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Abstract: We propose a stochastic method to generate exactly the overdamped Langevin dynamics
of semi-flexible Gaussian chains, conditioned to evolve between given initial and final conformations
in a preassigned time. The initial and final conformations have no restrictions, and hence can be
in any knotted state. Our method allows the generation of statistically independent paths in a
computationally efficient manner. We show that these conditioned paths can be exactly generated by
a set of local stochastic differential equations. The method is used to analyze the transition routes
between various knots in crossable filamentous structures, thus mimicking topological reconnections
occurring in soft matter systems or those introduced in DNA by topoisomerase enzymes. We find
that the average number of crossings, writhe and unknotting number are not necessarily monotonic
in time and that more complex topologies than the initial and final ones can be visited along the
route.
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1. Introduction

Filamentous systems are typically strongly affected by topological constraints in their
conformational, mechanical and dynamical properties. This is especially evident for self-avoiding ring
polymers, which are trapped in a specific knotted state that cannot be altered in the course of their
free dynamical evolution. For these reasons, much interest has been spurred recently by the dramatic
topological changes observed in crossable filamentous structures that can appear in dissipative systems.
Notable instances include entangled optical beams [1,2], vortex lines in fluids [3], magnetic field lines
in a plasma [4] and defect lines in liquid crystals [5–10]. By contrast to polymers, strand crossings can
occur when these filaments collide (subject to specific local conservation rules [11–13]), thus creating
the conditions for dynamical changes in topology.

Significant efforts are being made to map out the possible reconnection pathways and establish
their recurrence across various dissipative systems [14,15]. A key related question is whether the
observed modes of topological changes are any different from those sustained by semi-flexible phantom
rings. These systems, in fact, serve as terms of reference to understand the action of topoisomerase
enzymes. These are enzymes that can progressively simplify the global knotted topology of DNA
rings by fostering suitable local strand passages. Many efforts are accordingly made to understand
which local selection criteria for strand passage would have the same disentangling effects on knotted
phantom rings [16–21].

Advancements along these lines depend, at least in part, on the possibility to generate
computationally, or predict theoretically, physically-viable trajectories connecting two conformations
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with preassigned topology. This task is, in general, very challenging because spontaneous dynamical
evolutions from a given initial state are unlikely to end up in a preassigned target one within a finite
computational time, especially when significant free energy barriers are present along the route. Such
difficulties are usually tackled by accelerating the dynamics using path sampling methods [22–30] or
with steered molecular dynamics techniques based on suitable external, and possibly time-dependent
forces [31–36]. These schemes have proved essential for profiling free energy landscapes and establishing
the salient steps along transition pathways. At the same time, they usually do not leave good control
over the probabilistic weight of the trajectories, and hence on their representative significance.

Here we present a novel theoretical, and computationally efficient scheme based on Langevin
bridges [37,38] that allows one to connect two states with preassigned geometry by means of unbiased
and physically-viable trajectories. With this strategy, that is entirely general, we are able to study in
great detail the canonically-relevant transitions pathways of semi-flexible rings between two assigned
conformations of any topology. We show that these canonical transition pathways are often not
minimal, meaning that more complex topologies than the initial and final ones can be visited along the
route. This exposes an unsuspectedly rich phenomenology of topological rearrangements that could
be explored and verified in future experiments on entangled soft matter systems.

2. Methods

2.1. The Conditioned Langevin Equation

For the sake of simplicity, we start by illustrating the method on a one-dimensional system,
following closely the presentation given in ref. [37]. We assume that the system is driven by a force
F(x, t) and is subject to stochastic dynamics in the form of an overdamped Langevin equation:

dx
dt

=
1
γ

F(x(t), t) + η(t) (1)

where x(t) is the position of the particle at time t which experiences the force F(x, t). The friction
coefficient γ is related to the particle diffusion coefficient D through the Einstein relation D = kBT/γ,
where kB is the Boltzmann constant and T the temperature of the thermostat. Finally, η(t) is a Gaussian
white noise with moments given by 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = 2 D δ(t− t′).

One can show (see refs. [37], and Supplementary Materials) that the Langevin trajectories starting
at x = 0 at time t = 0 and conditioned to end at x f at time t f , can be generated by a Langevin equation
with an additional potential force

dx
dt

=
1
γ

F + 2D
∂ ln Q

∂x
+ η(t) (2)

where
Q(x, t) = P(x f , t f |x, t) (3)

and P(x f , t f |x, t) denotes the probability to find the particle at x f at time t f , given that it was at x
at time t.

