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Abstract: Injury or damage to tissue and organs is a major health problem, resulting in about half
of the world’s annual healthcare expenditure every year. Advances in the fields of stem cells (SCs)
and biomaterials processing have provided a tremendous leap for researchers to manipulate the
dynamics between these two, and obtain a skin substitute that can completely heal the wounded
areas. Although wound healing needs a coordinated interplay between cells, extracellular proteins
and growth factors, the most important players in this process are the endogenous SCs, which activate
the repair cascade by recruiting cells from different sites. Extra cellular matrix (ECM) proteins are
activated by these SCs, which in turn aid in cellular migrations and finally secretion of growth factors
that can seal and heal the wounds. The interaction between ECM proteins and SCs helps the skin
to sustain the rigors of everyday activity, and in an attempt to attain this level of functionality in
artificial three-dimensional (3D) constructs, tissue engineered biomaterials are fabricated using more
advanced techniques such as bioprinting and laser assisted printing of the organs. This review
provides a concise summary of the most recent advances that have been made in the area of polymer
bio-fabrication using 3D bio printing used for encapsulating stem cells for skin regeneration. The
focus of this review is to describe, in detail, the role of 3D architecture and arrangement of cells within
this system that can heal wounds and aid in skin regeneration.
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1. Introduction

The aim of engineering new biological material is that it can restore or replace a damaged
or diseased tissue and organs [1–3]. The two most important components that decide the fate of
tissue engineered construct are cells and artificial extra cellular matrices (ECMs), also known as
scaffold or biomaterials that support cellular growth, differentiation, and migration [4–7]. Creating a
construct by blending the principles of life sciences, developmental biology, and engineering that can
address clinical problems, has been the focus of all researchers working in the area of regenerative
medicine [8–12]. The foundation of the current research efforts in the field of tissue engineering is
to recapitulate development processes that occur in vivo in clinical scenarios. This could be achieved
with increased understanding of the roles of scaffold, stem cells, and signaling interaction of cells with
artificial ECM [13–17]. However, before aiming to repair any tissue or organ, understanding of its
anatomical structure and biogenesis is critical as it allows the users to control the conditions that could
affect the neo-tissue formation. In the case of skin, a fundamental understanding of structure and
functional relationship between normal and pathological tissue is required. Skin is the largest organ
in human beings consisting of three different layers, with each of these layers playing significantly

Polymers 2016, 8, 19; doi:10.3390/polym8010019 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
http://www.mdpi.com/journal/polymers


Polymers 2016, 8, 19 2 of 17

critical roles, as a unit act as a barrier, thermo-regulator, and cushion to internal organs from outer
environmental conditions [18–21]. The epidermal layer is avascular, consisting of 95% keratinocytes,
and covers the dermal layer (Figure 1) that is permeated by a complex nervous and vascular network.
Beside this, there is a hypodermis layer that is primarily made up of loose connective tissues and
lipid moieties, which helps in thermo-regulation of the system. Furthermore, in each of these layers
there are different types of cells such as stem cells and epidermal basal cells (found in the basal layer)
that are responsible for the continuous regeneration of epidermis. The dermis layer is again divided
into the upper papillary layer, which is made up of thin collagen fibers, and a thick reticular layer
that consists of thicker collagen fibers running parallel to the surface of skin [21–25]. Along with this
collagen, elastin and reticular fibers are also found in this layer, and fibroblast is found to be the main
cellular component that constantly secretes collagen and proteoglycans. Other types of cells found
in skin are melanocyte that is responsible for pigmentation and protection against UV radiation, and
Langerhans cells that act as the first line of defense against invading microbes [26].
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cells, microenvironment, and molecular signals with the ECM that has made tissue engineering a 
reality. There are different lineages from which these cells can be derived, such as progenitor cells 
from bone marrow and adipose tissue to more differentiated local or systemic somatic cells. Although 
different research groups have worked on a diverse range of cells for creating an artificial skin 
substitute, the most commonly used cells are fibroblast, keratinocytes, hair-follicle associated cells, 
adipocytes derived stem cells, and melanocytes [27–33]. Tissue engineered scaffold are fabricated 
using different techniques to be architecturally as close to natural ECM as possible because even the 
simplest structure in our body is composed of highly organized ECM that facilitates the biological 
functioning of tissue. Engineering these complex tissues requires an interdisciplinary approach, 
which combines the material science innovation with cell biology development and growth factor 
chemistry by exploring the steps involved in organ development and morphogenesis [33–36]. As our 
knowledge of biology increases, the limitation of conventional methods used for creating tissue 
engineered scaffold become evident; the most apparent one being the importance of cell placement 
in the tissue construct as demonstrated by the complex spatial interplay observed between ECM and 
its cells [37]. Seeding cells at a specific location using spraying or manually is not precise; furthermore, 
ECM component and placement of growth factors are equally important, hence a new methodology 
for engineering a biological structure that can provide this high spatial resolution in neo-tissue is being 
developed [38–43]. Bio-fabrication strives to combine both the living and non-living parts of biological 
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In tissue engineering, cells play a critical role in skin regeneration. It is the interaction between
cells, microenvironment, and molecular signals with the ECM that has made tissue engineering a reality.
There are different lineages from which these cells can be derived, such as progenitor cells from bone
marrow and adipose tissue to more differentiated local or systemic somatic cells. Although different
research groups have worked on a diverse range of cells for creating an artificial skin substitute,
the most commonly used cells are fibroblast, keratinocytes, hair-follicle associated cells, adipocytes
derived stem cells, and melanocytes [27–33]. Tissue engineered scaffold are fabricated using different
techniques to be architecturally as close to natural ECM as possible because even the simplest structure
in our body is composed of highly organized ECM that facilitates the biological functioning of tissue.
Engineering these complex tissues requires an interdisciplinary approach, which combines the material
science innovation with cell biology development and growth factor chemistry by exploring the steps
involved in organ development and morphogenesis [33–36]. As our knowledge of biology increases,
the limitation of conventional methods used for creating tissue engineered scaffold become evident;
the most apparent one being the importance of cell placement in the tissue construct as demonstrated
by the complex spatial interplay observed between ECM and its cells [37]. Seeding cells at a specific
location using spraying or manually is not precise; furthermore, ECM component and placement of
growth factors are equally important, hence a new methodology for engineering a biological structure
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that can provide this high spatial resolution in neo-tissue is being developed [38–43]. Bio-fabrication
strives to combine both the living and non-living parts of biological structure, but in a controlled
fashion, and the emergence of 3D bioprinting has made it possible to achieve this precision in spatial
resolution. The idea of placing small dots of cells in a specific location is the foundation of modern
inkjet and laser printing methodology and over the years the size of dots has considerably reduced as
innovations keep improving the technology [44,45].

2. Overview of Bio-Printing

3D bioprinting is used for engineering biological constructs, and usually involves dispensing
cell onto a biocompatible matrix using sequential layer-by-layer technique to generate a tissue-like
3D structure. Some of the techniques used for 3D printing of cells include magnetic bioprinting,
sterolithography, photolithography, and direct cell extrusion. Depending upon the organ to be printed,
local cell population is isolated and cultured to attain the desired cell number. These cells are further
mixed with a special liquefied medium that provides nutrition and oxygen required for keeping cells
alive. Cell suspension is placed inside a tubular-like fusion for extrusion. This mix is placed in a
cartridge and the structure is printed based on the medical scan of the patient. This pre-tissue is
incubated and a bioreactor ensures a connective flow of nutrients for maturation of this construct into
functional tissue. Encapsulating cells onto biomaterials during bioprinting provides these cells with
structural support and enhances the maturation process.

2.1. Bioprinting of Hydrogels

Bioprinting is a computer-aided-design (CAD) based technique, wherein deposition of cells and
scaffold material (like hydrogel) is achieved by a printer dispending method in a temporal and spatial
controlled fashion (Figure 2). This technique has gained a lot of importance recently for engineering
porous scaffolds, particularly the way cells are seeded during the printing stage onto the construct [44].
A complex 3D microenvironment can be generated by using a bioprinting system, in which the cells
are integrated into hydrogel to mimic natural ECM of a particular tissue; thereby overcoming various
challenges faced in tissue engineering and regenerative medicine [45]. One of the most used techniques
is a drop on demand, in which thermal inkjet generates bubbles in the ink that force the ink to drop
through the orifice of the microfluidic chamber; this "ink" is nothing but the combination of cell
medium and materials that are to be printed. The ultimate resolution that could be attained using
this technique directly depends on the print-head used for fabrication in the minimum droplet size
approach. This resolution alters further as the droplet spreads on the surface, hence the final resolution
of the biprinted construct will be different from the initial drop size [46]. There are different types of
print-heads available, however, pressure driven microvalve is the easiest in comparison to thermal
and piezoelectric print-heads used for drop-on-demand bioprinters. Spatial resolution obtained from
pressure driven is lower, but throughput is found to be higher than the other two techniques. The older
version of print-heads released in the 1990s is capable of reaching resolution in obtaining single cells
precision theoretically, although it varies with the specific model of inkjet and the size of output
orifice [47]. The best way to overcome the challenges of desktop inkjet is by developing a bioprinter
with a specialized setup. Lee et al., modified the existing inkjet for bioprinting keratinocytes and
fibroblast by microvalves and used it for neural structure fabrication [48], however, major advances
have been made using this technique in the area of skin tissue engineering. Binder et al., modified
desktop inkjet to attain precision, by which a high throughput of delivering 500 cells per drop was
achieved. Furthermore, by bioprinting of fibroblast and keratinocytes using this design they were
able to overcome pitfalls linked with single-cell inkjet bioprinting [49]. This was a cartridge based
system, which allowed any type of biomaterials or cells to be packed into a cartridge to be bioprinted
at a precise location in the wound. This work provided a template to researchers who were seeking to
alter the settings of desktop inkjet printers and showed that personalized modification could be done
in order to produce next generation engineered complex functional grafts [50].
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Figure 2. This diagram shows how the PrintAlive Bioprinter works for skin regeneration. Fibroblasts
and keratinocytes two types of characteristic skin cells are kept in separate channels and spurted out of
the 3D printer to custom an organized, multi-layer gel modified from [51].

