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Abstract: A trade-off between enhancement of physical properties of the final part and the
processability during manufacturing always exists for the application of nanocarbon materials
in thermoset-based composites. For different epoxy resins, this study elaborates the impact
of nanocarbon particle type, functionalization, and filler loading on the resulting properties,
i.e., rheological, electrical, thermo-mechanical, as well as the fracture toughness in mode I and mode
II loading. Therefore, a comprehensive set of carbon nanoparticles, consisting of carbon black (CB),
single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), few layer
graphene (FLG), and electrochemically expanded graphite (ExG), in purified or functionalized
configuration was introduced in various epoxy resins, with different molecular weight distributions.
A novel technique to introduce sharp cracks into single-edge notched bending (SENB) fracture
toughness specimens led to true values. SWCNT show highest potential for increasing electrical
properties without an increase in viscosity. Functionalized MWCNT and planar particles significantly
increase the fracture toughness in mode I by a factor of two.

Keywords: nano composites; viscosity; percolation; fracture toughness; mode I; mode II

1. Introduction

Epoxy resins offer high-performance properties, namely light weight potential, improvement of
corrosion resistance, barrier properties, fire retardancy, and electrical conductivity [1], for a wide range
of adhesive applications, such as matrices in fiber composites or coatings [2]. However, due to their high
grade of cross-linking they possess low fracture toughness and therefore, a brittle nature [3]. It is widely
reported that this can be overcome by addition of various types of nanoparticles [4,5]. They promise
high potential for fracture toughness improvement without affecting other mechanical properties.
This occurs due to improved energy dissipation and internal stress re-allocation. The quality of
dispersion is crucial, because the nanoparticles eventually act as defects in case of poor dispersion [6,7].
Addition of carbon-based nanoparticles leads to an electrical conductivity of the otherwise isolating
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polymer. The electrical conductivity can be predicted regarding particle concentration, their aspect
ratio and waviness [8]. By variation of particle type and filler content the electrical conductivity
can be precisely adjusted [9,10]. Carbon nanoparticles typically lead to an enormous increase of the
nanocomposite’s viscosity in dependency of filler type and loading [11,12]. The viscosity is a critical
parameter regarding the processability of polymers. Reddy et al. observed that fillers migrate into
the free volume and increase it. This leads to a non-favorable decrease of nanocomposite’s glass
transition temperature [13]. Nadiv et al. investigated the optimal concentration of nanoparticle
filler loading regarding fracture toughness in mode I and correlated it with the electrical and
rheological percolation [14,15]. They concluded that the rheological percolation occurs prior to
electrical percolation and optimal nanoparticle concentration lays slightly below the loading leading
to rheological percolation. Domun et al. reported this optimal filler content regarding the mode I
fracture toughness increase for a wide set of different type of nanoparticles in their review article as
well [5]. Numerous other groups underpinned this observation [5,16–21]. The fact that the electrical
percolation requires a higher filler loading than the rheological percolation leads to a trade-off between
the enhancement of physical properties and processability of such nanocomposites. The effect of carbon
nanoparticles on mode II fracture toughness is discussed controversially in literature. Various groups
report an increase of mode II fracture toughness [19,20,22,23]. A continuous decrease is reported by
Moghadam et. al. [24] and Shadlou et al. [22]. Zappalorto et al. observed a maximum in mode I
and mode II fracture toughness by variation of filler content [21]. This paper aims to investigate the
influence of carbon nanoparticles such as carbon black (CB), single-walled carbon nanotubes (SWCNT),
multi-walled carbon nanotubes (MWCNT), few-layer graphene (FLG), and electrochemically expanded
graphite (ExG) on the composite’s viscosity, electrical conductivity, Young’s modulus, glass transition
temperature (TG) and the fracture toughness in mode I and II of epoxy resins.

2. Materials and Methods

2.1. Epoxy Resins

All used epoxy resins base on bisphenol-A-diglycidyl-ether (DGEBA). Epikote 162 offers the
lowest viscosity, which increases with Epikote 827, 828LVEL and 828, respectively. Curing agent
was a mixture of Epikure RIMH 137 and RIMH 134 (80/20 by weight). These are a commonly used
curing agents in the wind-craft energy industry. According to its data sheet, RIMH 137 consists of
poly(oxypropylene)diamine (50–75 wt.%) and 3-aminomethyl-3,5,5-trimethylcyclohexylamine
(35–50 wt.%). The ingredients of RIMH 134 are 2-piperazin-1-ylethylamine (35–50 wt.%),
3-aminomethyl-3,5,5-trimethylcyclohexylamine (25–35 wt.%), poly (oxypropylene) diamine
(20–25 wt.%), benzyl alcohol (3–7 wt.%), phenol(4,4′-(1-methylethylidene)bis-polymer with
5-amino-1,3,3-trimethylcyclohexanemethan amine and (chloromethyl)oxirane (1–2.5 wt.%) and
branched 4-nonylphenol (0.25–0.5 wt.%). Hexion, Germany, supplied all resins and curing agents.
Table 1 lists the properties of the neat resins according to their data sheets.

