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Abstract: Biosensors that detect and convert biological reactions to a measurable signal have gained
much attention in recent years. Between 1950 and 2017, more than 150,000 papers have been
published addressing the applications of biosensors in different industries, but to the best of our
knowledge and through careful screening, critical reviews that describe hydrogel based biosensors
for biomedical applications are rare. This review discusses the biomedical application of hydrogel
based biosensors, based on a search performed through Web of Science Core, PubMed (NLM), and
Science Direct online databases for the years 2000–2017. In this review, we consider bioreceptors to be
immobilized on hydrogel based biosensors, their advantages and disadvantages, and immobilization
techniques. We identify the hydrogels that are most favored for this type of biosensor, as well as
the predominant transduction strategies. We explain biomedical applications of hydrogel based
biosensors including cell metabolite and pathogen detection, tissue engineering, wound healing,
and cancer monitoring, and strategies for small biomolecules such as glucose, lactate, urea, and
cholesterol detection are identified.

Keywords: hydrogel based biosensor; hydrogel; bioreceptors; immobilization; biomedical
application; transduction strategies

1. Introduction

Biosensors that detect and convert biological reactions to a measurable signal have gained much
attention in recent years. By integration of a biologically active component with an appropriate
transducer, biosensors produce a measurable signal generated by chemical reactions. To achieve this
purpose, a biosensor is made up of four main components, as shown in Figure 1.

A bioreceptor, as a molecular species—such as nucleic acid, enzyme, antibody, gene, or a
biological system, such as a cell or an organ—employs a biochemical mechanism to interact with the
analyte. While a transducer produces a measurable signal proportional to the bioreceptor–analyte
interaction [1]. Using different immobilization techniques, bioreceptors are coupled with base
materials [2]. Base materials can be made up of metals, polymers, glass, or composites. Moreover,
hydrogels as a swell able polymer with enviro-sensitive properties are having a profound impact in a
broad range of applications due to their exceptional physicochemical, mechanical, electrical, and optical
properties [3–5]. Despite the period since their initial discovery in 1968, hydrogels have emerged as a
promising platform with surprising and enormous potential for biomedical use. Their applications in
this field are still in a developing phase [6–10].
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Figure 1. A typical biosensor system includes structural elements, materials, and strategies for 
sensing. Hydrogel, as a biocompatible polymer with great ability of water absorption, can be used as 
a base material to form a hydrogel based biosensor. Some sensing strategies (electrochemical, mass 
based, and optical) can be used for identification of a specific biomolecule using mentioned 
measurement methods (conductometric, potentiometric, amperometric, impedimetric, surface 
charge, piezoelectric, megnetoelastic, surface acoustic wave, fiber optic, absorbance, and 
luminescence). Measurement methods are not limited to the mentioned methods explained here and 
other classification (i.e., label based vs. label-free) can be noticed as well. 

In fact, searches for the word “biosensor” in the ISI Web of Science, PubMed, and Science Direct 
databases obtained 46,791, 47,017, and 72,477 hits respectively from the period 1950 to 1 February 
2017. An advanced searches that combined “biosensors” and “hydrogel based” resulted in 702, 497, 
and 4047 findings in the ISI Web of Science, PubMed, and Science Direct databases. Totals of 28, 66 
and 1577 papers were found for “biosensor + hydrogel based + biomedical application” searches in 
the ISI Web of Science, PubMed, and Science Direct databases, respectively. Through careful 
screening, the most published papers were revealed to be those referring to general specifications of 
bioreceptors and transducers. To our knowledge, however, critical reviews that describe hydrogel 
based biosensors for biomedical applications were rare.  

The objectives of this review are to summarize the biomedical applications of hydrogel based 
biosensors, including bioreceptors that have been specifically recommended for hydrogels, the 
methods of immobilization, sensor design, and structural modifications, to identify potential roles of 
hydrogels for biomedical applications, and to suggest areas for future investigation.  

2. Bioreceptors 

Bioreceptors are biomolecular recognition components that are responsible for binding a specific 
particle of interest within a biosystem environment. Although many forms of bioreceptors are 
available to monitor numerous different particles that have been triggered for sensing, they can be 
categorized in five different major groups, as shown in Figure 2 [11,12]. 

Figure 1. A typical biosensor system includes structural elements, materials, and strategies for sensing.
Hydrogel, as a biocompatible polymer with great ability of water absorption, can be used as a base
material to form a hydrogel based biosensor. Some sensing strategies (electrochemical, mass based,
and optical) can be used for identification of a specific biomolecule using mentioned measurement
methods (conductometric, potentiometric, amperometric, impedimetric, surface charge, piezoelectric,
megnetoelastic, surface acoustic wave, fiber optic, absorbance, and luminescence). Measurement
methods are not limited to the mentioned methods explained here and other classification (i.e., label
based vs. label-free) can be noticed as well.