To further provide proof of concept for the above work, Binder et al., set up an experiment in which
they bioprinted skin by using fibroblast and keratinocytes for wound healing applications. During this
experiment, two major facets of control delivery were tested. (1) Ability of the delivery system to achieve
controlled delivery of two different types of cells which was performed by validating the movement
system, controlling the software used for in-situ bioprinting and using a cartridge-based valve delivery
system for the skin. (2) Usage of a fibrin/collagen type 1 delivery matrix that could act as scaffolding
material for printed cells. In this experiment, Binder dissolved fibrinogen and collagen in equal quantities
for thrombin bioprinting; the reason for using thrombin was for converting fibrinogen to fibrin which
results in a liquid polymer solution to convert into a gel thus acting as a scaffolding system. This was
a small-scale system which had two different cartridges for fibroblast and keratinocytes, with spatial
resolution set up at 1.57 µm and pressure at 6.89 kPa. Cells were embedded into the matrix and after
printing were implanted at the site of the wound. It was found that these cells remained at the exact site
of the wound area and evaluation of lesion over six weeks showed the quick closure of the wound in
test mice. This design provided a powerful tool that can augment the way burn cases are treated, since
the cartridge based system can easily be transported to different patients. Furthermore, the in-situ skin
printing technique ensures that cells remain at a precise location post transplantation; and combining cells
and matrix with anti-microbial agent could possibly be a new treatment method providing skin coverage
and functional outcome recovery; even in extensive burn cases [50].

2.2. Emergence of 3D Printing for Skin Repair

Although there are many conventional tissue engineering approaches which facilitated the
plan, architecture, and design for first generation skin grafts, there are still many aspects that need
improvement. In the last decade, printing techniques have drastically improved and moved from
2D to 3D, wherein an additional layer is distributed for three dimensional formations. 3D printing
provides flexibility to control the geometry at the micro/nano-cellular level, which modulates precise
cell-cell interaction in a 3D environment [52,53]. This automated system is on demand for “free-form”
material fabrication that is similar to the complex architecture of living tissues and maintains high cell
viability while dispensing soluble factors and phase-changing hydrogels in preferred patterns [54–56].
This approach could be extremely useful for skin tissue engineering, as it allows researchers to layout
precisely a multi-layered matrix and cells in “layer-by-layer” assembly in turn bio-mimicking the
skin tissue. Skin tissue is highly-stratified and multilayered, hence it becomes a perfect model for
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demonstrating the advantages and strengths of using 3D bioprinting to overcome the limitation of
traditional tissue engineering techniques. The generation of bio-artificial skin using 3D printing
technique requires isolation of autologous cells, which is then proliferated in the laboratory to obtain
the desired cell numbers followed by layering of cells via a 3D bioprinter [56–58]. This step could
either be by layering of cells on a scaffold or scaffold-free formation of cellular spheroids. If a scaffold
is used, it generally is to provide structural support and is most often removed after cells fuse together
to create their own support system [58]. There are different approaches through which 3D bioprinting
can be achieved as proposed by Atala et al. [59].

2.2.1. Biomimicry

This is a biologically inspired technique, in which the specific cellular functional component
of organ or tissue; like the multi-layers of skin or branching of the vascular system is mimicked.
For success of this approach, the organ has to be replicated at the micro-scale level. Its application in
3D printing includes identical reproduction of the cells and extra cellular component of the specified
tissue or organ. This method requires complete understanding of the precise cellular arrangement and
functionality along with knowledge of the micro-environment, different soluble or insoluble factors,
and the nature of the biological forces in the targeted tissue, which are critical for tissue functionality.
A thorough knowledge and collaboration of imaging, biomaterials, biophysics, engineering, medicine,
and cell biology are required to achieve a significant breakthrough using this approach [60–64].

2.2.2. Autonomous Self-Assembly

According to Atala et al. [59], with in-depth knowledge of the development process cascade and
organogenesis, the skill for manipulating the microenvironment in a way that it compels the embryonic
system to differentiate as bioprinted tissues; biological tissue could be reproduced by following the
development map of the embryo. In the earliest stage of embryo formation, cellular moieties secrete
their own ECM components with precise cell signaling, independent organization, and patterning
which work together to produce biologically functional intrinsic micro-architecture. Cellular spheroids
that undergo fusion and cellular reorganization to mimic architecture of the developing tissue is
another version of the self-assemble approach. However, cellular spheroids are basically “scaffold-free”
and are dependent upon the magnetic suspension technique. The spheroids formed can vary in
size, depending upon the parameters set by the user. Their complete biological functionality directly
depends upon the cells secreting their own ECM component, following the signaling pathways for
histogenesis and the localization process [64–68].

2.2.3. Mini-Tissue

This is another concept relevant to both types of approaches mentioned above and focuses on the
functional unit of any organ or tissue, henceforth called “Mini-tissue”; for example, nerve cells being
the smallest functional unit of the nervous system or nephrons for the kidney. These small units can be
assembled together to form a larger construct using self-assembly or biomimicry techniques. Steps
involved in this are production of small cellular spheroids that act as mini-tissue which are further
stacked or assembled into macro-tissue by using bio-inspired design of organs [69–75].

Recent proof of concept study performed by Lee et al. [76] showed the usage of the 3D printing
technique to engineer human skin in a layer-by-layer assembling process using fibroblast and
keratinocytes cells. In this work, the authors used eight independently controlled cell-dispensing
channels that could position cells, ECM scaffold material, and other growth factors in a user-defined
3D prototype. Each dispense was operated by electromechanical valves which were mounted onto
a three-axis; XYZ robotic platform; with high precision and liquid solution was dispensed at the
gate-opening stage of the micro valves by pneumatic pressure. Depending upon the viscosity of the
materials, the minimum resolution can vary; for example, in the case of aqueous medium which
include water and cell culture medium, the minimum resolution that could be obtained is ~100 µm;
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however, resolution is higher in the case of matrix proteins and collagen. This preliminary work gave
a platform for potential use of 3D bioprinting for complex human skin, as the results suggested that
3D printed skin could maintain its original shape, architecture, physical dimensions, and structure
throughout its culture time. This was in contrast to scaffold fabricated manually which showed
significant shrinkage from the second day onwards [77]. These results suggest that 3D printing could
be used for fabrication of a matrix with high dimensional control for repairing and regeneration of
complex tissue like skin [76] (Figure 3). In another study, performed by Murphy et al., hydrogels were
fabricated by a bioprinting technique that acts as a substrate for cellular proliferation and migration of
endogenous factors within this structure, which in turn actively promotes wound healing. A cartridge
based-drug delivery scheme was employed, in which a laser scanning system was mounted onto
a portable XYZ plotting bioprinter. Data was pieced together to form a wound surface model that
was further filled completely by hydrogel dispensed by a delivery system. Single or combination
of the techniques could be used to print a 3D complex biologically active, structurally similar, with
mechanically stable tissues or organ [78]. However, to successfully obtain functional tissue, bioprinting
imaging and material science is required as they play a critical role during testing of in vitro maturation
of printed tissue. Polymers that can mimic the natural ECM component also provide a higher chance
of successful tissue regeneration.
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Figure 3. Confocal images of multi-layered printing of fibroblast and keratinocytes (FB and KC) on the
cell culture dish. (A) Z stacking using immunofluorescent images showed interlayer distance ~75 µm
was observed. (B,C) keratin-containing KC layer and β-tublin-containing KC and FB. Bright-field
images on (D) KC layer and (E) FB layer also confirmed the immunohistochemistry findings.
Reproduced from [77]. Copyright 2009 with permission from Elsevier.

2.3. Laser Assisted Bioprinting

Even though tissue engineering promises high potential for new skin production, there are limitations
which need to be overcome. The challenge remains to engineer precise and complex hierarchy in new
tissue, that allows different types of cells to co-exist and can arrange into a unique 3D pattern. Laser
assisted bioprinting (LaBP) technique has emerged as a solution to the traditional scaffold fabrication
approach, as it offers the opportunity to engineer high resolution 2D and 3D patterns by incorporating
different cell lines. These could either be mouse endothelial cells, human osteosarcoma, rodent olfactory
ensheathing cells, fibroblast and keratinocytes, rat Schwann and astroglial cells or cartilage and osteoblast
cells. All of these have survived the transfer process without showing any damage or alteration in cellular
phenotypes. Michael et al., worked on fabrication of a multi-layer fully cellularized skin substitute for
burn patients using LaBP techniques. The transplanted skin equivalent was tested on an animal model
to confirm its ability to achieve cellular behavior, tissue formation, and differentiation of keratinocytes
accompanied by neovascularization in dorsal skin fold chamber of mice. As skin is a multifaceted organ



