p < 0.01).
NLP→LP (p < 0.01).

Grassland nutrient dynamics
differ from forest biomes. LP
exhibited a strong positive
impact on N accumulation in
the NaOH-Po model.

Figure 10A
Resin-P
(pH, EC, NLP, N
Accumulation, LP)

pH and EC positively regulate
NLP, while their effect on
Resin-P is negative; Resin-P
negatively regulates N
accumulation, while its effect
on LP is positive.

pH and EC→NLP (p < 0.01).
pH and EC←Resin-P (p < 0.01).
Resin-P←N Accumulation (p < 0.01).
Resin-P→LP (p < 0.01).

Resin-P is suppressed by both
pH and EC in upper Japanese
soils.

Figure 10B
NaOH-Pi
(pH, EC, NLP, LP, P and N
Accumulation)

pH and EC positively regulate
NLP and NaOH-Pi, while pH
negatively regulates LP;
NaOH-Pi positively affects
NLP, LP, P, and N
accumulation; NLP negatively
affects LP.

pH and EC→NLP and NaOH-Pi (p < 0.01).
pH←LP (p < 0.01).
NaOH-Pi→NLP, LP, P and N Accumulation
(p < 0.01).
NLP←LP (p < 0.01).

pH enhances stable
phosphorus forms.

Figure 10C
NaOH-Po
(pH, LP, NLP, EC, P and N
Accumulation)

pH negatively regulates LP
and NLP, EC negatively
regulates P accumulation,
while pH and EC positively
regulate NaOH-Po; NaOH-Po
positively affects NLP and N
accumulation, while its effect
on LP is negative; NLP
positively affects LP.

pH←LP (p < 0.05).
pH←NLP (p < 0.01).
EC←P Accumulation (p < 0.01).
pH and EC→NaOH-Po (p < 0.01).
NaOH-Po→NLP and N Accumulation
(p < 0.01).
NaOH-Po←LP (p < 0.01).
NLP→LP (p < 0.01).

In the SEM model describing
the dynamics of NaOH-Po in
the 0–30 cm layer of Japanese
blueberry soils, the regulation
of LP by NLP exhibits the most
significant effect.

Figure 10D
NaHCO3-Pi
(pH, EC, NLP, LP, N
Accumulation)

pH and EC positively regulate
NLP, while their effect on
NaHCO3-Pi is negative; pH
negatively affects LP;
NaHCO3-Pi positively affects
NLP and N accumulation.

pH and EC→NLP (p < 0.01).
pH and EC←NaHCO3-Pi (p < 0.01).
pH←LP (p < 0.01).
NaHCO3-Pi→LP and N Accumulation
(p < 0.01).

Higher pH and EC reduce
phosphorus mobility and
enhance their stabilization in
upper soil layers.

Figure 10E
NaHCO3-Po
(pH, EC, NLP, LP, P
Accumulation)

pH and EC positively regulate
NLP and NaHCO3-Po, while
their effect on LP is negative;
NaHCO3-Po positively affects
NLP and LP, while its effect on
P accumulation is negative.

pH and EC→NLP and NaHCO3-Po (p < 0.01).
pH and EC←LP (p < 0.01).
NaHCO3-Po→NLP and LP (p < 0.01).
NaHCO3-Po←P Accumulation (p < 0.01).

Higher pH and EC reduce
phosphorus mobility and
enhance their stabilization in
upper soil layers.

Figure 10F
HCl-Pi
(pH, EC, NLP, LP, P and N
Accumulation)

pH and EC positively regulate
NLP and HCl-Pi, while their
effect on LP is negative; HCl-Pi
positively affects NLP, while
its effect on P and N
accumulation is negative.

pH and EC→NLP and HCl-Pi (p < 0.01).
pH and EC←LP (p < 0.01).
HCl-Pi→NLP (p < 0.01).
HCl-Pi←P and N Accumulation (p < 0.01).

HCl-Pi in the upper soil layers
reduces both P accumulation
and N accumulation.

Figure 10G
Residual-P
(pH, EC, NLP, LP, N
Accumulation)

pH and EC positively regulate
NLP, while their effect on LP is
negative; pH negatively affects
Residual-P; EC positively
affects Residual-P; Residual-P
positively affects NLP, while
its effect on N accumulation is
negative.

pH and EC→NLP (p < 0.01).
pH and EC←LP (p < 0.01).
pH←Residual-P (p < 0.05).
EC→Residual-P (p < 0.05).
Residual-P→NLP (p < 0.01).
Residual-P←N Accumulation (p < 0.01).