In fact, searches for the word “biosensor” in the ISI Web of Science, PubMed, and Science Direct
databases obtained 46,791, 47,017, and 72,477 hits respectively from the period 1950 to 1 February 2017.
An advanced searches that combined “biosensors” and “hydrogel based” resulted in 702, 497, and
4047 findings in the ISI Web of Science, PubMed, and Science Direct databases. Totals of 28, 66 and
1577 papers were found for “biosensor + hydrogel based + biomedical application” searches in the ISI
Web of Science, PubMed, and Science Direct databases, respectively. Through careful screening, the
most published papers were revealed to be those referring to general specifications of bioreceptors and
transducers. To our knowledge, however, critical reviews that describe hydrogel based biosensors for
biomedical applications were rare.

The objectives of this review are to summarize the biomedical applications of hydrogel based
biosensors, including bioreceptors that have been specifically recommended for hydrogels, the methods
of immobilization, sensor design, and structural modifications, to identify potential roles of hydrogels
for biomedical applications, and to suggest areas for future investigation.

2. Bioreceptors

Bioreceptors are biomolecular recognition components that are responsible for binding a specific
particle of interest within a biosystem environment. Although many forms of bioreceptors are available
to monitor numerous different particles that have been triggered for sensing, they can be categorized
in five different major groups, as shown in Figure 2 [11,12].
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Figure 2. Schematic diagram of five distinct bioreceptor categories (a) antigen/antibodies;  
(b) enzymes; (c) cells and cellular structures; (d) nucleic acids and DNA; and (e) biomimetic. 

Antibodies are Y-shaped, complex proteins used to identify foreign antigens, viruses, and 
bacteria. With specific binding capabilities, antibodies have been used in biosensors. The “lock and 
key fit”—as a unique property of a specific geometrical configuration—is the capability that an 
antigen-specific antibody exhibits when employed as a biosensor [13]. Exploitation of an animal 
immune system is a usual method for production of polyclonal, monoclonal, and recombinant 
antibodies, among which, polyclonal antibodies are popular for their frequent use as immune sensors 
[14]. Recombinant antibodies have been selected to detect structurally diverse antigens including 
haptens, proteins, and carbohydrate moieties.  

Enzymes are another type of bioreceptor attracting attention for their specific binding 
capabilities and catalytic activities that amplify detection [15]. The activities are bestowed by the 
enzyme amino acid residues. For some of these capabilities, however, some enzymes require a 
cofactor, such as inorganic ions or coenzymes, e.g., complex metalorganic/organic molecules [16]. The 
regulatory nature of enzymes has made them attractive for use as biosensors to quantify catalytic 
reactions, including heat, light, and charges, i.e., protons and electrons [17]. Regulation changes of 
the enzymes’ selective conformation serve as a biorecognition method in biosensors [18].  

Nucleic acids use the pairs of C:G (cytosine:guanosin) and A:T (adenine:thymine) in DNA for 
specificity of biorecognition. Hybridization of a certain sequence of a DNA molecule to a specific 
labeled molecule can be utilized in biosensors [19]. In fact, the DNA portion with the specific 
sequence is immobilized to the base material of the biosensor and facilitates biosensing upon 
interaction with the complementary sequence that exists on the targeted molecule [20]. Nucleic acid 
ligands known as aptamers are included in a nucleic acid bioreceptor’s family that is isolated from 
libraries of oligonucleotides through an in vitro “systematic evolution of ligands” process [21,22]. In 
contrast to nucleic acids, these short, single-strand oligonucleotides are believed to distinguish their 
targets by shape rather than by sequence. Therefore, a wide range of small molecules, cells, and 
proteins can be detected by using aptamer bioreceptors [23]. Within these families, catalytic aptamers 
—“aptazymes”—have been introduced, that have high capability of recognizing metabolic 
intermediates at a very low concentration [24]. Aptazymes, like enzyme bioreceptors, can be 
denatured frequently without loss of their catalytic or binding capabilities, and their relatively high 
signal-to-noise ratios make them more attractive than enzymes [25].  

For biorecognition by cells or cellular structures (microorganisms), bioreceptors can be 
performed by either a specific cellular structure or an entire cell binding to certain species. As certain 
chemicals are taken up by cellular structures for digestion, a kind of chemical-specific biosensor is 
fashioned [26,27]. Bacteria and fungi microorganisms are categorized in the cell bioreceptor’s group 
and have been used for toxicity detection [28]. In the bioreceptors of a cellular structure, abundant 
carrier proteins that provide facilities to transport a chemical compound from one place to another 
(surfaces to internal parts or between cells) can be used for molecular recognition [29–31].  

Biomimetic receptors are artificial fabrications employed to mimic a bioreceptor [32,33]. 
Methods used for this purpose include artificial membrane production [34–36], using genetically 
engineered molecules such as lectin based or peptide nucleic acid based molecules [37–39], and 
molecular imprinting [40,41]. Among them, the molecular imprinting technique, which consists of 

Figure 2. Schematic diagram of five distinct bioreceptor categories (a) antigen/antibodies; (b) enzymes;
(c) cells and cellular structures; (d) nucleic acids and DNA; and (e) biomimetic.