2.2. Carbon Nanoparticles

An extensive set of particle types was chosen to evaluate the effect of different carbon nanoparticle
morphologies on the physical properties. Commercially available carbon black Printex L purchased
from Orion Engineered Carbons, Luxembourg, offers a spherical shape. It is a carbon black pigment
recommended for conductive coating applications. Its structure makes it easy to disperse, because it
cannot entangle and the size distribution is narrow. MWCNT NC7000, supplied by Nanocyl, Belgium,
are cylindrical and rigid tubes. Additionally, research grade MWCNT, supplied by Future Carbon,
Germany, were used. CNTB are the reference type of the neat MWCNT. CNTA and CNTP are argon
and atmospheric plasma treated CNTB, respectively. CNTN are CNTB type MWCNT equipped with
elastomer side chains, which are amino-functionalized and therefore able to crosslink with the epoxy
resins [25]. SWCNT Tuball 75, supplied by OCSiAl, Luxembourg, are cylindrical and, due to their small
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diameter, flexible tubes. They possess a highly entangled and bundled structure. OCSiAl provided
a purified variant of their SWCNT, too. FLG Avan2, supplied by Avanzare Innovación Tecnológica S.L.,
Spain, has a planar structure. A second evaluated planar particle type was electrochemically expanded
graphite. The manufacturing was performed according to the process described by Parvez et al. [26]
at Technische Universität Dresden, which produces the ExG under a license from Sixonia Tech GmbH,
Germany. For compounding, the ExG was first separated from the electrolyte and washed with
deionized water. Instead of a subsequent dispersion step, which is typically employed to destroy
the graphene agglomerates and liberate pristine exfoliated graphene sheets, the expanded, but still
agglomerated product, was transferred into ethanol, to prepare highly concentrated slurries. Table 2
gives the properties of the used nanoparticles.

Table 1. Properties of used epoxy resins.

Resin Type Epoxy Equivalent
Weight in g/eq

Epoxy Group
Content in mmol/kg

Viscosity at
25 °C in Pas

Physical
State Remarks

162 DGEBA 170–174 5744–5883 4.0–5.0 Liquid Distilled, high purity grade

827 DGEBA 179–184 5430–5590 8.0–10.0 Liquid Low viscosity

828LVEL DGEBA 182–187 5340–5500 10.0–12.0 Liquid Low hydrolyzable chlorine,
low viscosity

828 DGEBA 184–190 5260–5420 12.0–14.0 Liquid Standard unmodified
bisphenol A resin

Table 2. Properties of used carbon nanoparticles.

Nanoparticle

BET
Surface
Area in

m2/g

Layers,
Walls or
Bundle

Size

Aspect
Ratio Shape

Diameter or
Thickness

in nm

TGA
Impurities

in wt.%

EDX Composition in
wt.%

Printex L 125 amorphous 1 spherical 31± 8 0.25 C (96.51), O (2.69), S
(0.80)

NC7000 321 10± 2 150 cylindrical 12± 3 9.17 C (92.15), O (5.96), Al
(1.81), Si (0.08)

CNTB 319 10± 3 150 cylindrical 11± 3 10.35
C (85.34), O (8.78), Al

(5.07), Fe (0.36), Co (0.22),
Si (0.15), S (0.08)

CNTA 296 9± 2 150 cylindrical 10± 1 10.64
C (88.77), O (7.97), Al

(2.73), Fe (0.24), Si (0.14),
S (0.07)

CNTP 312 10± 2 150 cylindrical 11± 3 7.84
C (85.39), O (11.89), Al
(1.79), Si (0.44), S (0.25),

Na (0.25)

CNTN ? N/A N/A N/A cylindrical N/A 4.39 C (90.53), N (4.78), O
(4.21), Al (0.37), Cl (0.11)

Tuball 75 605 11± 3 3570 cylindrical 1.4± 0.4 17.98 C (81.96), Fe (15.01), O
(2.26), Si (0.44), S (0.32)

Tuball
purified 598 13± 3 3570 cylindrical 1.5± 0.1 2.09 C (90.61), O (6.36), Si

(1.74), Cl (1.03), Fe (0.26)

FLG (Avan2) 128 10± 2 6250 planar 4± 1 5.81

C (88.33), O (9.15), Mn
(0.65), Si (0.62), S (0.35),
Al (0.32), Fe (0.24), Na

(0.22), Cl (0.08), Ca (0.06)

ExG ?? 18 47± 11 525 planar 19± 5 10.90
C (88.08), O (11.02), S

(0.45), Cu (0.25), Si (0.12),
Na (0.08)

? This particle bases on CNTB and features amino-functionalized elastomer side chains and 20 to 25 wt.%
CNT content. ?? This particle type was delivered solved in ethanol and was dried before measurements.

Specific surface areas were determined by a Surfer Gas Adsorption Porosimeter, Thermo Scientific,
USA, using nitrogen. Scanning electron microscopy (SEM) was performed on a Zeiss Supra VP 55,
Zeiss, Germany, with an acceleration voltage between 5 and 10 kV to analyze the morphologies of the
particles. During SEM energy dispersive X-ray spectroscopy (EDX) was performed, too. Additionally,
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the usage of transmission electron microscopy (TEM) Talos F200X, Thermo Scientific, USA, revealed
the number of walls and bundle sizes. An acceleration voltage of 200 kV was used. Carbon particles
were ultrasonicated in methanol, placed on a TEM grid and dried at 80 °C. TEM and SEM images are
shown in Appendix A. The impurity content was also determined with thermogravimetric analyses
(TGA) with a TGA/DSC 1—thermogravimetric analyzer from Mettler-Toledo, USA. Samples were
placed in a 70 µL alumina crucible covered with a pierced lid. Temperature cycle started with a heat up
from room temperature to 50 °C under nitrogen atmosphere. Afterwards an isothermal step at 50 °C
for 10 min in nitrogen atmosphere followed to keep the sample in steady state. The sample was heated
under oxygen atmosphere to 950 °C, was held at this temperature for another 10 min and then cooled
down to room temperature. Heating rates were 10 K/min and cooling rate 30 K/min.

2.3. Dispersion

The nanoparticles were incorporated into the neat epoxy systems via a seven-step three-roll
milling process, using an 80E Plus, Exakt Advanced Technologies, Germany. Rollers have a diameter
of 80 mm and are made from steel. A detailed description of the three-roll milling process can be found
in [27,28]. Table 3 lists the used parameters.

Table 3. Process parameters for dispersion on three-roll mill 80E Plus.