This equation generates Brownian paths, starting at (x0, 0) conditioned to end at (x f , t f ), with

unbiased statistics. It is the additional term 2D ∂ ln Q
∂x in the conditioned Langevin equation that

guarantees that the trajectories starting at (x0, 0) will end at (x f , t f ) and are statistically unbiased.
Equation (2) is straightforwardly generalized to systems with many degrees of freedom.

Specifically, for systems comprising N particles interacting via a potential U and subject to an external
force Fn acting on particle n, the evolution of the position vector rn of the nth particle, is given by:

drn

dt
= − 1

γ
∇rn U +

1
γ

Fn(t) + 2D∇rn ln Q({rn} , t) + ηn(t) (4)
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where Q({rn} , t) = P
(
{r( f )

n }, t f | {rn}, t
)

and the Gaussian noise ηn(t) satisfies

〈η(α)
n (t)〉 = 0, 〈η(α)

n (t)η(α′)
n′ (t′)〉 = 2 kBT

γ
δnn′δαα′δ(t− t′) (5)

where α labels the Cartesian coordinates x, y, z.

2.2. Polymer Chain

We now specialize Equation (4) to the case of ring polymers that freely evolve under the action of
the following inter-monomer potential, U

U
kBT

=
N

∑
n=1

[
3

2a2 (rn+1 − rn)
2 +

K
2
(rn+1 − 2rn + rn−1)

2
]

where rN = r0 and rN+1 = r1, since the chain is a ring.
The first term is the elasticity of the polymer chain, whereas the second represents its bending

rigidity. This expression for the bending rigidity is approximate, since the monomer length is not fixed
in this model. However, this is a standard mean-field type model to represent semi-flexible polymers.
We further assume no external force, Fn(t) = 0.

To model chains with preassigned root-mean-square bond length, b, and persistence length, lP,
the bare parameters a and K must be set by solving the following equations:

lP =
√

Ka2

3

b2 = 1
N 〈∑

N
n=1 (rn+1 − rn)

2〉

= a2

N ∑N−1
p=0

[
1 + 2Ka2

3 (1− cos ωp)
]−1

(6)

where ωp = 2π
N p. For large K and sufficiently long chains, Equation (6) yields the expected linear

dependence of the persistence length on the chain bending rigidity (see Supplementary Materials).
For the considered polymer case, the Langevin bridge equation of Equation (4) is best expressed

in Fourier space:
dρ̃p

dt
= −Ωpρ̃p +

D
N
∇ρ̃p

log Q + η̃p (7)

where

ρ̃p =
2
N

N

∑
n=1

cos(ωpn) rn (8)

Ωp = (3/a2) (1− cos ωp) + 2K(1− cos ωp)
2 (9)

and η̃p are the Fourier series of ηn(t) and are thus Gaussian white noises, defined by their moments

〈η̃α
p(t)〉 = 0 (10)

〈η̃(α)
0 (t)η̃(α′)

p (t′)〉 =
2D
N

δp0δαα′δ(t− t′) (11)

〈η̃(α)
p (t)η̃(α′)

p′ (t′)〉 =
D
N

δpp′δαα′δ(t− t′) . (12)

The Green’s function Q(ρ̃p, t) can be computed exactly by solving the Langevin equation in Fourier
space. The calculation is straightforward, see Supplementary Materials, and yields the following
bridge equation
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dρ̃0
dt

=
ρ̃
( f )
0 − ρ̃0(t)

t f − t
+ η̃0(t) (13)

dρ̃p
dt = −Ωpρ̃p(t)

+
Ωp

sinh[Ωp(t f−t)]

(
ρ̃
( f )
p − ρ̃p(t)e

−Ωp(t f−t)
)

+ η̃p(t)

(14)

where Ωp = (3/a2) (1− cos ωp) + 2K(1− cos ωp)2 and ρ̃
( f )
p denotes the final configuration of the

chain in Fourier components. These equations can be discretized and solved numerically, from an
initial configuration ρ̃

(0)
p to a final one ρ̃

( f )
p .

We point out that the time-reversed trajectory is a legitimate solution of the bridge equations
starting from {r( f )} at time t = 0 and ending in {r(0)} at time t = t f . Also note that within this model,
the contour length of the chain is not conserved during the time evolution. For representation purposes,
it is possible to rescale the contour length to its initial value at any given time t when inverting back
from Fourier to real space representation.