Antibodies are Y-shaped, complex proteins used to identify foreign antigens, viruses, and
bacteria. With specific binding capabilities, antibodies have been used in biosensors. The “lock
and key fit”—as a unique property of a specific geometrical configuration—is the capability that an
antigen-specific antibody exhibits when employed as a biosensor [13]. Exploitation of an animal
immune system is a usual method for production of polyclonal, monoclonal, and recombinant
antibodies, among which, polyclonal antibodies are popular for their frequent use as immune
sensors [14]. Recombinant antibodies have been selected to detect structurally diverse antigens
including haptens, proteins, and carbohydrate moieties.

Enzymes are another type of bioreceptor attracting attention for their specific binding capabilities
and catalytic activities that amplify detection [15]. The activities are bestowed by the enzyme amino
acid residues. For some of these capabilities, however, some enzymes require a cofactor, such as
inorganic ions or coenzymes, e.g., complex metalorganic/organic molecules [16]. The regulatory
nature of enzymes has made them attractive for use as biosensors to quantify catalytic reactions,
including heat, light, and charges, i.e., protons and electrons [17]. Regulation changes of the enzymes’
selective conformation serve as a biorecognition method in biosensors [18].

Nucleic acids use the pairs of C:G (cytosine:guanosin) and A:T (adenine:thymine) in DNA
for specificity of biorecognition. Hybridization of a certain sequence of a DNA molecule to a
specific labeled molecule can be utilized in biosensors [19]. In fact, the DNA portion with the
specific sequence is immobilized to the base material of the biosensor and facilitates biosensing upon
interaction with the complementary sequence that exists on the targeted molecule [20]. Nucleic acid
ligands known as aptamers are included in a nucleic acid bioreceptor’s family that is isolated from
libraries of oligonucleotides through an in vitro “systematic evolution of ligands” process [21,22].
In contrast to nucleic acids, these short, single-strand oligonucleotides are believed to distinguish
their targets by shape rather than by sequence. Therefore, a wide range of small molecules, cells,
and proteins can be detected by using aptamer bioreceptors [23]. Within these families, catalytic
aptamers —“aptazymes”—have been introduced, that have high capability of recognizing metabolic
intermediates at a very low concentration [24]. Aptazymes, like enzyme bioreceptors, can be denatured
frequently without loss of their catalytic or binding capabilities, and their relatively high signal-to-noise
ratios make them more attractive than enzymes [25].

For biorecognition by cells or cellular structures (microorganisms), bioreceptors can be performed
by either a specific cellular structure or an entire cell binding to certain species. As certain chemicals are
taken up by cellular structures for digestion, a kind of chemical-specific biosensor is fashioned [26,27].
Bacteria and fungi microorganisms are categorized in the cell bioreceptor’s group and have been used
for toxicity detection [28]. In the bioreceptors of a cellular structure, abundant carrier proteins that
provide facilities to transport a chemical compound from one place to another (surfaces to internal
parts or between cells) can be used for molecular recognition [29–31].

Biomimetic receptors are artificial fabrications employed to mimic a bioreceptor [32,33].
Methods used for this purpose include artificial membrane production [34–36], using genetically
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engineered molecules such as lectin based or peptide nucleic acid based molecules [37–39], and
molecular imprinting [40,41]. Among them, the molecular imprinting technique, which consists of
mixing biomolecules with monomers and a crosslinking agent, has attracted much attention [42–44].
With this method, selective binding sites based on molecular templates are introduced to synthetic
polymers. Figure 3 gives a schematic representation of the fabrication of a molecular imprint biosensor.
Advantages and limitations of different bioreceptors are listed in Table 1.
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are closed systems. 

 

Biomimetic  
[32–37] 

Known as an effective, accessible and inexpensive 
strategy. Physically, very stable (solid-like). Molecular imprint probes do not have the 

same flexibility and selectivity as actual 
bioreceptors. The molecular imprinted polymers can survive in 

destructive environments. 

3. Hydrogels for Biosensing 

As water swellable three-dimensional structures, hydrogels are formed by chemical (covalent 
bonds) or physical (non-covalent interactions) crosslinking. These smart materials with excellent 
biocompatibility are considered to interface progressively with biosystems, but suffer from side 
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Figure 3. The molecular imprinting method for biosensor fabrication is performed by polymerization
of biosystem molecules and monomer(s) mixtures including a high concentration of a crosslinking
agent. Following polymerization and extraction of molecules, molecular holes are employed as
complementary sites for the biosystem’s selected molecule.

Table 1. Advantages and disadvantages of different bioreceptors for hydrogel based biosensors.

Bioreceptor Advantage Disadvantage

Antibody [13,14,45] The immunogen need not be purified
prior to detection.

Expensive and time-consuming method.
Miniaturized immune-PCR detection
methods have not yet been
commercialized.

Enzymes [17,18,46–48] Variety of reaction products arising from
the catalytic process.

Stability problems have been reported.
The detection limits can be very low due
to signal amplification.