Polymers 2016, 8, 19 7 of 17

consisting of various types of cells with sub-structural arrangement in defined spatial configurations, LaBP
is one of the best suited techniques for skin tissue engineered substitute as demonstrated by this work.
The printed cells form tissue that is similar to native skin producing fibroblast assisted collagen, with
dense epidermis and presumably supporting differentiation of keratinocytes. Even though it was a short
study of less than 11 days to confirm keratinocytes differentiation, the proliferation marker (Ki67) was
found at the supra-basal layers hinting at the beginning of keratinocytes differentiation (Figure 4). It is well
known that keratinocytes found in stratum basale maintain their proliferation unlike in other layers where
differentiation stops proliferation. Using this process leads to ingrowths and integration of skin graft into
the wound. However, with thinner epidermis or absence of rete ridges, graft failure could occur; and
LaBP provides the solution for printing these rete ridges and thick epidermis [79]. In another experiment
performed by Koch et al., laser printing based on “laser-induced forward transfer (LIFT)” was used as a
new technique for skin tissue engineering. In this work, fibroblast/keratinocytes and MSCs (mesenchymal
stem cells) were preferred due to their high self-renewal and easier application in regenerative medicine.
The influence of using LIFT on these cells was evaluated by quantifying cell survival rate, DNA damage
or modification of cell surface receptors/markers, proliferation, and apoptotic activity. It was found that
98% ˘ 1% fibroblast/keratinocytes and about 90% ˘ 10% hMSC were able to survive the transfer step.
Furthermore, all three types of cells retained their ability to proliferate after LIFT, and there was no damage
or change in DNA or surface marker, which was confirmed by fluorescent activated cell sorting (FACS)
testing. This study was useful in demonstrating that LIFT could be potentially used as a suitable technique
for generating the computer controlled arrangement of different cells into one functional tissue which
could be further explored for engineering future generation tissue replacement other than skin [80].
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Figure 4. Skin grafts implanted in mice for 11 days in dorsal skin fold chambers. Sections are stained
with Masson’s trichrome (A–D) and analyzed with fluorescence microscopy (E), respectively. (A) Shows
the junction between the inserted skin graft (m = Matriderm®) and host mouse skin (n) at the wound
edge after 11 days. The engineered and the intact skin part in the sandwiched skin model are separated
by the panniculus carnosus (pc). Both in native mouse skin (B) and printed skin graft (C) a thick
epidermis (empty asterisks) and corneal layer can be seen. In skin graft, the epidermis layer is formed
by the printed keratinocytes (E) noted by green fluorescence that’s emitted by HaCaT-eGFP cells.
The fibroblasts (NIH3T3 cells-mCherry) is seen partly migrating into the Matriderm® (yellowish fibres).
The fibroblasts that remains on top of the Matriderm®, exhibits an outstretched morphology (C),
along with collagen deposition (filled asterisks). Blood vessels (arrows) can be noticed in the skin
constructs (D). Scale bars depict 200 µm (A,D,E) and 100 µm (B,C) (Reprinted under open access
distribution license from [79]).
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3. Advances in Stem Cells for Skin Substitute

One area that has raised hopes of tissue engineered skin substitute is the progress that has been
made in the field of stem cells and biomaterials, especially with the emergence of induced pluripotent
stem cells that negate the concerns that were associated with embryonic stem cells.

3.1. Role of Induced Pluripotent (iPSCs) and Embryonic Stem Cells

iPSCs are the most recent advance made in the area of cell biology wherein reprogramming
somatic cells provides an exciting alternative to the use of embryonic stem cells (ESC). Somatic stem
cells are multipotent with self-renewal capacity, found in various organs such as brain, bone marrow,
dermal tissue, and skeletal muscle that enable regeneration of damaged tissues [81]. However, they do
not have unlimited proliferative ability thereby, limiting their application in the field of regenerative
medicine. In order to overcome the limitations and concerns associated with ESCs’ use in the clinical
arena, iPSCs were established in 2006 by Takahashi and Yamanaka [82] (Figure 5). This group used
mouse fibroblast cells and introduced four transcription factors (Oct 3/4, c-MYC, SOX2, and Klf4) that
are responsible for unlimited proliferative characteristics in ESCs. Retrovirus was used as transduction
agent and once reprogrammed, cells were carefully chosen by expression of β-geo cassette. However,
when injected into nude mice they failed to form adult chimeras and showed different gene expression
along with altered DNA methylation patterns. Yet, this experiment opened a complete new area of
research, and a year after, human iPSCs were established by introducing the same transcriptional
factor on fibroblast cells along with another set of transcriptional factors (Oct 3/4, Nanog, Lin28, and
SOX 2) [83]. These human iPSCs were phenotypic, genotypic, and epigenetic status of pluripotent
expression (cell-specific genes) similar to human ESCs [84,85]. Furthermore, the cells were found to
have the capacity to differentiate into all three germ layers and hence named as induced pluripotent
stem cells. Establishing direct reprogramming somatic cells was a milestone in stem cells research, as it
provided an invaluable source of unlimited cell supply for regenerative medicine [86]. iPSCs’ rapid
progression also shows their vast implication in the field of biomedicine, and with high similarity to
ESCs, iPSCs easily bypass the ethical controversy surrounding ESCs’ use in humans. They also offer
superior advantage, such as direct programming of somatic cells, enabling patient-specific cells to
be obtained that can be modulated for high pluripotency [87,88]. The chances of immune-rejection
are also minimized, but the best advantage that iPSCs offer is the chance for correcting any genetic
disorder in patients. For example, for patients suffering from Fanconi anemia, corrections can be
made using lentiviral vector that carries coding for FANCA or FANCD2 and transduces into fibroblast.
These corrected cells can further be expanded into iPSCs as effectively as any wild type fibroblast.
Continuous change and improvement in iPSCs’ reprogramming paves the way for newer approaches
especially in the case of skin tissue engineering. New techniques provide a way to produce iPSCs
from keratinocytes that are isolated from hair follicles of adult patients and then using these cells for
differentiating into various skin related cells [89].

Research performed by Bilousova et al., shows that iPSCs can be differentiated in laboratory
conditions into a range of skin-like cell lines with capacity to form multi-differentiated epidermis
with hair follicles and sebaceous glands [90]. Skin serves as an ideal platform for the application of
iPSCs because, unlike other tissues and organs, skin is easily accessible and cells can be isolated from
both patient and healthy individual. Interestingly, it is not just accessibility that makes skin an ideal
platform, it is also the ability of skin cells to give rise to iPSCs far more efficiently when transduced with
“Yamanaka factor” than when compared to other fibroblast cells. A study performed by Utikal et al.,
2009 shows that “melanocytes and follicular dermal papilla cells” were able to upregulate SOX2, which
happens along with Klf4 murine dermal papilla cells, and could easily differentiate into iPSCs [91].
Another study by Tsai et al., shows that Oct4 alone was sufficient to induce pluripotency in somatic
skin cells, indicating the possibility of a less laborious protocol for reprogramming cells into iPSCs [92].
The few experiments that have shown the proof of concept are the ones conducted by Itoh et al. [93] and
Veraitch et al. [94] demonstrating that reprogramming keratinocytes to iPSCs results in regeneration of
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epidermal structures following exposure to BMP4 and retinoic acid. In another set of experiments,
melanocytes were used for reprogramming and the iPSCs obtained were able to convert into embryoid
bodies when incubated with WNT3A and endhothelin-3 stem cell factors [95]. For establishing an
iPSC based cell therapy for skin regeneration, there are several issues that need to be addressed.
Methodologies for in vitro proliferation and establishment of 3D construct; equivalent to normal skin
in the sense of regeneration of epidermal and dermal layers using somatic cells; is already available for
burn case patients. However, a major obstacle remains around whether the research performed using
iPSC for regeneration of other tissue could be used to draw a parallel to. If so, then it will not be long
before iPSCs’ based skin equivalent could be in clinical usage [96].
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due to their recruitment ability from adjacent subcutaneous tissue. However, on closer investigation, 
this ability was attributed to peripheral blood, since the large number of fibroblast like cells described 
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Figure 5. Directed differentiations of human induced pluripotent stem cells (iPS). (A) Phase-contrast
image (B) Immunocytochemistry with βIII-tubulin (red) and tyrosine hydroxylase (green) and Hoechst
33342 nuclei (blue) antibodies of differentiated iPSCs cells after 18 days culture on PA6. (C,E) Reverse
transcriptase polymer chain reaction (RT-PCR) analyses of dopaminergic neuron and cardiomyocyte
markers. (D) Phase-contrast image of iPS cells differentiated into cardiomyocytes. (Bars = 200 µm
(A and D) and 100 µm (B)). Reproduced from [82]. Copyright 2006 with permission from Elsevier.

3.2. Manipulation of Mesenchymal Stem Cells for Skin Repair

MSCs are multipotent self-renewing cells that can differentiate into all lineages of connective
tissue of mesenchymal origin. Besides this, MSCs also play a significant role in regulating the
immune system, inflammation reactions as well as possessing a potent tissue protective and
repairing mechanism. This makes them ideal for application in regenerative medicine, especially
skin tissue repair. Skin represents a perfect model system, in which the role of progenitor cells as
a source for regenerative medicine can be easily investigated, since keratinocytes are one of the
few well-characterized examples of adult stem cells. Another advantage of using MSCs is that they
can be derived from the patient, thereby removing any inherent problem associated with immune
reaction and rejection. Furthermore, treating patients with their own cells also helps avoiding all
ethical and moral objections related to stem cell usage. A potential source of MSCs is bone marrow,
found circulating mostly in blood, which appears more fibroblastic and the cells rapidly enter injured
tissue within a wound chamber model. Their existence in wound chamber has been thought to
be mainly due to their recruitment ability from adjacent subcutaneous tissue. However, on closer
investigation, this ability was attributed to peripheral blood, since the large number of fibroblast like
cells described as CD34+/collagen+/vimentin+ (termed fibroblast due to its distinct phenotype), was
directly proportional to the entry of circulating inflammatory cells and was not restricted to exclusively
slow migration from adjacent connective tissue [96]. These cells; even though they constitute only 10%
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of all infiltrating cells; are thought to play a diverse role in skin repair, inducing angiogenesis and the
wound healing process; both in vitro and in vivo. They produce chemo attractants which can recruit
CD4+ cells along with expressing the receptor for CCR7, which is involved in cell migration into
the wound process. However, the process and intercellular signaling mechanism that can modulate
fibroblast proliferation, differentiation, and trafficking is only partially understood. As such, these
cells have broad clinical application and different researchers have provided proof of this concept.