2.3. Circular Permutations

In the bridge Equations (13) and (14), monomers in the initial and final states are in one-to-one
correspondence. To study the evolution between two ring shapes in the absence of external forces,
one should allow the initial configuration {r(0)1 , . . . , r(0)n } to go to any circular permutation of the final

configuration, i.e. {r( f )
1+n0

, . . . , r( f )
N+n0

}, for any n0 = 0, . . . , N − 1, where we assume periodic conditions
since the chain is a ring rn+N = rn. This requires substituting the single final state with a combination
of its circular permutations. It has been shown [37] that if the final state is a combination of several
states, the function Q should be modified as

Q({rn} , t) =
N−1

∑
n0=0

P
(
{r( f )

n+n0
}, t f | {rn}, t

)
(15)

so that in absence of an external force, the bridge equations become

dρ̃0

dt
=

ρ̃
( f )
0 − ρ̃0(t)

t f − t
+ η̃0(t) (16)

dρ̃p
dt = −Ωpρ̃p(t) +

Ωp
sinh[Ωp(t f−t)]

1
Q ∑N−1

n0=1

(
ρ̃
(n0)
p −

ρ̃p(t)e−Ωp(t f−t)
)

P(n0)
1 + η̃p(t) .

(17)

where

ρ̃
(n0)
p =

2
N

N

∑
n=1

cos(ωpn) r( f )
n+n0

(18)

and

P(n0)
1 = exp

(
− N

D

N−1

∑
p=1

Ωp

(
ρ̃
(n0)
p − ρ̃p(t)e

−Ωp(t f−t)
)2

1− e−2Ωp(t f−t)

)
Similarly to the case without circular permutation, these equations are easily solved by

discretization. The numerical complexity is increased due to the summation over circular permutations
in Equation (17).
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3. Results and Discussion

We used the Langevin bridging scheme to connect various pairs of ring polymer conformations
tied in different knot types. The initial and final structures were picked from an equilibrated
distribution (generated with a Monte Carlo scheme) of self-avoiding semi-flexible rings. These were
modelled as a succession of N = 240 cylinders with diameter σ = b/4, where b is the length of the
cylinder axis, and nominal Kuhn length equal to 10b. For integrating the dynamics, and presenting the
results, we took b as the unit of length, and D2/b as the unit of time. In these units, the dynamics was
integrated with a time step equal to 10−4 and for a total timespan equal to 2.

The excluded volume interactions between the cylinders were then switched off during the
Langevin bridging dynamics to allow for topology-unrestricted interconversions. By doing so we
model the interconversions observed for defect lines in liquid crystals or vortex lines in fluids in the
simplest possible manner. In the mentioned systems, in fact, self-crossings events have an energy
cost or are subject to local conservation laws. In this first study, we neglect such interactions to
keep the model amenable to extensive theoretical treatment and hence clarify the physically-viable
reconnections routes in the simplest and most general setup.

We first discuss the transition from an unknotted conformation to a knotted one, and specifically
to a left-handed 51 knot. This topology belongs to the family of torus knots, which are drawable
without self-intersections on the surface of a torus [39]. We chose it as a first example, because it is the
simplest knot type with unknotting number equal to 2. This means that, even in the most favorable
conditions, the transition from the trivial to the 51 topology cannot occur via a single strand passage,
but at least two are needed. This ought to yield interesting knotting pathways.

An overview of the typical transition pathway between these two conformations is given in
Figure 1, where the initial unknotted and final 51-knotted conformations are represented along with
intermediate snapshots.

RMSD to 
final state RMSD to

initial state

<nc>

<Wr>

31 5101

time index [103]

(a)	

(b)	

Figure 1. Transition pathway between an unknotted ring and a left-handed 51 knotted ring. The
root-mean-square distance (RMSD) to the initial and final structures at various stages of the trajectory
are shown in panel (a). Instantaneous configurations at selected times are highlighted. The average
crossing number and writhe are shown in panel (b). The overlayed colored background indicates the
non-trivial topological states, see legend.
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The pathway progresses steadily between these states. This is clarified by the time evolution
of the root-mean-square distance (RMSD) from the start and end conformations, which progresses
steadily and without lag phases, see panel (a). Panel (b), instead, profiles other topology-related metric
properties, such as the average crossing number, 〈nc〉, and the average writhe, 〈Wr〉. We recall that
both quantities are obtained by considering several (1000 in our case) two-dimensional projections of
the oriented conformation and averaging over them a weighted sum of the projected crossings. For the
crossing number each crossing carries the same +1 weight, while for the writhe the weight is either +1
or −1 depending on the handedness (right-hand rule) of the pair of crossings strands [39]. The time
evolution of the two quantities is noticeably noisier than the RMSD profile and its overall trend does
not show a steady progression from initial to final state. The negative values of 〈Wr〉 in the final stages
of the trajectories are consistent with the left-handedness of the target 51 knot.

These properties clarify a posteriori that the imposed duration of the transition pathway is
adequate: it is not so long that the conformations diffuses randomly away from the initial state before
pointing towards the final state, and yet it is not so short that stochastic fluctuations are suppressed.