In the upper soil layers, pH
inhibits Residual-P, while EC
promotes its accumulation.

Figure 11A Resin-P
(pH, EC, NLP, LP)

pH and EC positively regulate
NLP, while their effect on
Resin-P is negative; EC
negatively affects LP; Resin-P
positively affects LP; NLP
positively affects LP.

pH and EC→NLP (p < 0.01).
pH and EC←Resin-P (p < 0.01).
EC←LP (p < 0.05).
Resin-P→LP (p < 0.01).
NLP→LP (p < 0.01).

In the SEM model describing
the dynamics of Resin-P in the
30–60 cm soil layer of Japanese
blueberry fields, the regulation
of LP by NLP shows a
statistically significant effect.

Figure 11B
NaOH-Pi
(pH, EC, NLP, LP, P
Accumulation)

pH and EC positively regulate
NLP, while their effect on LP is
negative; EC positively
regulates NaOH-Pi; NaOH-Pi
positively affects NLP, LP, and
P accumulation.

pH and EC→NLP (p < 0.01).
pH and EC←LP (p < 0.01).
EC→NaOH-Pi (p < 0.01).
NaOH-Pi→NLP, LP and P Accumulation
(p < 0.01).

EC promotes the stabilization
of phosphorus in deeper soil
layers of Japanese blueberry
fields.

Figure 11C
NaOH-Po
(pH, EC, NLP, N
Accumulation, LP)

pH and EC positively regulate
NaOH-Po; EC negatively
affects LP; pH negatively
affects NLP; NaOH-Po
positively regulates NLP and
N accumulation, while its
effect on LP is negative; NLP
positively affects LP.

pH and EC→NaOH-Po (p < 0.01).
EC←LP (p < 0.01).
pH←NLP (p < 0.01).
NaOH-Po→NLP (p < 0.01).
NaOH-Po→N Accumulation (p < 0.05).
NaOH-Po←LP (p < 0.01).
NLP→LP (p < 0.01).

In the SEM model describing
the dynamics of NaOH-Po in
the 30–60 cm layer of Japanese
blueberry soils, the regulation
of LP by NLP exhibits the most
significant effect.
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Table 3. Cont.

Figure
Caption

The Core Factor in P
Fractions (Key Variables) Path Relationships Significance (p-Value) Key Findings

Figure 11D NaHCO3-Pi
(pH, EC, NLP, LP)

pH and EC positively regulate
NLP, while their effect on
NaHCO3-Pi is negative;
NaHCO3-Pi positively affects
LP and NLP.

pH and EC→NLP (p < 0.01).
pH and EC←NaHCO3-Pi (p < 0.01).
NaHCO3-Pi→LP and NLP (p < 0.01).

Inorganic phosphorus, such as
NaHCO3-Pi, NaOH-Pi and
HCl-Pi play a critical role in
supporting P cycling through
its influence on LP and NLP.

Figure 11E
NaHCO3-Po
(pH, EC, LP, NLP, N
Accumulation)

pH and EC positively regulate
NaHCO3-Po, while their effect
on LP is negative; EC
positively regulates NLP;
NaHCO3-Po positively
regulates NLP, while its effect
on N accumulation is negative;
NLP positively affects LP.

pH and EC→NaHCO3-Po (p < 0.01).
pH and EC←LP (p < 0.01).
EC→NLP (p < 0.01).
NaHCO3-Po→NLP (p < 0.01).
NaHCO3-Po←N Accumulation (p < 0.05).
NLP→LP (p < 0.05).

In the SEM model describing
the dynamics of NaHCO3-Po
in the 30–60 cm soil layer of
Japanese blueberry fields, the
regulation of LP by NLP shows
a statistically significant effect.

Figure 11F
HCl-Pi
(pH, EC, LP, NLP, N
Accumulation)

pH and EC positively regulate
HCl-Pi, while their effect on LP
is negative; EC positively
regulates NLP; HCl-Pi
positively regulates NLP and
LP, while its effect on N
accumulation is negative; NLP
negatively affects LP.

pH and EC→HCl-Pi (p < 0.01).
pH and EC←LP (p < 0.01).
EC→NLP (p < 0.01).
HCl-Pi→NLP and LP (p < 0.01).
HCl-Pi←N Accumulation (p < 0.01).
NLP←LP (p < 0.01).

