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Abstract: Spectral line shapes are a key ingredient of hot-plasma opacity calculations. Since resorting
to elaborate line-shape models remains prohibitive for intensive opacity calculations involving ions
in different excitation states, with L, M, etc., shells are populated, and Voigt profiles often represent a
reliable alternative. The corresponding profiles result from the convolution of a Gaussian function
(for Doppler and sometimes ionic Stark broadening) and a Lorentzian function, for radiative decay
(sometimes referred to as “natural” width) and electron-impact broadening. However, their far-wing
behavior is incorrect, which can lead to an overestimation of the opacity. The main goal of the present
work was to determine the energy (or frequency) at which the Lorentz wings of a Voigt profile
intersect with the underlying Gaussian part of the profile. It turns out that such an energy cut-off,
which provides us information about the dominant line-broadening process in a given energy range,
can be expressed in terms of the Lambert W function, which finds many applications in physics. We
also review a number of representations of the Voigt profile, with an emphasis on the pseudo-Voigt
decomposition, which lends itself particularly well to cut-off determination.

Keywords: dense plasma; atomic spectroscopy; spectral line shapes; Voigt profile; Lambert’s function

1. Introduction

The main recent improvements of calculations of photon absorption by plasma come
mainly from a better treatment of the photo-excitation (bound-bound) spectrum, either
with DLA (Detailed Line Accounting) or statistical methods. Theoretical photon absorption
exhibits a strong dependence on spectral line-shape models. Unfortunately, it is impossible
with the present codes to implement elaborate line-broadening mechanisms [1–4]. For this
reason, the opacity codes employ simpler approximations. The usual procedure consists
of performing the convolution of a Gaussian function, due to Doppler broadening, and a
Lorentzian function, due to the natural lifetime plus electron impact widths. The absorption
coefficient of a line (frequency ν0 and strength S) at the photon frequency ν reads as follows:

κν(x, y) =
S
√

ln 2√
πγG

K(x, y), (1)

where x = (ν − ν0)
√

ln 2/γG, y = γL
√

ln 2/γG (γL and γG are the HWHM (half with at
half maximum) values of the Lorentzian and Gaussian profiles, respectively), and

K(x, y) =
y
π

∫ ∞

−∞

e−t2

(x − t)2 + y2 dt. (2)

The latter function is the so-called Voigt profile [5] and can be expressed as follows:

K(x, y) = ℜ[w1(z)], (3)
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where ℜ(z) denotes the real part of complex number z, and

w1(z) = e−z2
(

1 +
2i√
π

∫ z

0
et2

dt
)

,

= e−z2
[1 + erf(iz)] = e−z2

[1 − erf(−iz)] = e−z2
erfc(−iz), (4)

is sometimes called the Faddeyeva–Terent’ev [6–8] function or complex error function [9].
Equation (4) is proven in Appendix A. Several methods have been proposed in order to
calculate the Voigt function [10–26]. It can, for instance, be expressed as a series of confluent
hypergeometric functions [27,28]. A good review of different families of methods was
given by Schreier [29]. Some interesting relationships (particularly from the historical point
of view) are recalled in Appendix B.

In hot plasma, near the line center, the Voigt profile is usually the convolution of a
relatively broad Gaussian profile with a narrow Lorentzian profile, and so, it resembles the
Gaussian profile. That is, at ν ≈ ν0, we can replace e−t2

in the integrand of the right-hand
side of Equation (2) with e−x2

and integrate over the new variable u = x − t so that

K(x, y) ≈
( y

π

)
e−x2

∫ ∞

−∞

du
u2 + y2 ≈ e−x2

. (5)

The wings of the profile are governed by the Lorentzian function, which has much
broader wings than the Gaussian function. This means that it is far away from the Doppler
core where x ≫ 1, so that (with y ≪ 1, i.e., the full width at half maximum (FWHM) of the
natural/collision broadening is much smaller than the FWHM of the Doppler broadening)
replacing x − t with x in the integrand of the right-hand side of Equation (2) results in
the following:

K(x, y) ≈ y
π

∫ ∞

−∞

e−t2

x2 dt =
y
π

√
π

x2 =
y√
πx2 . (6)

Due to the ionic microfield distribution, the quasi-static approximation applies for
photon frequencies larger than the Weiskopf frequency and should decrease roughly as
ν−5/2. The Voigt profile has incorrect far-wing behavior and, therefore, can significantly
overestimate the photon absorption. The goal of the present work was to determine
the energy at which the Lorentz wings of a Voigt profile intersect with the underlying
Gaussian part of the profile. It was found that such a value can be expressed with the
Lambert function.