Nucleic acids [49,50]

Target molecule can be recognized by
shape and sequence. A wide range of
biomolecules can be detected. High
binding affinity, simple synthesis method
and easy storage have been reported.

It is not easy to design donor/acceptor
labeling strategies. They are sensitive to
pyrimidine specific nucleases that are
abundant in biofluids.

Cells or cellular
structures [7,26,29,31]

Can be used over prolonged periods of
time as cells are closed systems.

Biomimetic [32–37]

Known as an effective, accessible and
inexpensive strategy. Physically, very
stable (solid-like).

Molecular imprint probes do not have
the same flexibility and selectivity as
actual bioreceptors.

The molecular imprinted polymers can
survive in destructive environments.
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3. Hydrogels for Biosensing

As water swellable three-dimensional structures, hydrogels are formed by chemical (covalent
bonds) or physical (non-covalent interactions) crosslinking. These smart materials with excellent
biocompatibility are considered to interface progressively with biosystems, but suffer from side
effects [51–53]. Many features have made them popular for biosensing applications: interaction with
biological components at the molecular level; their regulating viscoelastic properties; being reactive to
external stimuli; possessing antifouling characteristics; and the existence of a wide range of well-known
synthesis methods for incorporating bioreceptors into their highly wet structure.

Hydrogel-based biosensors can detect biological events in two ways. The first includes
hydrogels without bioreceptors, whose swelling properties change in response to selected biological
interactions [54]. Ionic hydrogels with environmental sensitivity—for example to pH, temperature,
and electrical field—have been widely used in this group [55]. pH-sensitive hydrogels either admit
or release protons in response to appropriate ionic strength alterations in the surrounding aqueous
biosystem. The more ionized ionic hydrogels are, the more electrostatic repulsion between polymeric
chains will be created, leading to a negative or positive swelling ratio [56]. The same scenario has
been observed for polyelectrolyte gels in response to an electric field, the intensity of which was
responsible for swelling and de-swelling processes. The higher the electric field intensity, the more
fixed charges will exist that affect the degree of swelling [57]. A copolymer of hydrophobic and
hydrophilic monomers can introduce a thermo-responsive hydrogel, where the ratio of the monomers
is responsible for phase transition in response to changes in biosystem temperature [58]. Apart from
the reasons mentioned for phase transition, the biological interactions in a biosystem cause swelling
alteration and may translate to a macroscopic response. Hence, the macroscopic response needs to be
used as optical, conductometric, amperometric, or mechanical readouts for biosensing.

With respect to hydrogel porous structures and their unique large internal surfaces, the second way
of detecting biological events involves hydrogel-based biosensors that can accommodate bioreceptors
for detection of biochemical or biological interactions. With this method, hydrogel immobilized
bioreceptors are employed for hosting biomolecular recognition components to identify a definite event
of a biosystem. Of major importance for designing this type of biosensor are stable immobilization of
bioreceptors, surface bonding strategies, prevention of nonspecific protein adsorption to the hydrogel
surface, probe density, flexibility, and swelling kinetics.

3.1. Polyvinyl Alcohol

Polyvinyl alcohol (PVA) hydrogels have been widely used in various biomedical applications
due to their biocompatibility, hydrophilic properties, and biomechanical characteristics. Relying on
their physical crosslinking, the performance PVA and its composites with glucose [59–65],
triglyceride [66,67], ethanol [68], urea [69–72], hydrogen peroxide [73,74], toxicity [75–77], and
genetic [78] sensors have been investigated. The flexibility of PVA hydrogels as well as their stability
under a wide range of environmental conditions allows them to mimic soft tissue and to minimize
inflammation and fibrosis, an ability that is necessary for implantable sensors.

3.2. Polyethylene Glycol

Polyethylene glycol (PEG), a hydrophilic biomaterial, has excellent antifouling properties
conferred by its low interfacial energy, resisting protein and cell surface adhesion [79–81]. With its
biocompatibility, PEG is widely used as a biosensor with antifouling characteristics. In recent studies,
PEG and its hybrids have been employed for the fabrication of electrochemical [82–90], optical [91–98],
and mass based [99–102] biosensors.
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3.3. Polyacrylate Families

Polyacrylic acid, polyhydroxyethyl methacrylate, polyacrylamide, and poly(N-
isopropylacrylamide) are some examples of stimulus-responsive hydrogels used mainly for
pH and temperature sensing within a biosystem. As their hydrophilicity hinges on charged group
density, ionic hydrogels can reversibly swell and de-swell relative to changes in surrounding conditions.
Recently, fabrication patterning techniques have been noted as an essential development phase for
greater utilization of the sensing properties of ionic hydrogels, especially when they are used without
utilizing immobilized bioreceptors. Micromolding, microlithography (photomask, ion beam, and
optical maskless) [103], wet-etching, microcontact printing, and evaporation-induced self-assembly
are well-known rapid prototyping methods reported in some studies. Development sensing systems
for taste [104], ammonia [105,106], glucose [107–109], pH [103,110–129], humidity [130–132], chemical
and biochemical molecules [133–143], and temperature [144] have been reported using polyacrylate
family hydrogels.