In the quest of finding a new strategy for skin regeneration, Trentin et al. [97] provided effective
treatment, especially in the case of cutaneous wound. Stromal MSCs (SD-MSCs) were cultured on 3D
culture with dermal substitute (Integra and Pelnac) for one week and different tests were performed to
check the outcome. It was found that when MSCs were cultured in a 2D system, they expressed MSCs’
characteristic markers such as fibronectin, CD105, and α-SMA along with markers for neural lineages
like βIII-Tublin and Nestin. Similarly, Integra and Pelnac equally support SD-MSCs’ proliferation yet
SD-MSCSs successfully maintained their multilineage markers (Figure 6). This successful study was
able to demonstrate that dermal substitutes support MSCs’ proliferation, and it could be one way to
effectively use MSCs in combination with dermal substrate for skin regeneration. Perng et al. used
pNIPAAM polymer seeded with bone marrow derived from human mesenchymal cells to repair a
skin defect in nude mice. They tested the level of human pan-keratin and cadherin, which are markers
of epithelial regeneration and found that in test mice, the expression of both significantly increased
and MSCs were able to differentiate to form epidermal cells, thereby repairing skin defects [98].
In an attempt to further progress skin regeneration, Sheng et al. successfully induced MSCs derived
from bone marrow into sweat gland cells by co-culturing techniques [99]. Vaughan et al. showed
that coordinated proliferation and stratification of keratinocytes could be achieved by altering the
expression of H-ras and it is one of the important parameters for maintenance of artificial skin construct
(Figure 7) [100]. Another problem associated with stem cells is that there is no universally accepted cell
surface marker which can confirm that the phenotype and genotype of these cells have not changed
due to some rigorous methodology involved in the process of regenerative medicine. However, even
the autologous stem cells’ usage presents its own challenges; such as a complex isolation process, as
well as very costly and time consuming, to generate enough stem cells for repairing or regenerating
skin defects.
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Figure 6. Double-staining performed in 21 days skin graft with keratin-14 red) and involucrin (green)
stained the lowermost and uppermost layers respectively. Some evidence of co-localization (yellow
to orange) in the intermediate layers was found. Both stains were found to be partially retained
in Ker-CT-Ras keratinocytes, but were far less in Ker-CT-Ras-p53 keratinocytes. Scale bar: 40 µm.
Reprinted under open access distribution license from [100].
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dermal substitutes from each group (green autofluorescence) and merged images respectively. (D,H)
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Reprinted under open access distribution license from [97].

3.3. Adipose-Derived Stem Cells for Skin Regeneration

Adipose stem cells’ (ASCs) discovery opened a new era and made stem therapy a reality, since
the cells can be harvested in large quantity and applied instantly without needing time for culture
expansion. These progenitors, which are readily available due to the obesity epidemic and the cosmetic
evolution (lipoaspiration), are known to secrete cytokines that promote fibroblast migration in the
wound healing process. ASCs also up-regulate vascular-endothelial growth factor (VEGF) which
enhances neovascularization [101]. Unlike MSCs, the surface markers for ASCs are clearly defined and
only if CD29, CD73, and CD90 are expressed in consecutive generations, can these cells be used for cell
therapy. Bone marrow fluid is known to contain a very small percentage of MSCs, whereas the amount
of ASCs isolated is 500 fold greater from the corresponding weight of adipose tissue. It is relatively
homogenous on surface immunophenotype and displays similar surface antigen; if not identical to
MSCs; making it a potential candidate for regenerative medicine. Huang et al., 2013 created an ulcer
in the rat model by electron beam radiation and treated it with ASCs, followed by evaluating the
wound healing assay. It was found that after three weeks of receiving regular ASCs, the wound size
significantly reduced in comparison to control (p < 0.01). On histological testing of the edges of the
wound and immunoblotting for checking the re-epithelialization area, both indicated that the group
which received ASCs developed neo-angiogenesis and colocalized with endothelial cell markers in the
wounded tissue. This proved that using ASCs could potentially accelerate the wound healing process.
Epithelization is one of the most important steps for wound healing as it ensures new epithelium
formation. Various groups have worked on proving the potential of ACSs for wound healing and skin
regeneration [101].

Another study conducted by Wink et al., 2014 showed that lesion with great loss of skin and a
broad burn area when treated with heterologous skin grafts could lead to rejection. However, when
combined with ASCs and carboxymethylcellulose (CMC) to treat skin lesion in the rat model, it
showed promising results. The test group received 10 mg/mL concentration of CMC along with
ASCs showing increased cell proliferation in granulation tissue and thick epithelium formation when
compared to control (untreated) group (Figure 8). Examining, the healing process of the lesions
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treated with and without ASCs demonstrated that in the group with ASCs, epithelium had not
regenerated completely enough to be measured. In this study, the rate of re-epithelization improved
when treated in combination with CMC + ASCs. The cellular differentiation and secretion of various
cytokines/parakines factors could be attributed to the mechanism through which ASCs or stem cells
in general contributed towards repairing damaged tissues. Interplay between cells; that can produced
VEGF, basic fibroblast growth factor (FGF) and platelet derived growth factor (PDGF-A); is responsible
for the signaling cascade that accelerates the wound healing process. The early improvement of
granulation tissue implies that the biological events which characterize the dynamics of wound healing
were occurring more rapidly in the test group (CMC 10 mg/mL + ASCs). Cytokeratin expressions
were also found to have increased significantly between control and test; indicating high biochemical
and bioactive epithelial response. This pinpoints to migratory keratinocytes phenotypes and migratory
epithelium, common to cutaneous wound healing response [102]. This study demonstrated that
biomaterials along with specific cells which can secrete cytokines/growth factors could be the best
approach for producing a graft that successfully integrates with the host tissue and prevents infection.
Additionally, they also promote re-epithelization, neo-vascularization, and hair follicle formation.
Current research indicates that skin regeneration highly depends upon the host cells and stem cells
residing in their niche. The biomaterials only act as cell carrier, but if this biomaterial could provide
the micro-environmental cue needed for dictating cellular behavior, it would provide the most suitable
scenario. Biomaterials will continue to play central role in tissue engineering and regenerative medicine
as they give a framework upon which dynamic tissue reconstruction could be designed. However,
the more stem cells (and their molecular, genotypic and phenotypic characteristics) are explored, the
better are the chances of their application; especially since stem cells hold the key to success of all
tissue engineered constructs.
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Figure 8. Progression of wound healing. (A) Wound model. Treated with four different approaches
upper left (1) 100 µL of carboxymethylcellulose (CMC) 20 mg/mL + 26 ˆ 106 of adipose derived stem
cells (ADSCs); upper right (2) 100 µL CMC 10 mg/mL + 26 ˆ 106 of ADSCs; bottom left (3) 100 µL of
CMC 20 mg/mL; bottom right (4) Sham. (B) Animal, representative of each group showing wound
closure, from day 0 to day 16. (C) Evaluation of the area of lesions and panel. (D) Determination of
epithelium thickness. * p < 0.05. Reproduced under open access distribution license from [102].
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4. Conclusions

The ultimate goal of skin repair and engineering is that the skin equivalent should rapidly and
completely restore the skin functions. This construct bio-functionality should also contain appendage
found on normal skin, such as hair follicles, receptors, sebaceous glands, and sweat glands. Skin graft
constructed using 3D printing or the hydrogel process should support rapid vascularization and
facilitate nerve regeneration; only then would a graft qualify as a complete skin regenerating construct.
Researchers are trying different techniques, such as reprogrammed differentiated fibroblast to attain
pluripotent characteristics, thereby overcoming the time consuming step to attain the desired cell
numbers from cell lines. Since these cells are similar to embryonic stem cells, they could be combined
with 3D printing and help in obtaining functional tissue engineered skin. This could be a new direction
to achieve biologically, structurally and functionally similar tissue to natural skin.

Acknowledgments: Authors would like to acknowledge all authors whose work we have cited. Writing of this
review was fully supported by Yeungnam University 2015 grant.