In Section 2, we provide a non-exhaustive list of different families of representations of
the Voigt function. The widely used pseudo-Voigt approximation is introduced in Section 3.
The “competition” between the Lorentzian and Gaussian functions in the Voigt profile is
studied in Section 4 with the help of the Lambert W function, and issues related to the
far-wing behavior of the profile are discussed in Section 5.

2. Representations of the Voigt Function: A Non-Exhaustive Mini-Review

In this section, we provide a non-exhaustive list of representations of the Voigt function.
A long time ago, Fettis [30] and Katriel [31] obtained the following (see also Ref. [32]):

K(x, y) = exp(y2 − x2) cos(2xy)− 1√
π

{
(y + ix) 1F1

[
1;

3
2

; (y + ix)2
]

+(y − ix) 1F1

[
1;

3
2

; (y − ix)2
]}

, (7)

where 1F1 is the Kummer confluent hypergeometric function, and Yang proposed the
following representations [33]:
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K(x, y) =
1

2
√

π

{
(y − ix)−1/2 exp

[
(y − ix)2/2

]
W−1/4,−1/4

[
(y − ix)2

]
+(y + ix)−1/2 exp

[
(y + ix)2/2

]
W−1/4,−1/4

[
(y + ix)2

]}
, (8)

where W represents the Whitaker function, and

K(x, y) =
1
2

{
exp

[
(y − ix)2

]
erfc(y − ix) + exp

[
(y + ix)2

]
erfc(y + ix)

}
(9)

and

K(x, y) =
1√
2π

{
exp

[
(y − ix)2/2

]
D−1

[√
2(y − ix)

]
+ exp

[
(y + ix)2/2

]
D−1

[√
2(y + ix)

]}
, (10)

where
D−1(z) = e−z2

∫ z

0
et2

dt. (11)

More recently, Di Rocco derived an expression as an infinite sum over Kummer
confluent hypergeometric functions 1F1 [34]:

K(x, y) =
∞

∑
n=0

(−1)n

 1
Γ(n + 1) 1F1

(
n +

1
2

,
1
2

; y2
)
− 2y

Γ
(

n + 1
2

) 1F1

(
n + 1,

3
2

; y2
), (12)

while Zaghloul obtained [35]

K(x, y) = [1 − erf(y)] exp
[
−x2 + y2

]
cos(2xy)

+
2√
π

∫ x

0
exp(−x2 + ξ2) sin[2y(x − ξ)]dξ (13)

and Limandri obtained [36]

K(x, y) = exp(−x2 + y2)(erfc(y) cos(2xy))
+ cos(2xy){erf(y)−ℜ[erf(y + ix)]}
+ sin(2xy) ℑ[erf(y + ix)]), (14)

where ℑ(z) represents the imaginary part of complex number z. As mentioned in Ref. [25],
He and Zhang claimed to have obtained an exact expression of the Voigt profile that is
proportional to the product of an exponential and a cosine function. However, Pagnini and
Saxena [25] pointed out that such a representation assumes negative values, which is not
correct. Such an issue was also commented on by Zaghloul [37]. Pagnini and Saxena also
proposed to express the Voigt function in terms of Fox functions [38–40]:

Hmn
pq

[
z
∣∣∣ (a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq, Bq)

]
=

1
2πi

∫
L

h(s)zsds, (15)

with

h(s) =
∏m

j=1 Γ
(
bj − Bjs

)
∏n

j=1 Γ
(
1 − aj + Ajs

)
∏

q
j=m+1 Γ

(
1 − bj + Bjs

)
∏n

j=n+1 Γ
(
aj − Ajs

) . (16)

The integration path L is the contour that separates the points s = (bj + k)/Bj,
j = 1, · · · , m and k = 0, 1, . . . , which are the poles of Γ(bj − Bjs) (still for j = 1, · · · , m)
from the points s = (aj − k − 1)/Aj, j = 1, · · · , n, which are the poles of Γ(1 − aj + Ajs)
(j = 1, · · · , n). The more common Meijer functions Gmn

pq are special cases of Fox functions
for which Aj = Bk = 1, j = 1, · · · , p, k = 1, · · · , q, i.e.,
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Hmn
pq

[
z
∣∣∣ (a1, 1), · · · , (ap, 1)
(b1, 1), · · · , (bq, 1)

]
= Gmn

pq

[
z
∣∣∣ a1, · · · , ap

b1, · · · , bq

]
(17)

and the corresponding Voigt profile reads

V(x) =
1

2πωG

{
H11

11

[
2

ωG
(ωL + ix)

∣∣∣ ( 1
2 , 1

2 )
(0, 1)

]
+ H11

11

[
2

ωG
(ωL − ix)

∣∣∣ ( 1
2 , 1

2 )
(0, 1)