3.4. Hydrogels with Biological Origin

Polysaccharides and polypeptides including alginate, chitin and chitosan, agarose, cellulose,
dextran, and hyaluronic acid are biomaterials with gel-forming properties. The unique properties
of these biological origin hydrogels—including biocompatibility, hydrophilicity, heavy metal ion
chelation, high protein affinity, ease of surface chemical modification granted by the availability
of reactive functional groups, low cost of preparation, acceptable mechanical properties, and facile
fabrication method even in small geometries—make them attractive for biosensor applications [145].
The numerous applications of biological origin hydrogel with immobilized bioreceptors reveal that
they are widely utilized in the fabrication of biosensors [46,47,146–156].

3.5. Electroconductive Hydrogels

Electroconductive hydrogels, combinations of hydrated structures with electronic functionality,
have attracted attention in the biomaterials field due to their unique properties. In such hydrogels,
conductive polymers facilitate electron transport across the interface, while a large surface area with
greater diffusivity is provided by porous hydrogels. The flexibility and processability of these hydrogels
when conducting electrons, as well as functionalities conferred by chemical modifications, make them
prominent in biosensors’ technology. Polypyrrole, polyaniline, and poly(ethylenedioxy thiophene) are
the most common conducting polymers used for conductive hydrogel fabrication. Electrochemical
enzyme-immobilized biosensors are redox active, hence their reaction with the biosystem environment
results in electron transfer across the electroconductive hydrogel that produces a current or alters the
potential to generate voltage. On the other hand, the doping/de-doping mechanism of conductive
hydrogels leads to changes in surface resistance, current, or voltage that can be monitored to gauge
response to concentrations. Also, the impedance between electrode and environment decreases due
to the ionic conductivity of electroconductive hydrogels. Electroconductive hydrogels have been
used for the detection of vitamins [157], glucose [158–164], human metabolites [165], cell viability and
function [166], lactate [167,168], DNA [169–171], dopamine [172], peptide [173], tumors [174,175], and
hydrogen peroxide [176].

4. Immobilization Techniques

Utilizing a reliable strategy for the immobilization of bioreceptors on a hydrogel surface is one of
the most important and critical steps in biosensor design and fabrication. Selection of an appropriate
immobilization strategy, monitoring of the bioreceptor’s degradation and viability, availability of
reactive groups, and binding type (covalent or non-covalent) all need to be taken into account [177].
In general, bioreceptors can be immobilized on the hydrogel surface through physical adsorption and
entrapment, covalent binding, crosslinking methods, or a combination of some of these techniques.
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Based on the technique selected, the immobilization method can be reversible or irreversible [173].
In the case of irreversible immobilization, the attached bioreceptor cannot be detached without
destroying either the hydrogel microstructure or the activity of the bioreceptor.

Hydrogels that are prepared by the solution polymerization are appropriate for bioreceptor
immobilization by entrapping; however, bioreceptor leakage is undesirable [178]. The entrapment
method is preferable if the average intermolecular distance of the hydrogel (hydrogel porosity)
is less than the size of the bioreceptor. Due to the stability of covalent bonds shaped between
hydrogel and bioreceptor, covalent binding immobilization is the most widely used of the different
immobilization methods [179]. However, because release of the bioreceptor upon use is minimized in
this method, special attention is required to avoid blockage of the active site by the possible formation
of covalent linkages. Crosslinking agents with functionalities greater than 2 are widely used in
crosslinking-immobilization techniques. The method is mainly based on the ability of a crosslinker to
react with a bioreceptor and the hydrogel surface.

Some costly irreversible methods are available. Affinity ligand binding and physical adsorption
is a simple immobilization technique in which bioreceptors are attached to the hydrogel surface
through van der Waals reactions, salt linkage, or hydrogen binding. The functionality of the
bioreceptors is preserved using this technique; however, the immobilization process may be reversed
by environmental conditions. The limitations of this technique are weak reproducibility, random
orientation of bioreceptors attached on the hydrogel surface, and weak attachment. Chelation, which
is known as metal binding, is an excellent choice for an immobilization technique when hydrogels of
biological origin are employed in biosensor structures. Using a heating or a neutralization process,
precipitation of a metal salt or hydroxide leads to their binding through coordination of nucleophilic
groups. Depending on the mode of bond cleavage and formation and on the environment and
conditions of the reaction site, unoccupied binding sites remain free for interaction with bioreceptors.
Non-uniformity of the bioreceptors’ adsorption, as well as metal ion leakage, make the chelation
method less reproducible; however, using chelator ligands has improved that immobilization technique.
Establishing disulfide bonds between bioreceptors and hydrogels is a unique physical immobilization
method. The formed stable covalent bonds tend to be broken by reacting with suitable agents or when
modulation of reactivity under alteration of the solution’s ionic strength occurs.