Step Gap1 in µm Gap2 in µm n1 in Rpm n2 in Rpm n3 in Rpm

1 120 40 50 150 450

2 40 13 50 150 450

3–7 13 5 50 150 450

2.4. Rheology

Addition of curing agent took place after dispersion. The viscosity of the composites was
determined directly after addition of curing agent and subsequent mixing. A rheometer ARES RDA-III
28 from TA Instruments, USA, was used for this purpose. Strain-sweeps were performed from 0.1 to
100% at a frequency of 5 Hz. The test setup was a plate-plate configuration with a radius R of 40 mm
and a spacing h of 500 µm. This gap spacing ensures that big agglomerates are not trapped between
both plates. The procedure was adapted from a previous study [29].

2.5. Electrical Conductivity

For plate manufacturing, the materials were infused into a closed mold under vacuum.
The curing cycle was chosen according to data sheet, with 24 h at room temperature and 15 h at
80 °C. After demolding, the samples were milled from the plate into the desired geometry. Prior to
sawing and notching for fracture toughness sample preparation, the flanks of the manufactured
rectangular specimens were covered with silver paint for determination of electrical conductivity.
The electrical DC resistance of the cured rectangular specimens was measured at operating voltage of
1 V between the silver paint covered flanks with a Keithley 2601A system source meter, Keithley, USA.

2.6. Dynamic Mechanical Thermal Analysis

For dynamical-thermal-mechanical-analysis (DMTA) specimens with a thickness of 2 mm were
prepared from the manufactured plates. DMTA was performed with a Gabo Eplexor 500N, NETZSCH
GABO Instruments, Germany. The heating rate was set to 3 K/min, clamping distance 30 mm and test
frequency 5 Hz. The temperature range was 20 to 180 °C.
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2.7. Fracture Toughness in Mode I and II

The critical value of the crack front stress intensity factor characterizes the resistance of a material
against failure by fracture. Figure 1a shows the test setup for the determination of critical stress
intensity factor KIC in a three-point-bending test (3PBT). The pre-notched rectangular sample is loaded
under bending, resulting in a pure tension loading of the crack tip (mode I). For a critical stress
value, the crack starts to proceed. This results in failure of the material, for brittle materials such
as glassy polymers. The determination of the mode II critical stress intensity factor KI IC requires
a crack tip loading under nearly pure in-plane shear. Fett suggests a realization in an asymmetric
four-point-bending test (4PBT) of a pre-notched sample, shown in Figure 1b [30]. He analyzed the
crack tip loading and failure with finite element modeling and energy considerations.

Figure 1. Test setup and definitions for determination of (a) KIC in a three-point-bending test (b) KI IC

in asymmetric four-point-bending test adapted from [31].

The geometry of the specimen is given by the thickness W, distance from support to crack L, crack
length a and asymmetric distance d. Figure 2 gives the dimensions of the plastic zones in mode I and II
for the condition KIC = KI IC, respectively.

Figure 2. Dimensions of the plastic zones for (left) mode I and (right) mode II crack tip loading adapted
from [32,33].

The determination of stress distributions along the specimen (σx(x, y), τxy(x, y)) leads to numerical
descriptions of those stresses with endless sum terms. To obtain a reasonable accuracy for the stress
distribution, the sums are cut after a certain order of terms. The stress distribution in combination with
the geometry of the specimens leads to an integrational description of the stress intensity factors:

KI =
∫

0

a
hI(η/a, a/W)τxy(η)dη (1)

and
KI I =

∫
0

a
hI I(η/a, a/W)σx(η)dη (2)

with η = (W/2)− y.
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Considering a boundary-collocation technique it is possible to find formulas for the weight
functions hI and hI I :

hI =

√
2

πa
1√

1− η/a(1− a/W)3/2)
[(1− a

W
)3/2 + ∑ Aαβ(1− η/a)α+1(

a
W

)β] (3)

hI I =

√
2

πa
1√

1− η/a(1− a/W)1/2
[(1− a

W
)1/2 + ∑ Aαβ(1− η/a)α+1(

a
W

)β] (4)

with tabulated coefficients for Aαβ. Integrating over the length of the crack the stress intensity factors
can be calculated after following equation:

KI =
P

WB
(1− d

L
)
√

πaFI (5)

KI I =
P

WB
(1− d

L
)
√

πaFI I (6)

The geometric factors FI and FI I can be obtained from tables according to the specimen’s geometry
or can be calculated following the equations stated below:

FI I = 3.9204ξ − 5.1295ξ2 + 14.4766Lξ3 − 26.2916ξ4 + 17.073ξ5 (7)

with ξ = a/W.
Important ratios to determine the mode II fracture toughness (in-plane shear) in an asymmetric

4PBT are following: The length to width ratio should be

L
W

= 2.5, (8)

so that the distance between supports has a minimized influence on the result.
Other geometry ratios are

0.4 <
a

W
< 0.6 (9)

so that the influence of KI becomes small. Ayatollahi et al. investigated different ratios by finite
element modeling and concluded that 0.5 is an appropriate value to choose, because it secures the
maximum distance to both, the bottom and top edges [19].

0.35 <
d

W
< 0.625 (10)

leads to an independent factor KI I from the ratio d/W.
By choosing following ratios for a given material thickness of W = 4.5 mm

L
W

= 2.5,
a

W
= 0.5,

d
W

= 0.5 (11)

following relations can be derived

w =
L

2.5
= 2a⇒ L = 5a = 5d (12)

The mode II fracture toughness (crack tip loading in in-plane shear) specimen must be of
a minimum length to secure the asymmetric bending test configuration without gliding through
the supports:

Ltotal = 2L + ∆L = 50 mm
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According to this geometry with the ratios stated above the geometry factors are the following:
FI = 0.0806 and FI I = 1.3661, so that the stress intensity factors are:

KI =
P

WB
(1− d

L
)
√

πa · 0.0806 (13)

KI I =
P

WB
(1− d

L
)
√

πa · 1.3661 (14)

Since mode II is investigated in the asymmetric 4PBT and mode I in 3PBT, only the equation for
KI I must be considered. The used geometry is listed in Table 4.