]}
(18)

or equivalently,

V(x) =
1

2πωG

{
H11

11

[
ωG

2(ωL + ix)

∣∣∣ (1, 1)
( 1

2 , 1
2 )

]
+ H11

11

[
ωG

2(ωL − ix)

∣∣∣ (0, 1)
( 1

2 , 1
2 )

]}
. (19)

Setting

Z =
2(ωL + ix)

ωG
, (20)

and expressing the Voigt profile in the form

V(x) =
∫ ∞

−∞
L(x − ξ)G(ξ)dξ (21)

with the Gaussian function

G(x) =
1√

πωG
exp

[
−
(

x
ωG

)2
]

(22)

and the Lorentzian function
L(x) =

ωL
π

1
x2 + ω2

L
, (23)

yield

V(x) =
ωL

ωGπ3/2

∫ ∞

−∞

exp
[
−
(

ξ
ωG

)2
]

(x − ξ)2 + ω2
L

dξ, (24)

and finally,

V(x) =
1

2π3/2ωG

{
G21

12

[
Z2

4

∣∣∣ 1
2

(0, 1
2 )

]
+ G21

12

[
Z̄2

4

∣∣∣ 1
2

(0, 1
2 )

]}
. (25)

Throughout the manuscript, and especially in the present section, since we review
different published approximations, we decided, in order to avoid the introduction of typo-
graphical errors, to keep the notations of the corresponding authors. This is also justified
because the choices made by these authors are often of interest (in terms of simplicity, phys-
ical context, etc.). However, in every case, we try to indicate the correspondence between
the different quantities. For instance, the parameters involved in K(x, y) in Equation (2)
and in V(x) from Equation (21) are related by

ωG =
γG√
ln 2

; ωL = γL. (26)

Figure 1 represents the Gaussian, Lorentzian, and Voigt functions. The Gaussian is such
that 2σ2 = 1; and the Lorentzian, such that γ = 1 (see Equations (28) and (29), respectively).

Finally, within a different approach, we believe that the Tepper-García function is
worth mentioning. It consists of a combination of an exponential function and rational
functions that approximate the line-broadening function H(a, u) over a wide range of its
parameters [41] (see Appendix C).
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Figure 1. Gaussian, Lorentzian, and Voigt profiles. The Gaussian is such that 2σ2 = 1; and the
Lorentzian, such that γ = 1 (see Equations (28) and (29), respectively).

3. The Pseudo-Voigt Function
3.1. Main Principle

The pseudo-Voigt profile (or pseudo-Voigt function) is an approximation of the Voigt
profile V(x) using a linear combination of a Gaussian G(x) and a Lorentzian L(x) function
instead of their convolution. The pseudo-Voigt function is often used for calculations of
experimental spectral line shapes [42,43]. The mathematical definition of the normalized
pseudo-Voigt profile is given by

Vp(x, fV) = η L(x, γL) + (1 − η) G(x, γG) (27)

where

G(x; σ) ≡ e−x2/(2σ2)

σ
√

2π
, (28)

and L(x; γ) is the centered Lorentzian profile:

L(x; γ) ≡ γ

π(x2 + γ2)
(29)

with 0 < η < 1, η being a function of the HWHM parameters of the Voigt, Lorentzian, and
Gaussian FWHM parameters (respectively, γV , γL, and γG). The HWHM of the Gaussian
profile is

γG = σ
√

2 ln(2), (30)

and the HWHM of the Lorentzian profile is

γL = γ. (31)

There are several possible choices for the η parameter [44–47]. It turns out that a
simple formula, accurate to 1%, is as follows [48,49]:

η = 1.36603
(

γL
γV

)
− 0.47719

(
γL
γV

)2
+ 0.11116

(
γL
γV

)3
, (32)

where η is a function of the Lorentz (γL), Gaussian (γG), and total (γV) HWHM parameters,
with the latter being described by

γV =
[
γ5

G + 2.69269 γ4
GγL + 2.42843 γ3

Gγ2
L + 4.47163 γ2

Gγ3
L + 0.07842 γGγ4

L + γ5
L

]1/5
. (33)
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An approximate relation (accurate to within about 1.2%) between the widths of the
Voigt, Gaussian, and Lorentzian profiles is as follows[50]:

γV ≈ γL

2
+

√
γ2

L
4

+ γ2
G. (34)

By construction, this expression is exact for a pure Gaussian or Lorentzian. A better
approximation with an accuracy of 0.02% was given by Olivero et al. [51] (originally found
by Kielkopf [52]):

γV ≈ 0.5346 γL +
√

0.2166 γ2
L + γ2

G. (35)

Expression (35) is also exact for a pure Gaussian or Lorentzian.