In the SEM model describing
the dynamics of HCl-Pi in the
30–60 cm layer of Japanese
blueberry soils, NLP exhibits a
significant negative effect on
LP.

Figure 11G
Residual-P
(pH, EC, LP, NLP, P
Accumulation)

pH and EC negatively regulate
LP, while pH positively affects
NLP; pH negatively affects
Residual-P, while EC
positively affects Residual-P;
Residual-P positively affects
NLP, while its effect on P
accumulation is negative; NLP
positively affects LP.

pH and EC←LP (p < 0.01).
pH→NLP (p < 0.01).
pH←Residual-P (p < 0.01).
EC→Residual-P (p < 0.01).
Residual-P→NLP (p < 0.01).
Residual-P←P Accumulation (p < 0.05).
NLP→LP (p < 0.01).

In the SEM model describing
the dynamics of Residual-P
in the 30–60 cm soil layer of
Japanese blueberry fields, the
regulation of LP by NLP shows
a statistically significant effect.

Figure 13A
NaHCO3-Po
(pH, Depth, NLP, LP, P and N
Accumulation, Temperature)

pH and depth negatively
regulate NaHCO3-Po, while
NaHCO3-Po positively affects
NLP and LP; NLP and LP
positively affect P and N
accumulation; temperature
positively affects N
accumulation; NLP positively
affects LP.

pH←NaHCO3-Po (p < 0.05).
Depth←NaHCO3-Po (p < 0.01).
NaHCO3-Po→NLP and LP (p < 0.01).
NLP and LP→P and N Accumulation (p < 0.01).
Temperature→N Accumulation (p < 0.01).
NLP→LP (p < 0.01).

In the SEM model describing
the dynamics of NaHCO3-Po
in the symbiotic microbial
activity layer, the regulation of
LP by NLP demonstrates a
statistically significant effect,
and temperature exerts a
positive influence on N
accumulation.

Figure 13B
NaHCO3-Po
(pH, Depth, Silt, NLP, LP, P
and N Accumulation)

pH and depth negatively
regulate NaHCO3-Po, while
silt positively regulates
NaHCO3-Po; pH positively
affects NLP; NaHCO3-Po
positively affects NLP and LP;
LP positively affects P and N
accumulation; NLP positively
affects P accumulation; NLP
positively affects LP.

pH and depth←NaHCO3-Po (p < 0.01).
Silt→NaHCO3-Po (p < 0.05).
pH→NLP (p < 0.05).
NaHCO3-Po→NLP and LP (p < 0.01).
LP→P and N Accumulation (p < 0.01).
NLP→P Accumulation (p < 0.01).
NLP→LP (p < 0.05).

In the SEM model describing
the dynamics of NaHCO3-Po
in the inactive symbiotic
microbial layer, the regulation
of LP by NLP demonstrates a
statistically significant effect.

Figure 13C
NaOH-Po
(pH, LP, NLP, P and N
Accumulation)

pH negatively regulates
NaOH-Po and LP, while its
effect on NLP is positive;
NaOH-Po positively affects
NLP; LP positively affects P
and N accumulation; NLP
positively affects P
accumulation; NLP positively
affects LP.

pH←NaOH-Po and LP (p < 0.05).
pH→NLP (p < 0.01).
NaOH-Po→NLP (p < 0.01).
LP→P and N Accumulation (p < 0.01).
NLP→P Accumulation (p < 0.01).
NLP→LP (p < 0.01).

In the SEM model describing
the dynamics of NaOH-Po in
the inactive symbiotic
microbial layers, the
regulation of LP by NLP is
more pronounced compared to
that in the dynamics of
NaHCO3-Po.

Note: The arrow→ indicates positive regulation, while the arrow← indicates negative regulation.