Table 4. Required dimensions of mode I specimens.

B W a = 0.5W L = 5a = 5d d = 0.5W

3.9 mm 7.8 mm 3.9 mm 19.5 mm 3.9 mm

Therefore, the lower and upper support span length for asymmetric 4PBT to introduce the load is

L + d = 19.5 mm + 3.9 mm = 23.4 mm

The mode I fracture toughness (crack tip loading in tension) is determined in a symmetrical
three-point bending test. Important geometrical ratios for the sample are specified in ASTM
D5045-14 [34] with:

2 <
W
B

< 4 (15)

and
0.45 <

a
W

< 0.55. (16)

The mode I fracture toughness in 3PBT can be calculated by the following equation after ASTM
D5045-14 [34]:

KI =
P

B
√

W
f (x) (17)

with x = a/W and

f (x) = 6x1/2 1.99− x(1− x)(2.15− 3.93x + 2.7x2)

(1 + 2x)(1− x)3/2 (18)

The geometry of the specimen is the same as for the mode II test, only the lower support span
and the load introduction differ, refer to Table 5.

Table 5. Required dimensions of mode II specimens.

B = 0.5W W a = 0.5W L = 2W Lsupport = 4W

3.9 mm 7.8 mm 3.9 mm 15.6 mm 31.2 mm

The total crack length a consists of a sawing cut and a sharp pre-notch. This sharp pre-notch
should be at least twice as deep as the sawing cuts width to ensure a negligible notch-effect. For the
used 150 µm diamond sawing blade, the pre-notch must be at least 300 µm deep. To ensure this
boundary condition the sharp notch is chosen to be ablade = 500 µm. Therefore, the sawing cut has
to be

asaw = 3.9 mm− 0.5 mm = 3.4 mm

deep, to reach the total crack length a = 3.9 mm.
The effect of different notching techniques for glassy polymeric SENB samples have been

intensively investigated in literature [35–38]. They all conclude that an infinitesimal sharp notch leads
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to a homogeneous stress field and no prior plastic deformations in front of the crack tip. To ensure
this, a three-step notching procedure was used as described in Figure 3. The crack consists of three
unifying crack fronts. The first two fronts are inserted with a fresh razor blade from the base edges of
the machined notch. These cracks stop to propagate at a certain point due to increasing cross-section
in front of the crack tip. It remains a triangular cross-section in the middle of the machined notch
base. In this the third crack front is initiated and the crack fronts form one very sharp notch with
a defined length.

1

2

3machined notch

Figure 3. Visualization of novel notching technique for pre-crack insertion. 1, 2 and 3 denote the
sequence of crack insertion.

The 3PBT and asymmetric 4PBT were conducted with a Zwick/Roell Z2.5 universal testing
machine, Zwick/Roell, Germany, with a cross-head speed of 10 mm/min. The diameter of the support
rollers was 6 mm. 3PBT was performed according to ASTM D5045-14 [34] and the asymmetric 4PBT
was performed according to the setup of Fett [30]. After testing, the pre-crack length was measured
with an optical light microscope Olympus BX-51, Olympus, Germany. The averaged value was
determined from three measuring points. A Phenom XL, Thermo Scientific, USA, was used to capture
SEM images for crack initiation investigations. The operating voltage was 5 kV and the detector Topo
A was used. Edges of the sample were coated with silver paint to improve the charge dissipation.

3. Results and Discussion

This section will give the results of the experiments beginning with the dependency of composite
viscosity on particle type and filler loading. After that the electrical properties are discussed followed
by a presentation of the thermo-mechanical and fracture toughness properties.

3.1. Rheology

The rheological behavior, primarily determined by the viscosity, is one of the main properties to
consider for the manufacturing of parts out of polymers and their composites. Besides the knowledge
of the material’s viscosity, the knowledge of the rheological behavior in dependency of applied shear
rate is important. Figure 4 gives the rate dependent complex viscosity for CB modified epoxy resin
with addition of the curing agent. Until a specific shear rate, the complex viscosity exhibits a plateau.
Reaching a critical shear rate, the material shows a shear-thinning behavior. A substantial increase in
viscosity is observed for CB at high concentrations (12 wt.%), whereas the impact is low up to a loading
of 8 wt.%. The critical shear rate for beginning of shear-thinning is strongly decreased for a filler
loading 12 wt.%.
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Figure 4. Rheological behavior of CB modified 828LVEL and RIMH137/134.

Figure 5a–d give the rheological behavior of investigated MWCNT composites, except CNTN. All
MWCNT modified epoxy systems show a similar increase of viscosity with increasing filler content.
Furthermore, the critical shear rate for beginning of shear-thinning is not affected by the filler loading.
All used MWCNT offer a specific surface area of about 300 m2/g (compare Table 2) leading to the same
rheological behavior.
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Figure 5. Rheological behavior of MWCNT modified 828LVEL and RIMH137/134 (a) NC7000 (b) CNTB
(c) CNTA (d) CNTP.

Figure 6 gives the rheological behavior for the CNTN modification. Due to the elastomeric
and amino-functionalized side chains, the viscosity rises distinctively with increasing filler loading
of CNTN. It is important to note that the filler loading of CNTN relates to the pure CNT content
without elastomer. After shear-thinning the complex viscosity reaches a plateau, which is much higher
compared to pristine MWCNT’s viscosity.
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Figure 6. Rheological behavior of CNTN modified 828LVEL and RIMH137/134.