The associated discontinuous evolution of the topological, knotted state is highlighted by overlaid
colored bands in Figure 1. For most of the evolution, the conformation is locked in the unknotted state
and becomes non trivial only in the last ∼20% of the trajectory. In this latter part, the 51 state is reached
via a different, intermediate topology, namely a 31 knot. This is consistent with previous considerations
on the unknotting number because the 31 or trefoil knot has unknotting number equal to 1 and, being
the simplest knot type, can optimally bridge between the 01 and 51 end states. In more general terms,
knot transitions can occur only within pairs of knots at strand passage distance equal to 1 [40].

This clear and intuitive progression of topological complexity is not always observed. For instance,
in Figure 2 one notes that the pathway connecting the shown 01 and 41 states switches repeatedly
between unknotted and 31 topologies before reaching the the target figure-of-eight one. The intermittent
occupation of trefoil knots is a robust feature of 01 ↔ 41 routes. In fact, though direct 01 ↔ 41 are
clearly possible [40,41] the mediation through 31 knots is observed in 10 out of 32 trajectories connecting
various combinations of equilibrated initial and final states with 01 and 41 topologies.

41

RMSD to 
final state

RMSD to
initial state

<nc>

<Wr>

3101

time index [103]

(a)	

(b)	

Figure 2. Transition pathway between an unknotted ring and a 41 knotted ring. The shown observables
are the same as in Figure 1.
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The observed properties of this prototypical interconversion illustrate well the insight that can be
gained from Langevin bridging schemes and that would not be obtainable by alternative means.

For instance, allowing the system to evolve freely from the initial state would be ineffective to
reach the target topology unless it is highly represented in the canonical ensemble. A fortiori the chance
that the specific target geometry is reached would practically be always negligible.

Master equation approaches based on transition rates between knot types (observed in a large
number of free stochastic evolutions [41]) would be inapplicable too. Transition matrices can correctly
capture that the unknot can be directly interconverted to topologies with unknotting number equal to
1 (31, 41, 52, 61, etc.), but the predicted Markov succession of discrete topologies, and their lifetimes,
connecting 01 to 41 states would have no bearings on the actual conformational evolution of ring
polymers. The transition matrix approach, therefore, can elegantly recapitulate the equilibrium
knotting statistics in terms of Markovian transition between topologies, giving valuable insight into
the interplay of geometry and topology. However, generating viable canonical pathways connecting
actual states would be beyond its scope. This is were the specificity of the proposed Langevin bridging
scheme lies.

From this standpoint, particularly interesting are the transitions between equilibrated rings
with different conformations but same topology. From such pathways one can understand whether
iso-topological transitions occur via pathways that maintain the same knotted state at all times. Our
analysis of 270 trajectories using the same knot type (of up to 5 crossings) for both end states, indicates
that the trajectories are not constrained within a single topology.

Figure 3 shows one such trajectory with end states tied in a 52 knot (same chirality). The bridging
pathway clearly populates knots that are simpler (31) and more complex (74) than the initial and final
topologies. The presence of 74 knots on the route is particularly noteworthy because—unlike the 52

one—it has unknotting number equal to 2. This means that the system evolves through states that
are definitely more entangled than the initial one and these, in turn, are further simplified before the
target state can be reached. This larger-than-expected intermediate complexity is frequent. In our set
of 270 trajectories with end states having the same topology of up to 5 crossings, we observed that 6%
of the canonical trajectories went through states with 6 or more crossings. The most recurrent type of
such knots were 61, 62 and the aforementioned 74.

52 74

RMSD to 
final state

RMSD to
initial state

<nc>

<Wr>

3101

(a)	

(b)	
time index [103]

Figure 3. Transition pathway between two 52 knotted ring. The shown observables are the same as
in Figure 1.
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4. Concluding Remarks

In this study, we showed that Langevin bridging schemes provide an effective and elegant solution
to the challenging problem of generating viable canonical trajectories between two assigned knotted
configurations. The duration of the trajectories can also be specified a priori, thus allowing full control
over the system and the simulation cost.

The method allowed us to explore transition pathways between various combination of ring
conformations of all topologies up to 5 crossings. We established that such pathways often,
though not always, involve intermediate topological states that are more complex than either of
the connected states.

We envisage that extensions of this scheme ought to be particularly useful to study the
reconnection events that take place spontaneously in dissipative systems of fluctuating crossable
filaments and flux tubes. This would require a multicanonical generalization of the approach to deal
with a time-dependent number of components.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/6/196/s1:
Detailed derivation of the bridge equations.
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