Author Contributions: Deepti Singh and Dolly Singh, conceived the idea, outlay of the manuscript, reviewed
literature and wrote the manuscript. Sung Soo Han guided, discussed and edited the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, Q.; Liang, S.; Thomas, G.A. Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 2013, 38,
584–671. [CrossRef]

2. Furth, M.E.; Atala, A.; van Dyke, M.E. Smart biomaterials design for tissue engineering and regenerative
medicine. Biomaterials 2007, 28, 5068–5073. [CrossRef] [PubMed]

3. Singh, D.; Tripathi, A.; Zo, S.M.; Singh, D.; Han, S.S. Synthesis of composite gelatin-hyaluronic acid-alginate
porous scaffold and evaluation for in vitro stem cell growth and in vivo tissue integration. Colloid Surf. B
2014, 116, 502–509. [CrossRef] [PubMed]

4. Puente, P.D.; Ludena, D. Cell culture in autologous fibrin scaffolds for applications in tissue engineering.
Exp. Cell. Res. 2014, 322, 1–11. [CrossRef] [PubMed]

5. Okamoto, M.; John, B. Synthetic biopolymer nanocomposites for tissue engineering scaffold. Prog. Polym. Sci.
2013, 38, 1487–1503. [CrossRef]

6. Zhao, C.Y.; Tan, A.; Pastorin, G.; Ho, H.K. Nanomaterial scaffolds for stem cell proliferation and
differentiation in tissue engineering. Biotechnol. Adv. 2013, 31, 654–668. [CrossRef] [PubMed]

7. Butcher, A.L.; Offeddu, G.S.; Oyen, M.L. Nanofibrous hydrogel composites as mechanically robust tissue
engineering scaffolds. Trends Biotechnol. 2014, 32, 564–570. [CrossRef] [PubMed]

8. Matsuura, K.; Utoh, R.; Nagase, K.; Okano, T. Cell sheet approach for tissue engineering and regenerative
medicine. J. Control. Release 2014, 190, 228–239. [CrossRef] [PubMed]

9. Sheyn, D.; Mizrahi, O.; Bengamin, S.; Gazit, Z.; Pelled, G.; Gazit, D. Genetically modified cells in regenerative
medicine and tissue engineering. Adv. Drug. Deliver. Rev. 2010, 62, 683–698. [CrossRef] [PubMed]

10. Vacanti, J. Tissue engineering and regenerative medicine: From first principles to state of the art.
J. Pediatr. Surg. 2010, 45, 291–294. [CrossRef] [PubMed]

11. Zhao, Y.M.; Feric, N.T.; Thavandiran, N.; Nunes, S.S.; Radisic, M. The role of tissue engineering and
biomaterials in cardiac regenerative medicine. Can. J. Cardiol. 2014, 30, 1307–1322. [CrossRef] [PubMed]

12. Babu, M.; Wells, A. Dermal–epidermal communication in wound healing. Wounds 2001, 13, 183–189.
13. Park, H.J.; Yu, S.J.; Yang, K.; Jin, Y.; Cho, A.N.; Kim, J.; Lee, B.; Yang, H.S.; Im, S.G.; Cho, S.W. Paper-based

bioactive scaffolds for stem cell-mediated bone tissue engineering. Biomaterials 2014, 35, 9811–9823.
[CrossRef] [PubMed]

14. Bannasch, H.; Fohn, M.; Unterberg, T.; Bach, A.D.; Weyand, B.; Stark, G.B. Skin tissue engineering.
Clin. Plast. Surg. 2003, 30, 573–579. [CrossRef]

15. Raic, A.; Rodling, L.; Kalbacher, H.; Lee-Thedieck, C. Biomimetic macroporous PEG hydrogels as 3D
scaffolds for the multiplication of human hematooietic stem and progenitor cells. Biomaterials 2014, 35,
929–940. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.progpolymsci.2012.05.003
http://dx.doi.org/10.1016/j.biomaterials.2007.07.042
http://www.ncbi.nlm.nih.gov/pubmed/17706763
http://dx.doi.org/10.1016/j.colsurfb.2014.01.049
http://www.ncbi.nlm.nih.gov/pubmed/24572494
http://dx.doi.org/10.1016/j.yexcr.2013.12.017
http://www.ncbi.nlm.nih.gov/pubmed/24378385
http://dx.doi.org/10.1016/j.progpolymsci.2013.06.001
http://dx.doi.org/10.1016/j.biotechadv.2012.08.001
http://www.ncbi.nlm.nih.gov/pubmed/22902273
http://dx.doi.org/10.1016/j.tibtech.2014.09.001
http://www.ncbi.nlm.nih.gov/pubmed/25294495
http://dx.doi.org/10.1016/j.jconrel.2014.05.024
http://www.ncbi.nlm.nih.gov/pubmed/24858800
http://dx.doi.org/10.1016/j.addr.2010.01.002
http://www.ncbi.nlm.nih.gov/pubmed/20114067
http://dx.doi.org/10.1016/j.jpedsurg.2009.10.063
http://www.ncbi.nlm.nih.gov/pubmed/20152338
http://dx.doi.org/10.1016/j.cjca.2014.08.027
http://www.ncbi.nlm.nih.gov/pubmed/25442432
http://dx.doi.org/10.1016/j.biomaterials.2014.09.002
http://www.ncbi.nlm.nih.gov/pubmed/25241158
http://dx.doi.org/10.1016/S0094-1298(03)00075-0
http://dx.doi.org/10.1016/j.biomaterials.2013.10.038
http://www.ncbi.nlm.nih.gov/pubmed/24176196


Polymers 2016, 8, 19 14 of 17

16. Alessandri, M.; Lizzo, G.; Gualandi, C.; Mangano, C.; Giuliani, A.; Focarete, M.L.; Calza, L. Influence of
biological matrix and artificial electrospun scaffolds on proliferation, differentiation and trophic factor
synthesis of rat embryonic stem cells. Matrix. Biol. 2014, 33, 68–76. [CrossRef] [PubMed]

17. Han, S.F.; Zhao, Y.; Xiao, Z.F.; Han, J.; Chen, B.; Chen, L.; Dai, J.W. The three-dimensional collagen scaffold
improves the stemness of rat bone marrow mesenchymal stem cells. J. Genet. Genomics 2012, 39, 633–641.
[CrossRef] [PubMed]

18. Han, F.; Dong, Y.; Su, Z.; Yin, R.; Song, A.; Li, S.M. Preparation, characteristics and assessment of a novel
gelatin-chitosan sponge scaffold as skin tissue engineering material. Int. J. Pharm. 2014, 476, 124–133.
[CrossRef] [PubMed]

19. Zulkifli, F.H.; Hussain, F.S.J.; Rasad, M.S.B.A.; Yusoff, M.M. In vitro degradation study of novel
HEC/PVA/collagen nanofibrous scaffold for skin tissue engineering applications. Polym. Degrad. Stabil.
2014, 110, 473–481. [CrossRef]

20. Groeber, F.; Holeiter, M.; Hampel, M.; Hinderer, S.; Schenke-Layland, K. Skin tissue engineering—In vivo
and in vitro applications. Adv. Drug. Delive. Rev. 2011, 63, 352–366. [CrossRef] [PubMed]

21. Bottcher-Haberzeth, S.; Biedermann, T.; Reichmann, E. Tissue engineering of skin. Burns 2010, 36, 450–460.
[CrossRef] [PubMed]

22. Wood, F. Tissue engineering of skin. Clin. Plast. Surg. 2012, 39, 21–32. [CrossRef] [PubMed]
23. Kamel, R.A.; Ong, J.F.; Eriksson, E.; Junker, J.P.E.; Caterson, E.J. Tissue engineering of skin. J. Am.

Coll. Surgeons 2013, 217, 533–555. [CrossRef] [PubMed]
24. Black, A.F.; Bouez, C.; Perrier, E.; Schlotmann, K.; Chapuis, F.; Damour, O. Optimization and characterization

of an engineered human skin equivalent. Tissue Eng. 2005, 11, 723–733. [CrossRef] [PubMed]
25. Jean, J.; Lapointe, M.; Soucy, J.; Pouliot, R. Development of an in vitro psoriatic skin model by tissue

engineering. J. Dermatol. Sci. 2009, 53, 19–25. [CrossRef] [PubMed]
26. Seneschal, S.; Clark, R.A.; Gehad, A.; Baecher-Allan, C.M.; Kupper, T.S. Human epidermal langerhans cells

maintain immune homeostasis in skin by activating skin resident regulatory T Cells. Immunity 2012, 36,
873–884. [CrossRef] [PubMed]

27. Zulkiffli, F.H.; Hussain, F.S.J.; Rasad, M.S.B.A.; Yusoff, M.M. Nanostructured materials from hydroxyethyl
cellulose for skin tissue engineering. Carbohyd. Polym. 2014, 114, 238–245. [CrossRef] [PubMed]

28. Gautam, S.; Chou, C.F.; Dinda, A.K.; Potdar, P.D.; Mishra, N.C. Surface modification of nanofibrous
polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Mat. Sci.
Eng. C 2014, 34, 402–409. [CrossRef] [PubMed]

29. Choi, S.; Singh, D.; Singh, D.; Han, S.S. Surfactant role in modifying architecture of functional polymeric
gelatin scaffolds. Int. J. Polym. Mater. Po. 2014, 63, 951–956. [CrossRef]

30. Singh, D.; Singh, D.; Choi, S.; Zo, S.M.; Painuli, R.K.; Kwon, S.W.; Han, S.S. Effect of extracts of terminalia
chebula on proliferation of keratinocytes and fibroblasts cells: An alternative approach for wound healing.
Evid. Based Compl. Alt. Med. 2014, 2014. [CrossRef]

31. Jin, G.R.; Prabhakaran, M.P.; Ramakrishna, S. Stem cell differentiation to epidermal lineages on electrospun
nanofibrous substrates for skin tissue engineering. Acta. Biomater. 2011, 7, 3113–3122. [CrossRef] [PubMed]

32. Varkey, M.; Ding, J.; Tredget, E.E. The effect of keratinocytes on the biomechanical characteristics and pore
microstructure of tissue engineered skin using deep dermal fibroblasts. Biomaterials 2014, 35, 9591–9598.
[CrossRef] [PubMed]

33. Fauza, D.O.; Fishman, S.J.; Mehegan, K.; Atala, A. Videofetoscopically assisted fetal tissue engineering: Skin
replacement. J. Pediatr. Surg. 1998, 33, 357–361. [CrossRef]

34. Gillette, B.M.; Rossen, N.S.; Das, N.; Leong, D.; Wang, M.; Dugar, A.; Sia, S.K. Engineering extracellular
matrix structure in 3D multiphase tissues. Biomaterials 2011, 32, 8067–8076. [CrossRef] [PubMed]