Figure 7a gives the development of complex viscosity with increasing shear rate for FLG and
Figure 7b for ExG modified epoxy resin. For planar FLG and ExG, the increase in complex viscosity in
the low shear rate region is one magnitude lower compared to MWCNT, even up to a filler loading
of 3 wt.%. A previous study revealed a strong exfoliation for this particle type leading to a very
good wetting of the layers, which simplifies sliding of them [28] and eases the dispersion process.
The good wettability results in low viscosities of the composite. All curves for FLG differ only in the
high shear rate range. Higher filler loading lead to increased plateau viscosities after shear-thinning.
ExG increases the viscosity in the low shear rate region with a filler loading of 3 wt.%. Below this filler
loading the viscosity is not increased in the low shear rate region. After shear-thinning the viscosity is
higher for increased filler loading.
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Figure 7. Rheological behavior of Graphene modified 828LVEL and RIMH137/134 (a) FLG (b) ExG.

Figure 8a gives the rheological behavior of Tuball 75 and Figure 8b the purified SWCNT,
respectively. An addition of 0.01 wt.% of Tuball 75 does not affect the rheological behavior. Starting with
a filler loading of 0.05 wt.% the typical plateau arises and the viscosity increases. The purified Tuball
SWCNT exhibit the highest impact on the viscosity. An addition of 0.01 wt.% of purified SWCNT
results in the same rheological behavior as for an addition of 0.1 wt.% Tuball 75. This relates to their
extensive specific surface area and high purity. Therefore, they possess a higher carbon content per
weight, compared to Tuball 75.
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Figure 8. Rheological behavior of SWCNT modified 828LVEL and RIMH137/134 (a) Tuball 75 (b)
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Figure 9a sums up the change of viscosity in dependency of the filler loading of used SWCNT and
MWCNT as well as the effect of different molecular weight epoxy resins. Only the resin’s molecular
weight influences the viscosity of the composite for same particle type and filler loading, despite
the way of plasma treatment and supplier. This is lower for lower molecular weight resins and is
particularly pronounced for Epikote 162. The increase in viscosity is mainly dependent on the offered
specific surface area. Figure 9b shows the impact of CB, CNTN, and all planar particles on the viscosity.
In conclusion, particles with lower specific surface area allow good composite processing.
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Figure 9. Impact of particle modification on the rheological properties for (a) evaluated MWCNT and
SWCNT in epoxy resin with curing agent (b) evaluated planar particles, CB and CNTN in epoxy resin
with curing agent.

3.2. Conductivity

Figure 10a gives the electrical percolation behavior in dependency of SWCNT and MWCNT
filler content. The SWCNT show an electrical conductivity of 10−3 S/m, even at low filler loading
of 0.01 wt.%. Results for Tuball 75 are in good accordance with reported values in [10]. The purified
SWCNT modification results in lower final conductivities compared to Tuball 75. A ternary network
is formed for the non-purified variant, due to the metallic impurities, leading to improved network
formation. This effect is reported by Sumfleth et al. [39], as well. All MWCNT composites
show a similar percolation behavior, independent of their functionalization. Due to lower resin
viscosity the agglomeration during curing is more pronounced for Epikote 162 resulting in higher
conductivities. Martin et al. reported this correlation as well [40]. The electrical conductivity of carbon
nanoparticle-polymer composites is dominated by electron hopping and formation of conductive
networks, while network formation is the governing mechanism after percolation [41]. Seidel et al.
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revealed that electron hopping is much more pronounced for SWCNT compared to MWCNT, leading
to much lower percolation thresholds [42]. Figure 10b gives the percolation behavior of CNTN, CB,
and planar particles. Despite the high filler loading of CNTN the conductivity is much lower in
comparison to other MWCNT. This can be explained by the elastomeric side chains covering the
CNTs and thus hindering the build-up of a conductive particle network. CB percolates between 4
and 8 wt.%, which is also reported in a prior study for a comparable CB type [9]. Both investigated
planar particles have a low impact on the electrical conductivity even up to filler loadings of 3 wt.%.
The significant increase in electrical conductivity (electrical percolation) arises for all particles at
lower filler loadings compared to the corresponding filler loading, which results in viscosity increase
(rheological percolation). The explanation is given by the different network formation mechanisms.
The tunnel distance mainly influences the electrical conductivity, whereas for an increase in viscosity
a strong physical interaction of filler particles network is required to ensure a stiff network [43].
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Figure 10. Electrical percolation behavior of (a) evaluated MWCNT and SWCNT in epoxy resin
(b) evaluated planar particles, CB and CNTN in epoxy resin.

3.3. DMTA

The influence of particle type and filler loading as well as molecular weight of resin on
dynamic-thermo-mechanical properties are discussed in this section. Below the glass transition
temperature TG a high modulus is desirable. For temperatures exceeding TG the complex modulus
reveals the strength of the particle network interconnection. Figure 11a gives the resulting DMTA
curves for all investigated resins and their modification with 0.5 wt.% NC7000 MWCNT. At low
temperatures, the complex modulus is neither affected by the particles nor by the molecular weight of
the resins. A shift of the glass transition temperature TG, evaluated at maximum of damping factor
tanδ, is also not observed. In the high temperature regime (exceeding TG) the complex modulus
increases with decreasing molecular weight of the resins. A modification with NC7000 increases the
complex modulus at high temperatures, too. This indicates the formation of a percolated particle
network and correlates with the previously observed increase in viscosity. For further investigations,
the complex modulus is evaluated for all composites at 30 and 170 °C. The shift in TG is analyzed by
the peak temperature of the damping factor T(tanδpeak).
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Figure 11. Resulting DMTA properties: (a) impact of 0.5 wt.% NC7000 in epoxy resins Epikote 162,
827, 828LVEL, and 828 (b) effect of evaluated particles on the glass transition temperature (c) effect of
evaluated particles on the complex modulus at 30 °C (d) effect of evaluated particles on the complex
modulus at 170 °C.