Stabilization of bioreceptors is another important aspect of biosensor fabrication that is performed
after immobilization, and it refers to shelf or operation stability. The capability of a bioreceptor to retain
its activity or conformation is known as stabilization. The best-known process to provide stability to
bioreceptors is the use of polyelectrolytes to increase the stability of certain enzymes and antibodies.
The sugar (sugar-alcohol) component of a polyelectrolyte modifies the bioreceptor’s environment
by replacing it with free water. The protecting hydration shell helps the protein to maintain both its
structure and its activity. Some strategies that offer a combination of polymer and polyelectrolytes
have synergic effects on the stabilization of bioreceptors [179]. Selected methods that have been
proposed are lyophilization, vacuum drying, continuous culture, and encapsulation for microorganism
stabilization in biosensors [177].

5. Transducing Strategies

As in other sensors, the transduction methods in biosensors can be classified into one of three main
methods: optical, electrochemical, or mass based detection, as was indicated in Figure 1. The chemical
reactions between immobilized bioreceptors and targeted biosystems that lead to electron (ion)
consumption (production) form the fundamental principle for electrochemical biosensors. The rate
and amount of electron consumption or production affects the measurable electrical properties (i.e.,
potential, current) of a biosystem. Optical transducers measure alterations in selected optical properties
that occur as a consequence of changes in the biosystem’s environment. The mass measurement of
minor changes is another form of transduction that has been used with biosensors. Mass change due
to the binding of chemicals can be measured electrically using a mass based transducer.
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Electrochemically based detection techniques—including amperometric, conductometric,
potentiometric, and impedimetric—as shown in Figure 4a–d respectively, are more complementary
than other techniques, such as optical and mass based methods, so that hydrogel based biosensors
have restricted influence in this category. With the objective of miniaturization of biosensors, pH, or
electroconductive hydrogels integrated to electrode conductimetric transducers have been used for
sensing glucose, monosaccharaides, and nucleotides [178,180–182].

As the principle of transducing methods mentioned has been well described previously, a brief
review is provided here. In optical techniques, as shown in Figure 4d, detection may be based on
absorption, fluorescence, and light scattering. Recognition of a biological event using hydrogel based
biosensors is mainly transduced by measuring the change of fluorescence arising from hydrogel-free
swelling, with high sensitivity and selectivity to low bimolecular concentration. Three types of
fluorescence biosensing are direct sensing of a molecule before and after reaction, indirect sensing
by transducing a dye that shows a specific biomolecule, and generation of a fluorescence signal,
which is known as fluorescence energy transfer. Detection of a refractive index is another optical
transduction technique that is used in preference with thin layer hydrogels coated by a metal coating.
The sensitivity of the measured refractive index at the hydrogel–metal layer interface relates to metallic
coating’s surface nanostructure, periodicity, and efficiency of adhesion. Changes in the reflection
of incident light at hydrogel-transducer and hydrogel-bio-system edges provide another method of
optical biosensing. By the embedding of a crystalline colloidal array within the hydrogel of a biosensor
and by its subsequent rearrangement due to swelling/ de-swelling processes, shifts in the wavelength
of diffracted lights can be measured. This method, known as Bragg diffraction, is widely used in
biomedical applications.
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In hydrogel based biosensors whose mechanical work is measured for biosensing, the wide range
of mechanical transduction methods available includes pressure sensors, capacitive sensors, cantilever
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based sensors, bending plates, and microgravimetric sensors, as shown in Figure 4e,f. Pressure and
capacitive biosensors are less common than other transducing methods because the multiple processing
steps involved in fabrication make them expensive, and they suffer from insensitivity. In contrast,
changes in mass, temperature, or stress can be transduced in both dynamic and static modes by using
a microcantilever detection method. Changes in hydrogel properties that lead to swelling variation
result in alteration of surface stress and bend microcantilever transducers.

6. Biomedical Applications of Biosensors

Numerous investigations, research studies, and innovations relating to the physical, chemical,
mechanical, and biocompatibility properties of stimulus-sensitive hydrogels have contributed to
our understanding of their novel potentials for biological signal sensing in medical and biomedical
activities. Using biosensors to monitor physiochemical changes in the body provides opportunities for
early diagnosis, treatment, and management of disease. Despite some limitations concerning accuracy,
significant progress has been made in producing advanced biomaterials that facilitate a new generation
of biosensor design and construction, minimizing imprecision and slow responses to physiological
conditions, for enhanced therapeutic effect. As well, the successful integration of small bioreceptors
with sensing components, a vital step towards miniaturization, has made the biosensing process more
developed and attractive [183].

6.1. Cell Metabolite Detection

Cultivation of cells and intermittent cell or media culture collection are outdated methods for
measuring cellular metabolism. Not only do they require many cell and reagents, but they also yield
only slight information about the dynamics of metabolism and cell multiplexing. To overcome these
inefficiencies of traditional methods, new biosensing approaches have been developed to monitor
biosystem changes at the site of the cell. That possibility has been revealed by different research
groups [184–187]. The detection of hydrogen peroxide secreted by stimulated macrophages [188],
extracellular lactate [189], insulin [178,190], pH and calcium ion [191], and nitric oxide [192] has
been reported in cell metabolite analyses. Currently, the key concepts for measuring cell metabolism
are microfabrication techniques including photolithography [193–195], hybrid processes of thin-film
and laminate technology [48,196,197], microcontact printing [48,198,199], microfluidic patterning and
micro-channels [48,197,200–202], laminar flow and stencil patterning [202].