35. Pradhan, S.; Farach-Carson, M.C. Mining the extracellular matrix for tissue engineering applications.
Regen. Med. 2010, 5, 961–970. [CrossRef] [PubMed]

36. Sell, S.A.; Wolfe, P.S.; Garg, K.; McCool, J.M.; Rodriguez, I.A.; Bowlin, G.L. The use of natural polymers
in tissue engineering: A focus on electrospun extracellular matrix analogues. Polymers 2010, 2, 522–533.
[CrossRef]

37. Kuschel, C.; Steuer, H.; Maurer, A.N.; Kanzok, B.; Stoop, R.; Angres, B. Cell adhesion profiling using
extracellular matrix protein microarrays. Biotechniques 2006, 40, 523–531. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.matbio.2013.08.001
http://www.ncbi.nlm.nih.gov/pubmed/23954537
http://dx.doi.org/10.1016/j.jgg.2012.08.006
http://www.ncbi.nlm.nih.gov/pubmed/23273767
http://dx.doi.org/10.1016/j.ijpharm.2014.09.036
http://www.ncbi.nlm.nih.gov/pubmed/25275938
http://dx.doi.org/10.1016/j.polymdegradstab.2014.10.017
http://dx.doi.org/10.1016/j.addr.2011.01.005
http://www.ncbi.nlm.nih.gov/pubmed/21241756
http://dx.doi.org/10.1016/j.burns.2009.08.016
http://www.ncbi.nlm.nih.gov/pubmed/20022702
http://dx.doi.org/10.1016/j.cps.2011.09.004
http://www.ncbi.nlm.nih.gov/pubmed/22099846
http://dx.doi.org/10.1016/j.jamcollsurg.2013.03.027
http://www.ncbi.nlm.nih.gov/pubmed/23816384
http://dx.doi.org/10.1089/ten.2005.11.723
http://www.ncbi.nlm.nih.gov/pubmed/15998214
http://dx.doi.org/10.1016/j.jdermsci.2008.07.009
http://www.ncbi.nlm.nih.gov/pubmed/18783923
http://dx.doi.org/10.1016/j.immuni.2012.03.018
http://www.ncbi.nlm.nih.gov/pubmed/22560445
http://dx.doi.org/10.1016/j.carbpol.2014.08.019
http://www.ncbi.nlm.nih.gov/pubmed/25263887
http://dx.doi.org/10.1016/j.msec.2013.09.043
http://www.ncbi.nlm.nih.gov/pubmed/24268275
http://dx.doi.org/10.1080/00914037.2014.886233
http://dx.doi.org/ 10.1155/2014/701656
http://dx.doi.org/10.1016/j.actbio.2011.04.017
http://www.ncbi.nlm.nih.gov/pubmed/21550425
http://dx.doi.org/10.1016/j.biomaterials.2014.07.048
http://www.ncbi.nlm.nih.gov/pubmed/25176070
http://dx.doi.org/10.1016/S0022-3468(98)90462-6
http://dx.doi.org/10.1016/j.biomaterials.2011.05.043
http://www.ncbi.nlm.nih.gov/pubmed/21840047
http://dx.doi.org/10.2217/rme.10.61
http://www.ncbi.nlm.nih.gov/pubmed/21082894
http://dx.doi.org/10.3390/polym2040522
http://dx.doi.org/10.2144/000112134
http://www.ncbi.nlm.nih.gov/pubmed/16629399


Polymers 2016, 8, 19 15 of 17

38. Watt, F.M.; Huck, W.T.S. Role of the extracellular matrix in regulating stem cell fate. Nat. Rev. Mol. Cell. Bio.
2013, 14, 467–473. [CrossRef] [PubMed]

39. Panetti, T.S.; Hannah, D.F.; Avraamides, C.; Gaughan, J.P.; Marcinkiewicz, C.; Huttenlocher, A.; Mosher, D.F.
Extracellular matrix molecules regulate endothelial cell migration stimulated by lysophosphatidic acid.
J. Thromb. Haemost. 2004, 2, 1645–1656. [CrossRef] [PubMed]

40. Trappmann, B.; Chen, C.S. How cells sense extracellular matrix stiffness: A material’s perspective.
Curr. Opin. Biotech. 2013, 24, 948–953. [CrossRef] [PubMed]

41. Walters, B.D.; Stegemann, J.P. Strategies for directing the structure and function of three-dimensional collagen
biomaterials across length scales. Acta. Biomater. 2014, 10, 1488–1501. [CrossRef] [PubMed]

42. Bajaj, P.; Schweller, R.M.; Khademhosseini, A.; West, J.L.; Bashir, R. 3D biofabrication strategies for tissue
engineering and regenerative medicine. Annu. Rev. Biomed. Eng. 2014, 11, 247–276. [CrossRef] [PubMed]

43. Pereira, R.F.; Barrias, C.C.; Granja, P.L.; Bartolo, P.J. Advanced biofabrication strategies for skin regeneration
and repair. Nanomedicine 2013, 8, 1–19. [CrossRef] [PubMed]

44. Mironov, V.; Reis, N.; Derby, B. Bioprinting: A beginning. Tissue Eng. 2006, 12, 631–634. [CrossRef] [PubMed]
45. Nair, K.; Gandhi, M.; Khalil, S.; Yan, K.C.; Marcolongo, M.; Barbee, K.; Sun, W. Characterization of cell

viability during bioprinting processes. Biotechnol. J. 2009, 4, 1168–1177. [CrossRef] [PubMed]
46. Roth, E.A.; Xu, T.; Das, M.; Gregory, C.; Hickman, J.J.; Boland, T. Inkjet printing for high-throughput cell

patterning. Biomaterials 2004, 25, 3707–3715. [CrossRef] [PubMed]
47. Boland, T.; Tao, X.; Damon, B.J.; Manley, B.; Kesari, P.; Jalota, S.; Bhaduri, S. Drop-on-demand printing of

cells and materials for designer tissue constructs. Mat. Sci. Eng. C 2007, 27, 372–376. [CrossRef]
48. Lee, W.G.; Demirci, U.; Khademhosseini, A. Microscale electroporation: Challenges and perspectives for

clinical applications. Integr. Biol. 2009, 1, 242–251. [CrossRef] [PubMed]
49. Allain, L.R.; Askari, M.; Stokes, D.L.; Vo-Dinh, T. Microarray sampling-platform fabrication using bubble-jet

technology for a biochip system. Fresen. J. Anal. Chem. 2001, 371, 146–150. [CrossRef]
50. Binder, K.W.; Allen, A.J.; Yoo, J.J.; Atala, A. Drop-on-demand inkjet bioprinting: A primer. Gene. Ther. Regul.

2011, 11, 1–19. [CrossRef]
51. CBC Canada news technology and science. Available online: http://www.cbc.ca/news/technology/

printalive-3d-skin-tissue-printer-wins-canadian-dyson-award-1.2770667 (accessed on 25 November 2015).
52. Gardien, K.L.M.; Middelkoop, E.; Ulrich, M.M.W. Progress towards cell-based wound treatments. Regen. Med.

2014, 9, 201–218. [CrossRef] [PubMed]
53. Atala, A. Engineering organs. Curr. Opin. Biotech. 2009, 20, 575–592. [CrossRef] [PubMed]
54. Boyce, S.T.; Goretsky, M.J.; Greenhalgh, D.G.; Kagan, R.J.; Rieman, M.T.; Warden, G.D. Comparative

assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns.
Ann. Surg. 1995, 222, 743–752. [CrossRef] [PubMed]

55. Boland, T.; Mironov, V.; Gutowska, A.; Roth, E.A.; Markwald, R.R. Cell and organ printing 2: Fusion of cell
aggregates in three-dimensional gels. Anat. Rec. Discov. Mol. Cell. Evol. Biol. 2003, 272, 497–502. [CrossRef]
[PubMed]

56. Sachlos, E.; Czernuszka, J.T. Making tissue engineering scaffolds work. Review: The application of solid
freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell. Mater. 2003, 5,
29–39. [PubMed]

57. Burg, K.J.L.; Boland, T. Minimally invasive tissue engineering composites and cell printing. IEEE Eng.
Med. Biol. 2003, 22, 84–91. [CrossRef]

58. Gangatirkar, P.; Paquet-Fifield, S.; Li, A.; Rossi, R.; Kaur, P. Establishment of 3D organotypic cultures using
human neonatal epidermal cells. Nat. Protoc. 2007, 2, 178–186. [CrossRef] [PubMed]

59. Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [CrossRef]
[PubMed]

60. Pamuditha, N.S.; Green, B.J.; Altamentova, S.M.; Rocheleau, J.V. A microfluidic device designed to induce
media flow throughout pancreatic islets while limiting shear-induced damage. Lab A Chip 2013, 13, 4374–4384.