Figure 11b gives the influence of particle type and filler loading on the TG. The black solid line
indicates the value for the neat Epikote 828LVEL. CB increases the TG independently of the filler loading.
NC7000 and CNTB do not influence the TG. Beginning with rheological percolation, the TG rises for
CNTA. For CNTP, TG is lower compared to the neat resin. Argon plasma treatment does not only
improve the electrical percolation but also leads to a slight improvement of the TG, while atmospheric
plasma treatment lowers electrical conductivity and TG of the composite. The amino-functionalized
elastomeric side chains of CNTN increase the TG prospectively due to an increased cross-linking.
FLG has no influence on the resulting TG. ExG decreases the TG for filler loadings over 1 wt.%. This is
in correspondence to the observed viscosity increase. Prolongo et al. reported that graphene sheets
hinder the curing and lower cross-linking density [44]. This results in a higher mobility of the polymer
chains and thus lower TG. Figure 11c gives an overview on the development of the complex modulus
in the enthalpy elastic state for the manufactured composites. The black solid line indicates the value
for the neat Epikote 828LVEL. For CB, the complex modulus increases with increasing filler loading.
A filler loading of 12 wt.% leads to the highest increase. NC7000 shows no effect on complex modulus
at this temperature. For CNTB the modulus decreases with increasing filler loading. For plasma
treated CNT the complex modulus decreases until 0.3 wt.% and then increases for a filler loading of
0.5 wt.%. This increase correlates with the rheological percolation. For CNTN the complex modulus
drops with increasing filler loading, resulting from the high elastomeric content. For planar FLG and
ExG the complex modulus increases with increasing filler loading. SWCNT do not affect complex
modulus below a filler loading of 0.5 wt.%. A significant decrease is observed for 0.5 wt.% filler loading
of Tuball 75. This attributes to the dominating network of flexible SWCNT within the composite.
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Figure 11d shows the dependency of complex modulus in the entropy elastic state onparticle type and
filler loading. The black solid line indicates the value for the neat Epikote 828LVEL. With increasing
filler loading of CB the complex modulus rises. For all MWCNT types the complex modulus increases
with beginning of rheological percolation. Due to the elastomeric chains the complex modulus drops
with increasing filler loading of CNTN. Increased filler loading of FLG, ExG, and both SWCNT types
significantly increases the complex modulus.

3.4. Fracture Toughness Mode I and II

Figure 12 shows exemplary the machined notch with the inserted pre-crack of the mode I (left) and
mode II (right). The crack length is homogeneous and the crack tip very sharp due to the introduced
notching technique.

Figure 12. Exemplary machined notch and pre-crack for (left) mode I and (right) mode II.

Figure 13 gives the stress intensity factors KIC and KI IC for the different molecular weight epoxy
resins. The KIC value is lowest for Epikote 162, which offers the lowest molecular weight. Highest
KI IC values are achieved with Epikote 828, which offers the highest molecular weight. The values are
in a similar range as reported by Liu et al. [45].
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Figure 13. Comparison of fracture toughness in mode I and mode II for epoxy resins Epikote 162, 827,
828LVEL, and 828.

3.4.1. Mode I

For mode I fracture the reinforcement mechanisms are crack separation, bifurcation, pinning,
deflection and separation of particles [17,18]. The results of the influence of nanoparticle type and
filler loading on the mode I fracture toughness are summarized by Figure 12. CB shows a maximum at
8 wt.% filler loading (Figure 12a).
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NC7000 exhibit a maximum of the KIC, too (Figure 12b). Both maxima lay in the range of the
rheological percolation, which is also reported by Nadiv et al. [14,15]. Figure 14c shows the impact
of 0.5 wt.% NC7000 on the KIC of the different molecular weight resins. The increase in fracture
toughness in mode I is lowest for Epikote 162. Figure 14d gives the impact of atmospheric and
argon plasma functionalization on the fracture toughness in mode I in dependency of their filler
loading. Furthermore, the influence of CNTN is shown. CNTN show the highest potential for fracture
toughness improvement with nanotubes, whereby the plasma treatments have minor influence on the
mode I fracture toughness. Figure 14e shows the influence of the used planar particles on the fracture
toughness. The ExG modification results in a maximum at 2 wt.% filler loading, similarly high as
CNTN at 1 wt.%. For FLG the maximum in mode I fracture toughness supposedly lays below 0.5 wt.%.
A maximum for this particle type is reported at 0.05 wt.% [46]. A correlation with the rheological
or electrical percolation for planar particles is not possible. Figure 14f gives similar improvement in
fracture toughness for both SWCNT types. They result in lower enhancement due to their flexible
nature. For pristine carbon nanotubes the best improvement is achieved with 0.5 wt.% of CNTB.
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Figure 14. Particles impact on fracture toughness in mode I for (a) CB in Epikote 828LVEL (b) NC7000
in Epikote 828LVEL (c) 0.5 wt.% NC7000 in Epikote 162, 827, 828LVEL, and 828 (d) CNTB, CNTA,
CNTP and CNTN in Epikote 828LVEL (e) Avan2 and ExG in Epikote 828LVEL (f) Tuball 75 and Tuball
purified in Epikote 828LVEL.
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3.4.2. Mode II

Figure 15a,b shows the impact of CB and NC7000 filler content on the fracture toughness in mode
II, respectively.
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Figure 15. Particles impact on fracture toughness in mode II for (a) CB in Epikote 828LVEL (b) NC7000
in Epikote 828LVEL (c) 0.5 wt.% NC7000 in Epikote 162, 827, 828LVEL, and 828 (d) CNTB, CNTA,
CNTP and CNTN in Epikote 828LVEL (e) Avan2 and ExG in Epikote 828LVEL (f) Tuball 75 and Tuball
purified in Epikote 828LVEL.