4. Discussion
4.1. SEM Models for N and P Accumulation and Phosphorus Fractionation in Global Soils
(0–30 cm and Below 30 cm)

The SEM models (Figure 5) clearly demonstrate the critical roles of soil texture, par-
ticularly silt content, pH, and SOC, in regulating P fractions and accumulation within
the upper 30 cm of soil. As indicated by the results, silt content has a positive influence
on NaOH-Po and NaHCO3-Po, while pH negatively affects these phosphorus fractions,
showing that the interaction between soil texture and pH is crucial for P mobilization. A
key process observed here is the significant transformation of NLP into LP through the
negative regulation of pH on NaOH-Po and NaHCO3-Po, suggesting that decreasing pH
enhances this conversion. This underscores the role of acidic conditions in promoting the
transformation of less accessible phosphorus into more labile forms [39].



Plants 2025, 14, 189 21 of 27

In addition to P accumulation, N accumulation is also significant in the upper soil
layers, a zone where nutrient cycling and plant growth are particularly active [40]. Figure 5
illustrates that SOC not only promotes P accumulation, but also has a strong positive effect
on N accumulation, consistent with previous studies showing that organic matter enhances
both N and P availability by releasing nutrients during decomposition and promoting
microbial activity [41].

In contrast, the dynamics shift in deeper soils (below 30 cm, Figure 6), where pH
exhibits a positive relationship with the conversion of NLP to LP. Specifically, higher pH
promotes the conversion of NLP, particularly Resin-P and HCl-Pi, into LP, suggesting that
alkaline conditions in deeper layers facilitate phosphorus mobilization into more bioavail-
able forms. This finding is in opposition to the upper soil layers, where acidic conditions
prevail in driving phosphorus transformation, suggesting a depth-related contrast in how
pH modulates phosphorus forms [42]. Precipitation, while having a significant effect in
the upper layers, shows less influence below 30 cm, where N accumulation is increasingly
controlled by SOC, implying that deeper soils rely more on intrinsic soil properties rather
than climatic factors [43].

The redundancy analysis (RDA) in Figure 7 further supports these insights. Within
the upper 30 cm of soil, total N, pH, and silt content are the main drivers of N and P
accumulation, while, in deeper soils, SOC plays a more dominant role. These findings
underscore the increasing significance of organic matter in deeper soil layers, where lower
biological activity and slower decomposition rates position SOC as a crucial driver of
nutrient dynamics, especially concerning nitrogen [44].

4.2. SEM Models for Nitrogen and Phosphorus Accumulation and Their Fractionation Across
Various Biomes in Global Soils Within the Top 30 cm

The SEM models (Figure 8) reveal distinct patterns of nitrogen and phosphorus accu-
mulation in forest and grassland soils. In forest soils (Figure 8B), the negative regulation
of NaOH-Po by pH suggests that acidic conditions favor the conversion of NLP into LP,
thereby enhancing phosphorus availability. This finding aligns with the well-documented
role of forest soil acidity in driving nutrient mobilization, where the conversion of more
stable phosphorus forms to labile phosphorus supports plant nutrient uptake [45,46].

In grassland soils (Figure 8C,D), a similar process occurs, with pH negatively regulat-
ing both NaHCO3-Po and NaOH-Po, indicating that the conversion of NLP to LP is also
pH-dependent in these ecosystems. Unlike forest soils (Figure 8A,B), SOC does not appear
in the SEM pathways involving these phosphorus fractions; yet, grassland soils exhibit a
more efficient phosphorus mobilization, driven by the stronger pH-mediated regulation of
NaHCO3-Po and NaOH-Po. These observations indicate a biome-specific divergence in the
interaction between soil properties and pH in controlling phosphorus mobilization [47,48].

However, in grassland soils, phosphorus cycling appears to be more strongly in-
fluenced by soil properties such as silt content and pH regulation of NaHCO3-Po and
NaOH-Po, while SOC plays a significant but less dominant role compared to its influence
in forest soils. This highlights a biome-specific variation, with grassland soils exhibit-
ing a stronger dependency on soil texture and specific phosphorus fractions for nutrient
mobilization.

The redundancy analysis (RDA) in Figure 9 further distinguishes these biome-specific
trends. In forest soils (Figure 9A), total nitrogen and silt content play critical roles in
phosphorus accumulation, while, in grasslands (Figure 9B), SOC and silt content dominate.
Such divergence reinforces the idea that the mechanisms driving phosphorus fractionation
and NLP conversion vary between ecosystems, likely due to differing interactions among
pH, texture, and organic matter [49].
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4.3. SEM Models for N and P Accumulation and Phosphorus Fractionation in Japanese Blueberry
Soils at Depths of 0–30 cm and 30–60 cm

Within the context of global soils, soil physical properties such as silt, alongside chemical
properties like pH, play critical roles in regulating phosphorus fractions, with the potential
to influence the conversion of NLP into LP. Climatic factors contribute to these processes,
although to a lesser extent. However, due to the inherent difficulty in altering silt content,
our study focused on soil chemical properties—specifically pH and electrical conductivity
(EC)—as key levers to drive phosphorus fractionation in Japanese Vaccinium soils.