61. Reed, E.J.; Klumb, L.; Koobatian, M.; Viney, C. Biomimicry as a route to new materials: What kinds of lessons
are useful? Philos. Trans. R. Soc. A 2009, 367, 1571–1585. [CrossRef] [PubMed]

62. Huh, D.; Torisawa, Y.S.; Hamilton, G.A.; Kim, H.J.; Ingber, D.E. Microengineered physiological biomimicry:
Organs-on-chips. Lab A Chip 2012, 12, 2156–2164. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nrm3620
http://www.ncbi.nlm.nih.gov/pubmed/23839578
http://dx.doi.org/10.1111/j.1538-7836.2004.00902.x
http://www.ncbi.nlm.nih.gov/pubmed/15333043
http://dx.doi.org/10.1016/j.copbio.2013.03.020
http://www.ncbi.nlm.nih.gov/pubmed/23611564
http://dx.doi.org/10.1016/j.actbio.2013.08.038
http://www.ncbi.nlm.nih.gov/pubmed/24012608
http://dx.doi.org/10.1146/annurev-bioeng-071813-105155
http://www.ncbi.nlm.nih.gov/pubmed/24905875
http://dx.doi.org/10.2217/nnm.13.50
http://www.ncbi.nlm.nih.gov/pubmed/23560411
http://dx.doi.org/10.1089/ten.2006.12.631
http://www.ncbi.nlm.nih.gov/pubmed/16674278
http://dx.doi.org/10.1002/biot.200900004
http://www.ncbi.nlm.nih.gov/pubmed/19507149
http://dx.doi.org/10.1016/j.biomaterials.2003.10.052
http://www.ncbi.nlm.nih.gov/pubmed/15020146
http://dx.doi.org/10.1016/j.msec.2006.05.047
http://dx.doi.org/10.1039/b819201d
http://www.ncbi.nlm.nih.gov/pubmed/20023735
http://dx.doi.org/10.1007/s002160100962
http://dx.doi.org/10.1142/S1568558611000258
http://dx.doi.org/10.2217/rme.13.97
http://www.ncbi.nlm.nih.gov/pubmed/24750061
http://dx.doi.org/10.1016/j.copbio.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19896823
http://dx.doi.org/10.1097/00000658-199512000-00008
http://www.ncbi.nlm.nih.gov/pubmed/8526581
http://dx.doi.org/10.1002/ar.a.10059
http://www.ncbi.nlm.nih.gov/pubmed/12740943
http://www.ncbi.nlm.nih.gov/pubmed/14562270
http://dx.doi.org/10.1109/MEMB.2003.1256277
http://dx.doi.org/10.1038/nprot.2006.448
http://www.ncbi.nlm.nih.gov/pubmed/17401352
http://dx.doi.org/10.1038/nbt.2958
http://www.ncbi.nlm.nih.gov/pubmed/25093879
http://dx.doi.org/10.1098/rsta.2009.0010
http://www.ncbi.nlm.nih.gov/pubmed/19324724
http://dx.doi.org/10.1039/c2lc40089h
http://www.ncbi.nlm.nih.gov/pubmed/22555377


Polymers 2016, 8, 19 16 of 17

63. Marga, F.; Neagu, A.; Kosztion, I.; Forgacs, G. Developmental biology and tissue engineering. Birth. Defects.
Res. C 2007, 81, 320–328. [CrossRef] [PubMed]

64. Steer, D.L.; Nigam, S.K. Developmental approaches to kidney tissue engineering. Am. J. Physiol. Renal. 2004,
286, F1–F7. [CrossRef] [PubMed]

65. Derby, B. Printing and prototyping of tissues and scaffolds. Science 2012, 338, 921–926. [CrossRef] [PubMed]
66. Kasza, K.E.; Rowat, A.C.; Liu, J.Y.; Angelini, T.E.; Brangwynne, C.P.; Koenderink, G.H.; Weitz, D.A. The cell

as a material. Curr. Opin. Cell Biol. 2007, 19, 101–107. [CrossRef] [PubMed]
67. Mironov, V.; Visconti, R.P.; Kasyanov, V.; Forgacs, G.; Drake, C.J.; Markwald, R.R. Organ printing: Tissue

spheroids as building blocks. Biomaterials 2009, 30, 2164–2174. [CrossRef] [PubMed]
68. Kelm, J.M.; Lorber, V.; Snedeker, J.G.; Schmidt, D.; Tenzer, A.B.; Weisstanner, M.; Odermatt, B.; Mol, A.;

Zund, G.; Hoerstrup, S.P. A novel concept for scaffold-free vessel tissue engineering: Self-assembly of
microtissue building blocks. J. Biotechnol. 2010, 148, 46–55. [CrossRef] [PubMed]

69. Kamei, M.; Saunders, W.B.; Bayless, K.J.; Dye, L.; Davis, G.E.; Weinstein, B.M. Endothelial tubes assemble
from intracellular vacuoles in vivo. Nature 2006, 442, 453–456. [CrossRef] [PubMed]

70. Alajati, A.; Laib, A.M.; Weber, H.; Boos, A.M.; Bartol, A.; Ikenberg, K.; Korff, T.; Zentgraf, H.; Obodozie, C.;
Graeser, R.; et al. Spheroid-based engineering of a human vasculature in mice. Nat. Methods 2008, 5, 439–445.
[CrossRef] [PubMed]

71. Huh, D.; Matthews, B.D.; Mammoto, A.; Zavala, M.M.; Hsin, H.Y.; Ingber, D.E. Reconstituting organ-level
lung functions on a chip. Science 2010, 328, 1662–1668. [CrossRef] [PubMed]

72. Sonntag, F.; Schilling, N.; Mader, K.; Gruchow, M.; Klotzbach, U.; Lindner, G.; Horland, R.; Wagner, I.;
Lauster, R.; Howitz, S.; et al. Design and prototyping of a chip-based multi-micro-organoid culture system
for substance testing, predictive to human (substance) exposure. J. Biotechnol. 2010, 148, 70–75. [CrossRef]
[PubMed]

73. Gunther, A.; Yasotharan, S.; Vagaon, A.; Lochovsy, C.; Pinto, S.; Yang, J.; Lau, C.; Bolz, J.V.; Bolz, S.S.
A microfluidic platform for probing small artery structure and function. Lab A Chip 2010, 10, 2341–2349.
[CrossRef] [PubMed]

74. Mankovich, N.J.; Samson, D.; Pratt, W.; Lew, D.; Beumer, J., 3rd. Surgical planning using three-dimensional
imaging and computer modeling. Otolaryngol. Clin. North. Am. 1994, 27, 875–889. [PubMed]

75. Pykett, I.L.; Newhouse, J.H.; Buonanno, F.S.; Brady, T.J.; Goldman, M.R.; Kistler, J.P.; Pohost, G.M. Principles
of nuclear magnetic resonance imaging. Radiology 1982, 143, 157–168. [CrossRef] [PubMed]

76. Lee, W.; Debasitis, J.C.; Lee, V.K.; Lee, J.H.; Fischer, K.; Edmister, K.; Park, J.K.; Yoo, S.S. Multi-layered culture
of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials
2009, 30, 1587–1595. [CrossRef] [PubMed]

77. Horst, M.; Milleret, V.; Nötzli, S.; Madduri, S.; Sulser, T.; Gobet, R.; Eberli, D. Increased porosity of electrospun
hybrid scaffolds improved bladder tissue regeneration. J. Biomed. Mater. Res. A 2014, 102, 2116–2124.
[CrossRef] [PubMed]

78. Murphy, S.V.; Skardal, A.; Atala, A. Evaluations of hydrogels for bio-printing application. J. Biomed. Mater.
Res. A 2012, 101, 272–284. [CrossRef] [PubMed]

79. Michael, S.; Sorg, H.; Peck, C.T.; Koch, L.; Deiwick, A.; Chichkov, B.; Vogt, P.M.; Reimers, K. Tissue engineered
skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber
in mice. PLoS ONE 2013, 8, e57741. [CrossRef] [PubMed]

80. Koch, L.; Kuhn, S.; Sorg, H.; Gruene, M.; Schlie, S.; Gaebel, R.; Polchow, B.; Reimers, K.; Stoelting, S.;
Ma, N.; et al. Laser printing of skin cells and human stem cells. Tissue Eng. Methods 2010, 16, 847–854.
[CrossRef] [PubMed]

81. Nakamura, M.; Okano, H. Cell transplantation therapies for spinal cord injury focusing on induced
pluripotent stem cell. Cell. Res. 2013, 23, 70–80. [CrossRef] [PubMed]

82. Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell 2006, 126, 663–667. [CrossRef] [PubMed]

83. Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of
pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [CrossRef]
[PubMed]

84. Uitto, J. Regenerative medicine for skin disease: iPS cells to the rescue. J. Investig. Dermatol. 2011, 131,
812–814. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/bdrc.20109
http://www.ncbi.nlm.nih.gov/pubmed/18228266
http://dx.doi.org/10.1152/ajprenal.00167.2003
http://www.ncbi.nlm.nih.gov/pubmed/14656756
http://dx.doi.org/10.1126/science.1226340
http://www.ncbi.nlm.nih.gov/pubmed/23161993
http://dx.doi.org/10.1016/j.ceb.2006.12.002
http://www.ncbi.nlm.nih.gov/pubmed/17174543
http://dx.doi.org/10.1016/j.biomaterials.2008.12.084
http://www.ncbi.nlm.nih.gov/pubmed/19176247
http://dx.doi.org/10.1016/j.jbiotec.2010.03.002
http://www.ncbi.nlm.nih.gov/pubmed/20223267
http://dx.doi.org/10.1038/nature04923
http://www.ncbi.nlm.nih.gov/pubmed/16799567
http://dx.doi.org/10.1038/nmeth.1198
http://www.ncbi.nlm.nih.gov/pubmed/18391960
http://dx.doi.org/10.1126/science.1188302
http://www.ncbi.nlm.nih.gov/pubmed/20576885
http://dx.doi.org/10.1016/j.jbiotec.2010.02.001
http://www.ncbi.nlm.nih.gov/pubmed/20138930
http://dx.doi.org/10.1039/c004675b
http://www.ncbi.nlm.nih.gov/pubmed/20603685
http://www.ncbi.nlm.nih.gov/pubmed/7816436
http://dx.doi.org/10.1148/radiology.143.1.7038763
http://www.ncbi.nlm.nih.gov/pubmed/7038763
http://dx.doi.org/10.1016/j.biomaterials.2008.12.009
http://www.ncbi.nlm.nih.gov/pubmed/19108884
http://dx.doi.org/10.1002/jbm.a.34889
http://www.ncbi.nlm.nih.gov/pubmed/23893914
http://dx.doi.org/10.1002/jbm.a.34326
http://www.ncbi.nlm.nih.gov/pubmed/22941807
http://dx.doi.org/10.1371/journal.pone.0057741
http://www.ncbi.nlm.nih.gov/pubmed/23469227
http://dx.doi.org/10.1089/ten.tec.2009.0397
http://www.ncbi.nlm.nih.gov/pubmed/19883209
http://dx.doi.org/10.1038/cr.2012.171
http://www.ncbi.nlm.nih.gov/pubmed/23229514
http://dx.doi.org/10.1016/j.cell.2006.07.024
http://www.ncbi.nlm.nih.gov/pubmed/16904174
http://dx.doi.org/10.1016/j.cell.2007.11.019
http://www.ncbi.nlm.nih.gov/pubmed/18035408
http://dx.doi.org/10.1038/jid.2011.2
http://www.ncbi.nlm.nih.gov/pubmed/21407233