For both particle types the KI IC value drops with increasing filler loading. The influence of
0.5 wt.% NC7000 on the evaluated epoxy resins is given in Figure 15c. For all resins KI IC decreases
with this particle modification. This is less pronounced for the highest molecular weight resin Epikote
828. CNTB and CNTA do not weaken the fracture toughness in mode II, as shown in Figure 15d.
Atmospheric plasma treated CNTP, offering a higher oxygen content, decrease the fracture toughness
in mode II with increasing filler content. The KI IC value drops for a CNTN modification to a constant
lower value, seemingly independent of the filler concentration. Figure 15e gives the influence of used
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planar particles on the fracture toughness. The fracture toughness is reduced with increasing filler
loading. The influence of filler loading of SWCNT on KI IC is shown in Figure 15f. With increasing
filler content of Tuball 75, KI IC decreases. This reduction is less pronounced for the purified SWCNT at
the investigated range of filler contents. Surprisingly, only for low filler contents of CNTB, CNTA, and
CNTP a slight increase of KI IC is observed, whereas CNTA modification shows the highest potential.
The measurement of KI IC is discussed controversially in literature, because it is highly dependent on
notch shape and loading condition [47]. Many studies report an improvement of fracture toughness
in mode II due to nanoparticle modification e.g., [19,20,23], but the mechanisms are not elaborated
comprehensively. It is well known that cracks in mode II try to initiate from the crack tip in the
direction of the inserted pre-crack and take onwards a curved path converging the direction of mode
I loading, under an angle of 70◦ from the initial direction [48]. Ramsteiner states in his publication
that the crack often initiates in mode I direction, even for mode II loading due to a non-ideal crack tip.
Therefore, KI IC is often reported to be in the range of KIC, due to inaccurate notch preparation [48].
Our sharp pre-crack prevents crack initiation in mode I in shear loading. The process zone in mode II
is three times larger compared to mode I, as already shown in Figure 2. Hence, more energy can be
stored in the plastic zone in mode II, leading to higher fracture toughness for shear loading of neat
polymers. Figure 16 schematically shows the loading conditions for mode I and mode II at the crack
tip before and after crack propagation.
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Mode I (tension) crack tip stress loading

Mode II (shear) crack tip stress loading

Compressive crack tip stress loading

Figure 16. Illustration of crack propagation before and after instability in (top) mode I and (bottom)
mode II with craze initiation at particle adapted from [32].

In mode I the crack propagation initiates in the direction of the pre-crack and propagates further
in this direction due to crack opening in tension mode. Figure 17a,b show the SEM images of the
with 0.1 wt.% Tuball purified and Tuball 75 modified composite in mode I, respectively. The red line
indicates the pre-notch. For both modifications, the crack propagates in the direction of the pre-notch.

For mode II the crack tries to initiate, as already stated, as well in the direction of the pre-crack.
However, the propagation is in mode I under an angle of 70 °, due to the lower fracture toughness
in mode I. For particle filled polymers the crack may initiate in shear loading in mode I, caused by
initiation of craze formation at particles. Crazing in polymers is initiated at defects or impurities [49,50].
Zhang et al. made this observation for nano composites, too [51]. Craze formation is more pronounced
for lager particles and more likely for higher filler loading. The weakly bonded layered structure of
the planar particles further promotes crack initiation in shear loading condition. Figure 17c,d show the
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SEM images of the 0.1 wt.% Tuball purified and Tuball 75 modified composite in mode II, respectively.
For Tuball 75 modified samples the disruption at crack initiation point is much deeper and has a larger
excess compared to the purified variant. This contributes to the impurities in the Tuball 75 SWCNT
variant, which promote crack initiation. Particularly at the edges of the disruption, the formation of
crazes is visible. This is not the case for the purified variant, supporting the mechanisms given in
Figure 16.

200µm200µm

b)a)

200µm200µm

d)c)

Figure 17. SEM images of the fracture surfaces of 0.1 wt.% SWCNT in Epikote 828LVEL (a) Tuball
purified mode I (b) Tuball 75 mode II (c) Tuball purified mode II (d) Tuball 75 mode II.

4. Summary

Our results show highest decrease in KI IC for FLG, ExG, and pristine Tuball 75. Therefore,
the decrease is more pronounced for SWCNT with metal impurities. CNTN feature the same elastomer
domain size independent of the filler loading and therefore have the same decrease. Application
demands a compromise between the enhancement of physical properties, in this case electrical
conductivity and fracture toughness, and processability represented by the resulting composite’s
viscosity. Figure 18 shows the electrical conductivity and the corresponding viscosities for the modified
Epikote 828LVEL. Tuball 75 modification results in highest electrical conductivity at any given viscosity.
Also, all types of MWCNT show good results.
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Figure 18. Summary of the electrical conductivity (cured state) in correspondence to the complex
viscosity for all evaluated particle types in Epikote 828LVEL/RIMH 137/134 (liquid state).

Figure 19 gives KI IC and the corresponding KIC values for the composites. Only Tuball 75 at
0.01 wt.% filler loading and CNTA up to 0.3 wt.% increase both fracture toughness values. CNTN
modification results in a low decrease in KI IC accompanying a high increase in KIC, but offer a very
low electrical conductivity and a comparably high viscosity increase. Therefore, Tuball 75 show highest
application potential regarding requirement of electrical conductivity and ExG for improvement of
mode I fracture toughness.
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Figure 19. Summary of resulting KI IC and KIC values for all investigated particle types in
Epikote 828LVEL.