SEM models across the 0–30 cm and 30–60 cm layers reveal that pH and EC are
significant factors in modulating the conversion of NLP to LP, highlighting their potential
to enhance phosphorus availability in these long-term-cultivated soils. Within the upper
30 cm of soil (Figure 10), pH and EC positively influence the conversion of NLP, especially
NaOH-Po, into LP, indicating that acidic conditions promote the release of phosphorus from
organic and non-labile pools into more labile forms, thus increasing phosphorus availability
for plant uptake [50]. Interestingly, the regulation of NaOH-Pi by pH and EC displays a
distinct pattern, where higher pH and EC increase NaOH-Pi levels but simultaneously
inhibit the net transformation of NLP into LP. This pattern can be attributed to the dual
role of NaOH-Pi as a transitional pool, which enhances both NLP and LP accumulation,
thereby reducing the efficiency of NLP-to-LP conversion.

Redundancy analysis (Figure 12) further supports these observations, revealing that
pH consistently exhibits a negative association with labile phosphorus fractions, such as
Resin-P and NaHCO3-Pi, across both soil layers. This highlights the inhibitory effect of
higher pH on the availability of bioavailable phosphorus, likely due to the precipitation of
insoluble phosphorus compounds. EC, while exerting a weaker influence overall, displays
a notable role in modulating stable phosphorus fractions such as Residual-P and NaOH-Po,
particularly in the deeper soil layer (30–60 cm). These findings suggest that the interaction
between pH, EC, and phosphorus fractions is both depth-dependent and fraction-specific,
contributing to the complexity of phosphorus dynamics in long-term-cultivated soils.

In the 30–60 cm layer (Figure 11), the patterns remain similar, with pH and EC con-
tinuing to promote the conversion of NLP to LP through fractions such as NaOH-Po,
NaHCO3-Po, Resin-P, and Residual-P. Notably, the effect of pH and EC on HCl-Pi shows a
nuanced difference: higher pH and EC reduce the conversion of NLP to LP in this fraction.
This observation aligns with the RDA findings (Figure 12), which reveal depth-specific
variations in climatic factors, such as annual temperature in the deeper soil layer, further
modulating phosphorus availability and fractionation. Such climatic effects may indirectly
influence phosphorus dynamics by altering organic matter turnover and nutrient cycling, as
indicated by the strong associations between SOC, C/N, and labile phosphorus fractions in
the surface soil [51]. Altogether, these interactions highlight the complexity of phosphorus
mobilization in deeper layers, where chemical properties, depth, and phosphorus fractions
interact in more intricate ways [52,53].

Globally, while factors like silt and pH are known to drive phosphorus dynamics,
the difficulty of altering soil texture in agricultural systems makes focusing on modifiable
soil chemical properties more pragmatic [54,55]. In the Japanese blueberry fields studied,
we observed that the targeted manipulation of pH and EC offers a feasible strategy for
enhancing phosphorus use efficiency. By concentrating on these chemical properties,
our study demonstrates the potential to effectively regulate phosphorus fractionation
and promote the conversion of NLP to LP, providing valuable insights for improving
phosphorus management in long-term-cultivated soils, particularly under acidic conditions
typical of Vaccinium cultivation.
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4.4. SEM Models Addressing Nitrogen and Phosphorus Accumulation and Phosphorus
Fractionation in Active and Inactive Symbiotic Fungal Layers

In the active symbiotic microbial layer (Figure 13A), pH exerts a significant effect on
NaHCO3-Po, promoting the conversion of NLP into LP. This underscores the essential role
of microbial activity in facilitating phosphorus mobilization and cycling, where biologi-
cal processes are actively driving the transformation of phosphorus into plant-available
forms [56]. Temperature also plays a significant role in enhancing N accumulation, further
reinforcing the importance of biological activity in these layers [57]. Interestingly, studies
by Hugo A. Pantigoso et al. [58] demonstrated that phosphorus fertilization reduces the
ability of phosphate-solubilizing microbes to convert NLP into LP. Although their study
did not specifically address phosphorus fractionation, the SEM results from the active
symbiotic layer suggest that, under biologically active conditions, phosphorus fractionation
is dominated by microbial-driven pathways, with NaHCO3-Po as the primary contributor
to the NLP-to-LP transformation. This observation aligns with the notion that microbial
processes play a central role in regulating phosphorus pools in active layers.