These methods have achieved high sensitivity and specificity; however, they have not been
adopted in the mainstream for long-term monitoring of cell metabolism due to concerns about their
stability and efficient operation in complex biosystem media and also their biocompatibility. However,
covalent bonding of bioreceptors has been used to address their increasing stability in long-term
applications, when the amount of immobilized bioreceptors at the cellular level is limited [203].

6.2. Tissue Engineering

As immobilizing scaffolds for bioreceptors, hydrogels have been employed to detect and measure
the concentration of specific biomolecular interaction and kinetics in tissue engineering. With its
extracellular signaling activity, adenosine triphosphate (ATP) is a vital multifunctional molecule with
a key role in cellular metabolism. Recently, hydrogel based biosensors have been used for measuring
ATP in situ and in vivo [204], as the application of previous methods based on luciferase has been
limited by low sensitivity, resolution, and accuracy. Tissue engineers can identify a wide range
of cellular activities [205,206] including cell proliferation, migration and differentiation, apoptosis,
cytokine release, and necrosis by measuring extracellular ATP [207–209], adenosine diphosphate
(ADP) [210,211], and uridine triphosphate (UTP) using biosensors [212].

The detection of targeted nucleic acids in tissue engineered scaffold has been reported using
different biosensing strategies and biomaterials; however, their pre-preparation and fabrication were
reported to be difficult [49,213–215]. Therefore, work on the integration of hydrogels of biological
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origin with electrochemical biosensors has recently been strongly focused on making biosensing easier
and relatively inexpensive [49,216].

The fundamentals of cell biology for tissue engineering applications can be quantified by
measuring the activity of functional protein molecules. For example, as a response to tissue remodeling
processes, matrix metalloproteinase (MMP) that is released by cells can be used as a biomarker [217,218].
Detecting interactions between scaffold microenvironment, stem cells, and surrounding tissue is
important for monitoring changes in the mechanical and physical properties of scaffolds that may lead
to alteration of properties or scaffold disassembly. Labeling methods are not suitable for non-invasively
monitoring scaffolds and their suboptimal biomolecular changes over time. Therefore, label-free
methods are employed for real time screening of irregularity of extracellular proteins [219–221].

6.3. Wound Healing Biosensors

Wound healing can be better managed by using biosensors for early identification of wound
infection and remote screening of wound factors. It is well known that during wound healing phases,
inflammation and proliferation are responsible for producing exudate that contains electrolytes,
MMPs, and proteins, whose concentration changes can be associated with the risk of development of
wound problems [222]. Biosensor research in wound monitoring has primarily been performed for
physiological indications, such as temperature, pH, and moisture [223–225], while uric acid in wound
exudate is highly correlated with wound bacterial infection [226–228]. Complete approaches towards
using biosensors for wound exudates to detect bacteria, temperature, oxygen, and enzymes, as well as
to monitor pH, have been presented in review papers [229–232].

6.4. Cancer Monitoring

The sensing of two inflammatory signals—H2O2 and cytokines (TNF-α)—is important for early
cancer detection. As a small molecule, H2O2 can usually be detected by enzyme based biosensors,
whereas antibody based biosensors (immune-sensors) are used to detect TNF-α [233]. The imprinting
capability of acrylamide hydrogels integrated with quartz crystal microbalance sensors for loading of
proteins via crystallization has been used for cancer detection [234]. Poly(ethylene glycol) diacrylate
hydrogel matrix that contains ferrocene-coupled superoxide dismutase has been introduced as a novel
sensitive hydrogel based sensor for detection of superoxide anions released by cancer cells [193].
Ultrasensitive label-free lectin based biosensors [67], chitosan based biosensors [156], and PEG based
biosensors [87,95,235] have been reported as applicable for early diagnosis of cancer. The application
of novel nanoparticles (graphene, gold, silver, etc.) in combination with hyper-branched hydrophilic
polymers in the immune-sensing of carcinoembryonic antigen has been discussed in detail [175] and the
performance improvement of nanostructured metal oxide that could be coupled with hydrogel-based
biosensors via engineering of morphology, size, interface with biomolecules, functionality, and
adsorption ability has been reported [236]. Substitution of the electric cell-substrate impedance
sensing method performed by monitoring specifically labeled cells, to overcome the limitations of
conventional cancer detection techniques, has been used to monitor the viability, morphology, and
change in environment of the adhered cells [237–239].

The use of molecules with defined properties as biosensors for cancer detection on the basis of
their ability to bind to different targets, their chemical and thermal stability, synthesis, and storage has
been explained [50].