3.2. Matveev’s Analytical Approximation of the Voigt Profile and the “Equivalent” Width of the
Voigt Profile

Another approximation, resulting in the summation of a Gaussian and a Lorentzian,
was proposed by Matveev [12]:

κν(η, ξ) =
S√

πγV

(√
ln 2 (1 − ξ) e−η2 ln 2 +

ξ√
π

1
1 + η2

)
, (36)

where ξ = γL/γV , η = (ν − ν0)/γV , and γV is the equivalent width [51] of the Voigt
profile, which can be calculated by

γV =
1
2

(
γL +

√
γ2

L + 4γ2
G

)
+ 0.05

1 − 2γL

γL +
√

γ2
L + 4γ2

G

. (37)

The latter expression is exact in two limiting cases: ξ = 0 and ξ = 1 (pure Gaussian
and Lorentzian). Note that the accuracy of Matveev’s approximation was improved by
Dobrichev [53].

3.3. Equivalent Width According to He and Zhang

Using a Fourier transform and Taylor series, He and Zhang [54,55] obtained

γV =
γG√

1 + 8π2(ln 2)
(

γL
γG

)2
(38)

with

f (ν − ν0) =
f ′y
π

∫ ∞

−∞

e−t2

y2 + (x − t)2 dt (39)

with y = ln 2(γL/γG), x = (ν − ν0)
√

ln 2/γG, and f ′ =
√

ln 2/γG, where γL and γG are
the HWHM of the Lorentzian and Gaussian functions, respectively. Using the Fourier and
inverse Fourier transforms, He and Zhang obtained an accurate Voigt profile as follows:

f (z) =
√

π f ′[exp(4πy2 − z2) cos(4πyz) + exp(4πy2 − x2) cos(4πyx)] (40)

with

z =

(
ν + ν0

γG

)√
ln 2. (41)

They also provided a relationship between the HWHM of the Voigt profile and the
HWHM of the Gaussian and Lorentzian profiles [56]:
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ln

[
cos

(
4π(ln 2)γLγV

γ2
G

)]
=

(
γ2

V − γ2
G
)

γ2
G

ln 2 = ln

2
(γ2

V−γ2
G)

γ2
G

. (42)

Using the expansions

cos x = 1 − x2

2
+

x4

4!
− x6

6!
+ · · · (43)

as well as

2x = 1 + x ln 2 +
x2

2
(ln 2)2 +

x3

3!
(ln 2)3 + · · · (44)

we obtain the following, considering the first two terms only:

1 −
16π2(ln 2)2γ2

Lγ2
V

2γ2
G

= 1 +

(
γ2

V − γ2
G
)

γ2
G

ln 2, (45)

yielding (
γV
γG

)2
+ 8π2 ln 2

(
γL
γG

)2
= 1. (46)

It is important to mention that Wang et al. presented a simple approximation scheme
to describe the half width of the Voigt profile as a function of the relative contributions
of the Gaussian and Lorentzian broadening [57]. The proposed approximation scheme is
highly accurate and provides an accuracy better than 10−17 for arbitrary γL/γG ratios. In
particular, the accuracy reaches an astonishing 10−34 (quadruple precision) in the domains
0 ≤ γL/γG ≤ 0.2371 and γL/γG ≥ 33.8786.

4. Competition between Lorentzian and Gaussian Wings
4.1. Mathematical Formalism

In Hui’s algorithm [13], which computes the complex error function with rational
approximation, the exponential decrease e−x2

is not well described for vanishing y. In order
to avoid that, it was suggested by Karp [58] to replace Hui’s approximation for the real part
of the complex error function with an ansatz for small y and y/x2 < 10−4. Using a Fourier
transform expression [59,60],

K(x, y) =
1√
π

∫ ∞

0
e−yu− u2

4 cos(xu)du (47)

and, for y ≪ 1, the first-order approximation e−yu ≈ 1 − yu, one finds that

K(x, y) ≈ 1√
π

∫ ∞

0
e−

u2
4 cos(xu)du − y√

π

∫ ∞

0
ue−

u2
4 cos(xu)du

=
2√
π

∫ ∞

0
e−t2

cos(2xt)dt − 2y√
π

∫ ∞

0
2te−t2

cos(2xt)dt, (48)

where we have made a change of variables t = u/2. One now has

2√
π

∫ ∞

0
e−t2

cos(2xt)dt = e−x2
(49)

and ∫ ∞

0
2te−t2

cos(2xt)dt = 1 − 2x
∫ ∞

0
e−t2

sin(2xt)dt

= 1 − 2xe−x2
∫ x

0
eu2

du ≡ 1 − 2xF(x), (50)
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which leads to the following equation. Note that the two terms on the right-hand side of
Equation (51) are the first two terms of an expansion (see Appendix D).