In contrast, the inactive symbiotic microbial layers (Figure 13B,C) show that the pH
regulation of NaHCO3-Po and NaOH-Po also promotes the conversion of NLP to LP,
though the absence of active microbial processes means that these transformations rely
more heavily on soil chemical properties. This indicates that, in the absence of microbial
activity, pH and EC become the dominant factors in phosphorus cycling [59].

4.5. Implications for Long-Term Soil Management and Global Soil Health

The results of our global SEM analysis, supported by findings from long-term studies
in Japanese blueberry fields, underscore the pivotal role of soil chemical properties—
particularly pH and EC—in regulating phosphorus availability and cycling. By foster-
ing environments that promote the efficient conversion of non-labile phosphorus into
plant-accessible labile phosphorus, sustainable and low-input agricultural systems can
be achieved [60,61]. In acidic soils, which are common in Vaccinium cultivation, targeted
adjustments to pH and EC significantly enhance phosphorus bioavailability, reducing
dependence on external phosphorus inputs while promoting efficient nutrient cycling.
Furthermore, the ability to manipulate NaOH-Po and NaHCO3-Po pools through pH and
EC adjustments represents a critical area for future research, with broad implications for
nutrient management across diverse soils and ecosystems [62,63]. These findings pro-
vide actionable strategies for optimizing phosphorus dynamics and enhancing soil health,
aligning with the principles of sustainable intensification and environmental stewardship.

Globally, soil health is shaped by the complex interplay of biological, chemical, and
physical factors, with phosphorus availability serving as a cornerstone of nutrient dynamics
and agricultural productivity [64]. Our findings demonstrate that depth-specific manage-
ment strategies, informed by local soil properties, can optimize phosphorus mobilization
and stabilization. For example, acidic conditions in surface soils facilitate the transfor-
mation of NLP into LP, supporting plant uptake and microbial activity, whereas alkaline
conditions in deeper layers stabilize phosphorus in less-bioavailable forms. By targeting
modifiable soil properties such as pH and EC, rather than less malleable factors like soil
texture, these approaches offer scalable solutions for enhancing nutrient use efficiency and
minimizing environmental impacts. Future research should refine these strategies across
varied cropping systems and ecological contexts, advancing global soil health, food security,
and the sustainability of agricultural systems.
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5. Conclusions
This study clarifies the crucial role of soil chemical properties, particularly pH and

EC, in driving the conversion of NLP into LP in long-term-cultivated Vaccinium soils.
Our findings demonstrate that, although global phosphorus dynamics are shaped by
soil physical characteristics such as silt and chemical factors like pH, the challenges of
altering physical properties highlight the need to prioritize chemical management. In
the acidic conditions of Japanese Vaccinium soils, targeted adjustments in pH and EC
emerge as key strategies for improving phosphorus use efficiency. Structural equation
modeling (SEM) reveals that, in the upper 30 cm of soil, acidic environments promote
the conversion of NLP into plant-available forms, especially NaOH-Po, while higher EC
promotes the transformation of NLP into bioavailable phosphorus fractions. In deeper soil
layers, pH and EC interact in more complex ways depending on the specific phosphorus
fractions and depth. Additionally, phosphorus and nitrogen accumulation are closely
linked, with soil organic carbon (SOC) playing a significant role in nutrient cycling. By
optimizing these modifiable chemical factors, particularly in acidic Vaccinium soils under
long-term cultivation, phosphorus management can be potentially enhanced, leading to
more sustainable and low-input systems for Vaccinium plants. Additionally, integrating
chemical management with biological processes such as symbiotic fungal activity presents
a promising approach for improving soil fertility and reducing external phosphorus inputs,
thereby supporting sustainable cultivation practices.

Supplementary Materials: The following supporting information can be downloaded at: https:
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