Polymers 2016, 8, 19 17 of 17

85. Harding, J.; Roberts, R.M.; Mirochnitchenko, O. Large animal models for stem cell therapy. Stem Cell Res. Ther.
2013, 4, 23. [CrossRef] [PubMed]

86. Ohyama, M.; Okano, H. Promise of human induced pluripotent stem cells in skin regeneration and
investigation. J. Investig. Dermatol. 2014, 134, 605–609. [CrossRef] [PubMed]

87. Ko, S.H.; Nauta, A.; Wong, V.; Glotzbach, J.; Gurtner, G.C.; Longaker, M.T. The role of stem cells in cutaneous
wound healing: What do we really know? Plast. Reconstr. Surg. 2011, 127, 10S–20S. [CrossRef] [PubMed]

88. Okano, H.; Nakamura, M.; Yoshida, K.; Okada, Y.; Tsuji, O.; Nore, S.; Ikeda, E.; Yamanaka, S.; Miura, K. Steps
toward safe cell therapy using induced pluripotent stem cells. Circ. Res. 2013, 112, 523–533. [CrossRef]
[PubMed]

89. Katsetos, C.D.; Legido, A.; Perentes, E.; Mörk, S.J. Class III β-tubulin isotype: A key cytoskeletal protein at
the crossroads of developmental neurobiology and tumor neuropathology. J. Child Neurol. 2003, 18, 851–866.
[CrossRef] [PubMed]

90. Aasen, T.; Raya, A.; Barrero, M.J.; Garreta, E.; Consiglio, A.; Gonzalez, F.; Vassena, R.; Bilic, J.; Pekarik, V.;
Tiscornia, G.; et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes.
Nat. Biotechnol. 2008, 26, 1276–1284. [CrossRef] [PubMed]

91. Utikal, J.; Maherali, N.; Kulalert, W.; Hochedlinger, K. Sox2 is dispensable for the reprogramming of
melanocytes and melanoma cells into induced pluripotent stem cells. J. Cell. Sci. 2009, 122, 3502–3510.
[CrossRef] [PubMed]

92. Tsai, S.Y.; Bouwman, B.A.; Ang, Y.S.; Kim, S.J.; Lee, D.F.; Lemischka, I.R.; Rendl, M. Single transcription
factor reprogramming of hair follicle dermal papilla cells to induced pluripotent stem cells. Stem Cells 2011,
29, 964–971. [CrossRef] [PubMed]

93. Itoh, M.; Kiuru, M.; Cairo, M.S.; Christiano, A.M. Generation of keratinocytes from normal and recessive
dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 2011, 108,
8797–8802. [CrossRef] [PubMed]

94. Veraitch, O.; Kobayashi, T.; Imaizumi, Y.; Akamatsu, W.; Sasaki, T.; Yamanaka, S.; Amagai, M.; Okano, H.;
Ohyama, M. Human induced pluripotent stem cell-derived ectodermal precursor cells contribute to hair
follicle morphogenesis in vivo. J. Investig. Dermatol. 2009, 133, 1479–1488. [CrossRef] [PubMed]

95. Yang, R.; Jiang, M.; Kumar, S.; Xu, T.; Wang, F.; Xiang, L.; Xu, X. Generation of melanocytes from induced
pluripotent stem cells. J. Investig. Dermatol. 2011, 131, 2458–2466. [CrossRef] [PubMed]

96. Hanson, S.E.; Bentz, M.L.; Hematti, P. Mesenchymal stem cell therapy for nonhealing cutaneous wounds.
Plast. Reconstr. Surg. 2010, 125, 510–516. [CrossRef] [PubMed]

97. Jeremias, T.S.; Machado, R.G.; Silvia, J.P.; Leonardi, D.F.; Trentin, A.G. Dermal substitutes support the growth
of human skin-derived mesenchymal stromal cells: Potential tool for skin regeneration. PLoS ONE 2014, 9,
e89542. [CrossRef] [PubMed]

98. Perng, C.K.; Kao, C.I.; Yang, Y.P.; Lin, H.T.; Lin, W.B.; Chu, Y.R.; Wang, H.J.; Ma, H.; Ku, H.H.; Chiou, S.H.
Culturing adult human bone marrow stem cells on gelatin scaffold with pNIPAAm as transplanted grafts
for skin regeneration. J. Biomed. Mater. Res. A 2008, 84, 622–630. [CrossRef] [PubMed]

99. Sheng, Z.; Fu, X.; Cai, S.; Lei, Y.; Sun, T.; Bai, T.; Chen, M. Regeneration of functional sweat gland-like
structures by transplanted differentiated bone marrow mesenchymal stem cells. Wound Repair Regen. 2009,
17, 427–435. [CrossRef] [PubMed]

100. Vaughan, M.B.; Ramirez, R.D.; Andrews, C.M.; Wright, W.E.; Shay, J.W. H-Ras Expression in immortalized
keratinocytes produces an invasive epithelium in cultured skin equivalents. PLoS ONE 2009, 4, e7908.
[CrossRef] [PubMed]

101. Huang, S.P.; Huang, C.H.; Shyu, J.F.; Lee, H.S.; Chen, S.G.; Chan, J.Y.; Huang, S.M. Promotion of wound
healing using adipose-derived stem cells in radiation ulcer of a rat model. J. Biomed. Sci. 2013, 20, 51–61.
[CrossRef] [PubMed]

102. Rodrigues, C.; Assis, A.M.; Moura, D.J.; Halmenschlager, G.; Jenifer, S.; Xavier, L.L.; Fernandes, M.C.;
Wink, M.R. New therapy of skin repair combining adipose-derived mesenchymal stem cells with sodium
carboxymethylcellulose scaffold in a pre-clinical rat model. PLoS ONE 2013, 9, e96241. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/scrt171
http://www.ncbi.nlm.nih.gov/pubmed/23672797
http://dx.doi.org/10.1038/jid.2013.376
http://www.ncbi.nlm.nih.gov/pubmed/24132166
http://dx.doi.org/10.1097/PRS.0b013e3181fbe2d8
http://www.ncbi.nlm.nih.gov/pubmed/21200267
http://dx.doi.org/10.1161/CIRCRESAHA.111.256149
http://www.ncbi.nlm.nih.gov/pubmed/23371901
http://dx.doi.org/10.1177/088307380301801205
http://www.ncbi.nlm.nih.gov/pubmed/14736079
http://dx.doi.org/10.1038/nbt.1503
http://www.ncbi.nlm.nih.gov/pubmed/18931654
http://dx.doi.org/10.1242/jcs.054783
http://www.ncbi.nlm.nih.gov/pubmed/19723802
http://dx.doi.org/10.1002/stem.649
http://www.ncbi.nlm.nih.gov/pubmed/21563278
http://dx.doi.org/10.1073/pnas.1100332108
http://www.ncbi.nlm.nih.gov/pubmed/21555586
http://dx.doi.org/10.1038/jid.2013.7
http://www.ncbi.nlm.nih.gov/pubmed/23321923
http://dx.doi.org/10.1038/jid.2011.242
http://www.ncbi.nlm.nih.gov/pubmed/21833016
http://dx.doi.org/10.1097/PRS.0b013e3181c722bb
http://www.ncbi.nlm.nih.gov/pubmed/20124836
http://dx.doi.org/10.1371/journal.pone.0089542
http://www.ncbi.nlm.nih.gov/pubmed/24586857
http://dx.doi.org/10.1002/jbm.a.31291
http://www.ncbi.nlm.nih.gov/pubmed/17635011
http://dx.doi.org/10.1111/j.1524-475X.2009.00474.x
http://www.ncbi.nlm.nih.gov/pubmed/19660052
http://dx.doi.org/10.1371/journal.pone.0007908
http://www.ncbi.nlm.nih.gov/pubmed/19936293
http://dx.doi.org/10.1186/1423-0127-20-51
http://www.ncbi.nlm.nih.gov/pubmed/23876213
http://dx.doi.org/10.1371/journal.pone.0096241
http://www.ncbi.nlm.nih.gov/pubmed/24788779
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Overview of Bio-Printing 
	Bioprinting of Hydrogels 
	Emergence of 3D Printing for Skin Repair 
	Biomimicry 
	Autonomous Self-Assembly 
	Mini-Tissue 

	Laser Assisted Bioprinting 

	Advances in Stem Cells for Skin Substitute 
	Role of Induced Pluripotent (iPSCs) and Embryonic Stem Cells 
	Manipulation of Mesenchymal Stem Cells for Skin Repair 
	Adipose-Derived Stem Cells for Skin Regeneration 

	Conclusions 