K(x, y) ≈ e−x2 − 2y√
π
[1 − 2xF(x)] (51)

Then, using the asymptotic expansion

1 − 2xF(x) = −
[

1
2x2 +

1.3
(2x2)2 +

1.3.5
(2x2)3 +

1.3.5.7
(2x2)4 + · · ·

]
(52)

truncated at the first order in x2, one obtains the following [10,29,60]:

K(x, y) ≈ e−x2
+

y√
π x2 . (53)

The Voigt profile corresponds to the same parameters. Figure 2 displays the forms e−x2
,

1/(
√

πx2) (see Equation (53)), and the same Voigt profile as in Figure 1. Figure 3 shows the
functions e−x2

, γ/(
√

πx2) (see Equation (53)) with γ = 0.2, and the Voigt profile K(x, 0.2)
(see Equation (2)). Compared to in Figure 2, the shape of the Lorentzian is “sharper” and
more concentrated near the origin. In this case, the Voigt profile is dominated by the
Lorentzian close to the center of gravity, but also for higher values of x. The Lorentzian
wings are recovered much farther away.
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Figure 2. Functions e−x2
(Gaussian), 1/

√
π/x2 (Lorentzian) (see Equation (53)), and the same Voigt

profile shown in Figure 1.
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Figure 3. (Left): Functions e−x2
and γ/

√
π/x2 (see Equation (53)) with γ = 0.2 and the Voigt profile

K(x, 0.2) (see Equation (2)). (Right): The same functions but with a logarithmic scale for the y-axis.



Plasma 2024, 7 435

One searches for the critical value xc, for which the Lorentz wings intersect with the
Gaussian, such that

e−x2
c =

y√
π x2

c
. (54)

which reads equivalently to

x2
c e−x2

c =
y√
π

. (55)

The solution of the latter equation can be written as

xc = −

√
W−1

(
− y√

π

)
, (56)

where W−1 represents Lambert’s function [61,62]. This function appears in various fields of
physics, such as Wien’s displacement law; the fringing fields of a capacitor, with the latter
problem being representative of some problems solved using conformal transformations;
the resolution of the Schrödinger equation in a generic radial grid; etc. [63–68], but also in
mathematics, for instance, in the study of prime numbers [69]. The function (see Figure 4),
named after Lambert, who was faced with a related problem [61], was described by
Euler [70].

0 0.5 1 1.5 2 2.5

z

-6

-4

-2

0

W
(z

)

W
0

W
-1

Figure 4. Representation of the two branches of the Lambert function.

For each integer k there is one branch, denoted by Wk(z), which is a complex-valued
function of one complex argument. W0 is known as the principal branch. When dealing
with real numbers only, the two branches W0 and W−1 suffice: the equation yey = x can be
solved for y only if x ≥ −1/e. We obtain y = W0(x) if x ≥ 0, and the two values y = W0(x)
and y = W−1(x), if −1/e ≤ x < 0.

4.2. Application in the Case of the Pseudo-Voigt Function of Matveev

Using Matveev’s pseudo-Voigt function [12] (see Equation (36)), the value of parameter
η for which the Gaussian and the Lorentzian intersect with each other is obtained by solving

(1 − ξ) e−η2 ln 2 =
ξ√

π ln 2

1
1 + η2 , (57)

which can be written equivalently as

−(1 + η2)(ln 2) e−(1+η2) ln 2 = −1
2

√
ln 2
π

ξ

1 − ξ
. (58)

The solution of the latter equation is



Plasma 2024, 7 436

η =

√√√√−1 − 1
ln 2

W−1

[
−1

2

√
ln 2
π

ξ

1 − ξ

]
. (59)

4.3. Calculation of the Lambert W Function

Besides the theoretical advantages of providing an adequate analytical solution to
our problem, another benefit of the Lambert W function is the availability of libraries in
computer algebra systems, which allows for a convenient way to obtain values, expansions,
plots, etc. We have the following expansion for the Lambert function W [71–73]:

W(x) = ln x − ln ln x +
∞

∑
k=0

∞

∑
m=1

ckm
(ln ln x)m

(ln x)k+m (60)

where

ckm =
(−1)k

m!
S[k + m, k + 1], (61)

with S[k + m, k + 1] being a Stirling number of the first kind [74,75], for which an explicit
expression was provided by Karanicoloff [76]. Stirling numbers can be obtained with
recursion relations. We suggest using Equation (60) truncated at the fourth order:

W(x) = ln x − ln ln x +
ln ln x

ln x
+

ln ln x(ln ln x − 2)
2(ln x)2

+
ln ln x(2(ln ln x)2 − 9 ln ln x + 6)

6 ln3 x
+ O

[(
ln ln x

ln x

)5
]

. (62)