6.5. Pathogen Detection

Significant efforts have been focused on the development of hydrogel based biosensors for
detection of viruses [235,240–242]. Viruses that have been detected using hydrogel based sensors
include the influenza virus [243–245], hepatitis B virus [246], different pathogens [13,45], and West
Nile virus protein domain III [247].
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6.6. Detection of Small Molecules

Monitoring small molecules such as glucose and cholesterol with high sensitivity and specificity
offers important opportunities in primary diagnosis, early treatment, and better management of
chronic disease. Table 2 indicates some specifications of hydrogel based biosensors for the detection of
small molecules.

Table 2. Strategies for small biomolecule detection using hydrogel based biosensors

Glucose

Hydrogel Transduction Strategy Technical Specification Ref.

Polyaniline Electrochemical
Sensitivity = 96.1 µA·mM−1·cm−2

[248]Response time = 3 s
Linear range = 0.01–8 mM

Polyaniline-PEG Electrochemical N/A [249]

PEG Optical Linear range = 0–600 mg/dL
[250]Response time = 10 min

PVA-Vinyl pyridine Electrochemical
Sensitivity = 600 nA·mM−1·L−1

[251]
Response time = 11 s

Chitosan Electrochemical
Linear range = 5 µM–2.5 mM

[146]Response time = 7 s

Chitosan-graphene oxide Electrochemical
Linear range = 0.02–6.78 mM

[252]
Sensitivity = 10 µA·mM−1·cm−2

Polypyrrole Electrochemical Linear range = up to 15 mM [253]

PEG (injectable) Optical Linear range = up to 370 mg·dL−1
[254]

Response time = 11 min

Polyvinylpyrrolidone Optical N/A [255]

Alginate Optical Sensitivity = 0.80 ± 0.11 µs·dL·mg−1
[256]

Linear range = 2.6–350 mg/dL

HEMA Electrochemical Linear range = 10 µM–40 mM [257]

Lactate

BH40 (Hyper-branched) Electrochemical
Response time = 7 s

[167]Linear range = up to 580 mg/L

Polycarbamoyl sulfonate Electrochemical
Response time = 2 s

[258]Linear range = 10–400 µM

Albumin-mucin Electrochemical
Response time = 90 s

[259]Linear range = 0.7 µM–1.5 mM

Chitosan Electrochemical
Sensitivity = 0.32 A·M−1·cm−2

[260]
Response time = 5 s

Urea

Polyaniline Electrochemical
Sensitivity = 85 mA·M−1·cm−2

[261]
Response time = 15 s

Poly aniline Electrochemical Sensitivity = 878 µA·M−1·cm−2 [262]

Aniline-co-o-phenylenediamine Electrochemical
sensitivity = 31.12 mV/log [M]

[263]
Linear range = 3.16 × 10−4–3.16 × 10−2 M

Cholesterol

Poly(thionine) Electrochemical
Linear range = 25–125 µM

[264]
Sensitivity = 0.18 µA·mM−1·cm−2

Polypyrrole Electrochemical
Linear range = 5 × 10−4–1.5 × 10−2 M [265]

Response time = 30 s

Agarose Electrochemical
Sensitivity = 6.9 nA·µM−1

[266]
Response time = 120 s

Polyaniline Electrochemical
Sensitivity = 0.042 µA·mg·dL−1

[267]
Response time = 240 s

Polymethacrylate Optical Response time = 120 s [268]
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7. Future Outlook

Biomedical application of hydrogel-based biosensors was discussed in this study.
Different hydrogels with biosensing abilities were identified. The most frequently used hydrogels
are polyvinyl alcohol, polyethylene glycol, polyacrylate families, and electroconductive hydrogels.
Hydrogels with biological sources include alginate, chitin, chitosan, agarose, cellulose, dextran, and
hyaluronic acids. Bioreceptors to be immobilized on hydrogel-based biosensors, their advantages and
disadvantages, and immobilization techniques were discussed here. Our review study showed that
hydrogel based biosensors have been used for different biomedical purposes including cell metabolite
and pathogen detection, tissue engineering, wound healing, and cancer monitoring, and detection
strategies for small biomolecules such as glucose, lactate, urea and cholesterol. In fact, 3D swellability
of hydrogels conducting electric signals, their permeability to different molecules and negligible
interaction to different swelling media as well as their ability to optimal immobilization of different
biomolecules suggests their roles in the future of biosensor fabrication. Some limitations including
life time, storage, and adaptation with transducers for rapid quantitative analysis reveal that there is
still a long way for hydrogel based biosensors to go before they are used in commercialized health
management systems.

Meanwhile, the signal enhancement produced by biosensors that leads to improved measurement
is conferred by labeling targeted cells. However, this process is a potential source of complexity,
experimental error, and uncertainties that can place biomolecules at risk of alteration of properties.
Associated costs are also involved in biosensor fabrication. Therefore, substitution of label-free
biosensing strategies is essential to rendering this platform more precise, more cost effective, quicker,
and more sensitive. Further important progress is required in multiple-target detection ability of the
new generation of biosensors to provide wide-ranging sensing of targets in one measurement platform.
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