5. Conclusions

In conclusion, the novel three-step pre-cracking method allowed an exact introduction of the
pre-crack and led to low variation in fracture toughness values. In particular, the measured mode II
fracture toughness values were as high as reported in literature, due to prevention of crack initiation in
tension mode. The plastic zone in front of the crack tip in mode II stores much more energy compared
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to mode I, resulting from its dimension. For mode II loading of a pre-crack in a nanocomposite, the
particles act as crack initiator in tension mode, lowering the fracture toughness in mode II. SWCNT
Tuball 75 offer the highest conductivities at any given viscosity and the lowest percolation threshold.
This makes them favorable for applications where high conductivities are demanded. MWCNT and
CB show a good compromise of processability and physical property enhancement. Addition of planar
and globular carbon nanoparticles leads to comparably low electrical conductivities, but ExG can
achieve a very high mode I fracture toughness at only slightly increased viscosities. All fillers lead to
a decrease of KI IC above a certain loading threshold, due to promotion of crack initiation.
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The following abbreviations are used in this manuscript:

3PBT three-point bending test
4PBT four-point bending test
BET Brunauer–Emmett–Teller theory
CB carbon black
CNT carbon nanotube
CNTA argon plasma treated CNTB
CNTB reference MWCNT
CNTN CNTB equipped with elastomer side chains, which are amino-functionalized
CNTP atmospheric plasma treated CNTB
ExG electrochemically expanded graphite
FLG few-layer graphene
MWCNT multi-walled carbon nanotube
SEM Scanning electron microscopy
SENB single-edge notched bending
SWCNT single-walled carbon nanotube
TEM Transmission electron microscopy
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Appendix A. Morphological Characterization of Used Nanoparticles

Appendix A.1. Scanning Electron Microscopy

To evaluate the morphology of used particles SEM images were taken at magnifications of 10 k
and 150 k, respectively. Figure A1 gives the SEM images of CB PrintexL. They inhibit a globular form,
which is typical for carbon blacks. The images reveal agglomerates with a diameter of 10 µm.

300nm3µm

b)a)

Figure A1. SEM images for PrintexL at magnifications of (a) 10 k and (b) 150 k.

Figure A2 gives the SEM images of MWCNT NC7000. They inhibit a cylindrical geometry.
The MWCNT are highly entangled within the agglomerates.

300nm3µm

b)a)

Figure A2. SEM images for NC7000 at magnifications of (a) 10 k and (b) 150 k.

Figures A3–A5 give the SEM images of MWCNT CNTB, CNTA, and CNTP, respectively.
All MWCNT from Future Carbon inhibit the same cylindrical geometry. In comparison to NC7000 the
network within the agglomerates appears to be less dense.

300nm3µm

b)a)

Figure A3. SEM images for CNTB at magnifications of (a) 10 k and (b) 150 k.
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300nm3µm

b)a)

Figure A4. SEM images for CNTA at magnifications of (a) 10 k and (b) 150 k.

300nm3µm

b)a)

Figure A5. SEM images for CNTP at magnifications of (a) 10 k and (b) 150 k.

Figure A6 gives the SEM images of CNTN. The MWCNT are equipped with amino-functionalized
elastomer side chains and are well incorporated in the elastomer. Additionally, Figure A6c shows
CNTN at a magnification of 25 k and reveals the distribution of the MWCNT.

Figure A6. SEM images for CNTN at magnifications of (a) 10 k, (b) 150 k and (c) 25 k.
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Figures A7 and A8 give the SEM images of planar FLG and ExG, respectively. FLG Avan2 appears
in a higher agglomerated state compared to ExG.

300nm3µm

b)a)

Figure A7. SEM images for FLG Avan2 at magnifications of (a) 10 k and (b) 150 k.

300nm3µm

b)a)

Figure A8. SEM images for ExG at magnifications of (a) 10 k and (b) 150 k.

Figures A9 and A10 give the SEM images of SWCNT Tuball 75 and Tuball purified, respectively.
Both appear in a highly agglomerated and entangled state. The purified SWCNT offer low metallic
impurity content.

300nm3µm

b)a)

Figure A9. SEM images for Tuball 75 at magnifications of (a) 10 k and (b) 150 k [27].
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300nm3µm

b)a)

Figure A10. SEM images for Tuball purified at magnifications of (a) 10 k and (b) 150 k.

Appendix A.2. Transmission Electron Microscopy

To evaluate the morphology of used particles TEM images were taken at two magnifications.
Figure A11 gives the TEM images of CB PrintexL. They show an amorphous structure.

50 nm

b)a)

10 nm

Figure A11. TEM images for PrintexL at (a) low magnification and (b) high magnification.

Figures A12–A15 give the TEM images of MWCNT NC7000, CNTB, CNTA, and CNTP,
respectively. They all show a similar appearance.

50 nm

b)a)

10 nm

Figure A12. TEM images for NC7000 at (a) low magnification and (b) high magnification.
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50 nm

b)a)

10 nm

Figure A13. TEM images for CNTB at (a) low magnification and (b) high magnification.

50 nm

b)a)

10 nm

Figure A14. TEM images for CNTA at (a) low magnification and (b) high magnification.

50 nm

b)a)

10 nm

Figure A15. TEM images for CNTP at (a) low magnification and (b) high magnification.

Figure A16 gives the TEM images of CNTN. The elastomer is clearly visible and the MWCNT are
well incorporated into the polymer.
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50 nm

b)a)

10 nm

Figure A16. TEM images for CNTN at (a) low magnification and (b) high magnification.

Figures A17 and A18 give the TEM images of planar FLG and ExG, respectively. FLG Avan2 has
a less graphene layers compared to ExG.

200 nm 10 nm

b)a)

Figure A17. TEM images for Avan2 at (a) low magnification and (b) high magnification.

500 nm 10 nm

b)a)

Figure A18. TEM images for ExG at (a) low magnification and (b) high magnification.

Figures A19 and A20 give the TEM images of SWCNT Tuball 75 and Tuball purified, respectively.
Both appear in a highly bundled state. The purified SWCNT offer low metallic impurity content.
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50 nm 10 nm

b)a)

Figure A19. TEM images for Tuball 75 at (a) low magnification and (b) high magnification [27].

50 nm

b)a)

10 nm

Figure A20. TEM images for Tuball purified at (a) low magnification and (b) high magnification.
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