The Lambert function satisfies many interesting properties. For instance, its derivative
can be in the form

W ′(x) =
W(x)

x[1 + W(x)]
(63)

and, more generally (n ≥ 1),

dnW(ex)

dxn =
qn(W(ex))

[1 + W(ex)]2n−1 (64)

where

qn(w) =
n−1

∑
k=0

(−1)k ⟪n − 1
k
⟫wk+1, (65)

where ⟪a
b⟫ represents second-order Eulerian numbers [77]. The anti-derivative of the

Lambert W function reads ∫
W(x)dx = x

[
W(x)− 1 +

1
W(x)

]
(66)

and one has

W(x) + W(y) = W
(

xy
(

1
W(x)

+
1

W(y)

))
. (67)

5. Remarks on the Far Wings of the Voigt Profile
5.1. The Cut-Off of Iglesias et al.

It is well known by spectroscopists that the Voigt profile has incorrect far wing behavior
and, therefore, can significantly overestimate the photon absorption. Iglesias et al. [78]
proposed an extension of the Voigt profile that incorporates a far wing cut-off remaining
computationally tractable. The second-order line width from electron collisions for a
transition from level a to level b is proportional to the quantity Gab(ω) [79–82] satisfying,
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under the assumptions of a Debye plasma and the dipole approximation for the electron-
radiator interaction with minimum impact parameter cut-off q−1

ab , the limits

Gab(ω → 0) =
1
2

{
ln
(

1 + λ2
Dq2

ab

)
−

λ2
Dq2

ab
1 + λ2

Dq2
ab

}
(68)

and

Gab(ω → ∞) = G∞
ab =

1
2

E1

[
X2

ab

]
→ e−X2

ab

2X2
ab

when Xab → ∞ (69)

with
X2

ab =
me

2q2
abT

(ω + |ωa − ωb|)2 (70)

and the exponential integral

E1(x) =
∫ ∞

x

e−t

t
dt. (71)

The quantity λD represents the electron Debye length, defined as λ2
D = T/(4πe2ne),

where ne is the electron number density.

I1(ω) = Re[W (ω + ia, ω)] (72)

where W is the truncated error function (note that there is a typographical error in
Equation (4.1.3) of Ref. [78]; z − ω should be replaced with t − z):

W (z, Ω) =
1

iπ

∫ ω+Ω

ω−Ω
dt

e−t2

t − z
(73)

which can be evaluated with the sampling theorem [17]

W (z, Ω) =
h

π2 ℑ
N

∑
n=−N

e−t2
n

z − tn

{
Si
[π

h
(ω − tn − Ω)

]
− Si

[π

h
(ω + tn + Ω)

]
+
{

Ci
[π

h
(Ω − i a)

]
− Ci

[π

h
(−Ω − i a)

]
sin
[π

h
(z − tn)

]}
+
{

Si
[π

h
(Ω + i a)

]
− Si

[π

h
(−Ω − i a)

]
cos
[π

h
(z − tn)

]}
, (74)

where Si(z) represents the sine integral

Si(z) =
∫ z

0

sin t
t

dt (75)

and Ci(z) represents cosine integral

Ci(z) = −
∫ z

0

cos t
t

dt. (76)

The decay parameter τab is given by

τ2
ab =

m
2q2

abT
(77)

and Ω is obtained solving

Ω =

√
y

τab
+ |ωb − ωa| (78)

obtained as the solution of
Gab(0) = G∞

ab(ω = Ω) (79)
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and y is the solution of

y ey =
1

2Gab(0)
, (80)

i.e.,

y = W
(

1
2Gab(0)

)
, (81)

where W is the Lambert function.

5.2. Continued-Fraction Representation

The continued fraction for a function that has finite power moments of any order can
be written in terms of the Laplace transform

F (ω) =
1
π
ℜ
{

F Lap(s = −iω)
}

. (82)

For an even function, F (ω) = F (−ω), the Laplace transform can be written as

F Lap(s) =
µ0

s
− µ2

s3 +
µ4

s5 + · · · = b0

s +
b1

s +
b2

s + · · ·

(83)

The continued fraction coefficients bj are given in terms of the moments

µ2n = 2
∫ ∞

0
ω2nF (ω)dω (84)

by a recursive relation [83,84]. The continued fraction representation can be expressed in
the form

p(ω) =
1
π
ℜ
{

1
s + b1ψ1(s)

}∣∣∣
s=−iω

(85)

with
ψn(s) =

1
s + bn+1ψn+1(s)

(86)

Inaccuracies can occur without an approximate expression for the termination function,
ψN(s). Unfortunately, the recursion relation for the bn is numerically unstable, due to the
emphasis of the power moments on larger frequencies. Appropriately chosen polynomials,
rather than power moments, yield more stable formulas [85]:

π2n =
1

(2λ)2n

∫ ∞

−∞
dωH2n(λω)I1(ω) = (2n)!

n

∑
k=0

µ2k
(2k)!

{
λ2 − 1

4λ2

}n−k

(87)

5.3. The Pearson Distribution: An Interesting Alternative?

In order to overcome the inadequacies of the Lorentzian, Gaussian, and Voigt functions,
an alternative profile function, the Pearson VII function, is often used for peak fitting in, for
example, X-ray diffraction [86]. The Pearson VII function is

IP(λ) = I0

1 +

{
2(λ − λ0)

√
21/M − 1

∆P

}2
−M

, (88)

where ∆P is the FWHM, and M is known as the Pearson parameter. When M is equal to
one, the distribution is identical to a Lorentzian, while as M becomes large, the distribution
tends to a Gaussian. It is very much less computationally intensive than the Voigt function
as it does not require numerical integration. To our knowledge, the Pearson VII distribution
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has not been used in the analysis of plasma spectra. This is probably because there is
no direct relationship between the plasma properties and the Pearson VII fit parameters,
∆P and M [87], whereas the widths of the Lorentzian and Gaussian distributions, which
can be extracted from fits to the Voigt function, can readily be related to the properties of
the plasma.

6. Conclusions and Future Plans

Hot-plasma opacity calculations are sensitive to spectral line shapes. Since elaborate
line-shape codes can hardly be tractable for intensive opacity calculations involving billions
of lines of multi-charged ions in many different excitation states, Voigt profiles are often
used. However, their far-wing behavior, which can lead to an overestimation of the opacity,
is a persistent issue of opacity calculations. The main goal of the present work was to show
that the variable (energy, frequency, etc.) at which the Lorentz wings of a Voigt profile
intersect with the underlying Gaussian part of the profile involves the Lambert W function,
giving the solution x of an equation of the kind x ex = b. Such a quantity is important, in
the general case, to know the physical broadening mechanisms that are dominating in a
given energy range of the profile, but it becomes particularly interesting in the framework
of “pseudo-Voigt” approximations of the Voigt profile, consisting of representing the latter
as a sum of a Gaussian and a Lorentzian function, with appropriate weights. We took
advantage of the opportunity to review a number of representations of the Voigt profile and
to point out their weaknesses, in particular, as terms of the far wings. The literature about
the Voigt profile is very abundant, and we decided to choose some specific representations,
involving special functions such as the hypergeometric 1F1 of Fox functions, which, in our
opinion, have not been completely exploited and may lead to the derivation of new useful
approximations. It is important to attach importance to different formulations, because each
of them has its own advantages. For instance, the pseudo-Voigt function may be considered
rather limited if one is interested in a high numerical accuracy, but it remains very practical
for the interpretation of atomic or molecular spectra, or in order to determine the abscissa
at which the Gaussian and the Lorentzian intersect with each other. The high number of
available relations for the hypergeometric functions should also benefit the computation of
the Voigt profile, either in order to derive recurrence relations or to investigate asymptotic
properties. Finally, it is important to keep in mind that properly accounting for the Stark
effect requires the convolution of the Voigt profile with an electric-microfield distribution.
It would be interesting to repeat the present study with a simple modeling of the latter,
for instance, by resorting to the Holtsmark function, for which appropriate analytical
formulations may be derived [88,89].
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Appendix A. Proof of Faddeyeva–Terent’ev Relation

Let us consider the following function:

w2(z) =
i
π

∫ ∞

−∞

e−t2

z − t
dt. (A1)

We want to show that w1(z) = w2(z). From the theorem of isolated zeros, we can
prove the latter equality on the imaginary axis z = iy with y > 0. In this case, one has

w1(z) = ey2
[1 + erf(−y)] = ey2

[1 − erf(y)] = ey2
erfc(y)

= ey2
(

1 +
2√
π

∫ −y

0
e−t2

dt
)
= ey2

(
1 − 2√

π

∫ y

0
e−t2

dt
)

. (A2)

On the other side, one has

w2(z) =
i
π

∫ ∞

−∞

e−t2

iy − t
dt = ey2 2y

π

∫ ∞

0

e−(t2+y2)

t2 + y2 dt. (A3)

Setting

I(y) =
y
π

∫ ∞

0

e−(t2+y2)

t2 + y2 dt (A4)

and
J(y) =

1
2
− 1√

π

∫ y

0
e−t2

dt, (A5)

one now needs to prove that I(y) = J(y). A change in variables t = yv in I leads to

I(y) =
1
π

∫ ∞

0

e−y2(1+v2)

1 + v2 dv. (A6)

Taking the derivative with respect to y yields

I′(y) =
dI
dy

= − 1√
π

e−y2
. (A7)

Therefore, one has I′(y) = J′(y). Therefore, since limy→+∞ I(y) = limy→+∞ J(y) = 0,
one has I(y) ≡ J(y) ∀y. It is now possible to write w1(z) ≡ w2(z), or in taking the real
part, ℜ[w1(z)] = ℜ[w2(z)], ∀z. Therefore,

K(x, y) =
y
π

∫ ∞

−∞

e−t2

(x − t)2 + y2 dt) = ℜ
[

e−z2
(

1 +
2i√
π

∫ z

0
et2

dt
)]

. (A8)

Appendix B. Additional Useful Relations

Fried and Conte [90,91] proposed the continued fraction representation

√
π w(z) =

1
z+

1/2
z+

1
z+

3/2
z+

· · · n/2
z+

· · · (A9)

One also has the following (see Abrarov [24]):

K(x, y) =
2
π

∫ ∞

−∞
t e−t2

arctan
(

t − x
y

)
dt (A10)

which helps in finding asymptotic behaviors. Finally, it is interesting to mention the
remarkable approximation for the Dawson function F(z) [92],
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F(z) = e−z2
∫ z

0
et2

dt, (A11)

due to Rybicki [17]:

F(z) = lim
h→0

1√
π

∑
n odd

e−(z−nh)2

n
. (A12)

Appendix C. The Tepper-García Function

The Tepper-García function [41] is obtained from a truncated power series expansion
of the exact line-broadening function. In its most computationally efficient form, the
Tepper-García function can be expressed as

T(a, u) = R −
(
a/

√
πP
) [

R2 (4P2 + 7P + 4 + Q)− Q − 1
]

(A13)

where P ≡ u2, Q ≡ 3/(2P), and R ≡ e−P. Thus the line-broadening function can be
viewed, as a first order, as a pure Gaussian function plus a correction factor that depends
linearly on the microscopic properties of the absorbing medium (encoded in a); however,
as a result of the early truncation in the series expansion, the error in the approximation is
still of order a, i.e.,

H(a, u) ≈ T(a, u) +O(a). (A14)

This approximation has a relative accuracy of ϵ ≡
∣∣∣H(a, u)− T(a, u)

∣∣∣/H(a, u) ≲ 10−4

over the full wavelength range of H(a, u), a ≲ 10−4. In addition to its high accuracy, the
function T(a, u) is easy to implement and is computationally fast. It is widely used in the
field of quasar absorption line analysis [41,93].

Appendix D. Expansion of the Voigt Function

Let us start from

H(a, v) =
1√
π

∫ ∞

0
e−(ax+x2/4) cos(vx)dx. (A15)

If a ≪ 1, we can perform the series expansion of the exponential e−ax. This yields the
following [94]:

H(a, v) =
∞

∑
n=0

an Gn(v) (A16)

where

Gn(v) =
(−1)n
√

πn!

∫ ∞

0
e−x2/4 xn cos(vx)dx. (A17)

The Gn functions have been tabulated by Harris [95]. Since one has∫ ∞

−∞
e−y2

cos(xy)dy =
√

π e−x2/4, (A18)

one obtains
G0(v) = e−v2

(A19)

and after integrating G1(v) by parts, one has

G1(v) = − 2√
π

[
1 − v

∫ ∞

0
e−x2/4 sin(vx)dx

]
. (A20)

Then, since ∫ ∞

0
e−y2

sin(2vy)dy = e−v2
∫ ∞

0
ey2

dy = F(v), (A21)
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one obtains
G1(v) =

2√
π
[2vF(v)− 1]. (A22)

Note that G0 (Equation (A19)) and G1 (Equation (A20)) are the first two terms of
Equation (51). For the next terms, one can use

Gn(v) = − 1
n(n − 1)

d2Gn−2(v)
dv2 , (A23)

and one finds
G2(v) =

(
1 − 2v2

)
e−v2

, (A24)

G3(v) = − 2√
π

[
2
3

(
1 − v2

)
− 2v

(
1 − 2

3
v2
)

F(v)
]

, (A25)

and

G4(v) =
(

1
2
− 2v2 +

2
3

v4
)

e−v2
. (A26)

The contributions G1, G2, G3, and G4 (given by Equations (A22), (A24), (A25) and (A26),
respectively) are displayed in Figure A1.
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Figure A1. Contributions G1, G2, G3, and G4 (given by Equations (A22), (A24), (A25) and (A26),
respectively) are the first terms in expansion (A16).

The functions of an even index G2p take the form of a polynomial multiplied by e−v2
,

and the functions of an odd index G2p + 1 involve the Dawson function (see Equation (A11)).
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