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Abstract: Atrazine (ATZ) is an herbicide which is applied to the soil, and its mechanism of action
involves the inhibition of photosynthesis. One of its main functions is to control the appearance
of weeds in crops, primarily in corn, sorghum, sugar cane, and wheat; however, it is very toxic
for numerous species, including humans. Therefore, this work deals with the adsorption of ATZ
from aqueous solutions using nanocomposite materials, synthesized with two different types of
organo-modified clays. Those were obtained by the free radical polymerization of 4-vinylpyridine
(4VP) and acrylamide (AAm) in different stoichiometric ratios, using tetrabutylphosphonium
persulfate (TBPPS) as a radical initiator and N,N′-methylenebisacrylamide (BIS) as cross-linking agent.
The structural, morphological, and textural characteristics of clays, copolymers, and nanocomposites
were determined through different analytical and instrumental techniques, i.e., X-ray diffraction (XRD),
Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Adsorption
kinetics experiments of ATZ were determined with the modified and synthesized materials, and
the effect of the ratio between 4VP and AAm moieties on the removal capacities of the obtained
nanocomposites was evaluated. Finally, from these sets of experiments, it was demonstrated that
the synthesized nanocomposites with higher molar fractions of 4VP obtained the highest removal
percentages of ATZ.

Keywords: clay–polymer nanocomposites; atrazine; radical polymerization;
hexadecyltrimethylammonium bromide; phenyltrimethylammonium chloride; FTIR; TGA; adsorption

1. Introduction

Atrazine (ATZ) is an herbicide that belongs to the family of triazines; its International Union of Pure
and Applied Chemistry (IUPAC) name is 6-chloro-N-ethyl-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine
(Figure 1). It is a selective herbicide that is applied to the soil; mainly, its action mechanism involves
the inhibition of photosynthesis. Moreover, in plants, it is absorbed through the roots or leaves and it is
applied before or after the germination of seeds. One of the main applications of ATZ is for controlling
the occurrence of broadleaf and grassy weeds [1,2]. Additionally, ATZ is also known as an endocrine
disruptor; this term defines a diverse and heterogeneous set of chemical compounds capable of altering
the hormonal balance.
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Figure 1. Structure of the atrazine (ATZ) herbicide.

There are many factors that contribute to the pollution of water sources destined to human
consumption, through runoff with ATZ. Some of the properties that determine the mobility of ATZ
and its metabolites in the environment are their low affinity to the soil components and their high
persistence. Moreover, the relative “high” solubility of ATZ in water is the most frequent cause of
finding it in surface and underground water bodies [3,4]. The Environmental Protection Agency of the
United States (EPA) reported that this herbicide is toxic to numerous aquatic and reptile species, at
levels of up to two parts per billion (ppb). Moreover, the EPA recommendation for the treatment of
drinking water, polluted with triazines, is filtration with granular activated carbon (GAC) [5].

The degradation of ATZ can be carried out by both biological and chemical reactions. Biological
degradation occurs through the activity of microorganisms and it is considered as the main process
by which this herbicide is transformed [6–9]. However, the degradation of ATZ by means of
microorganisms is not the most appropriate technology due to the formation of its metabolites,
which are more toxic than the herbicide itself. Meanwhile, the chemical degradation of ATZ is
carried out mainly by two processes: hydrolysis and photolysis. Hydrolysis commonly leads to
the production of hydroxylated compounds such as hydroxyatrazine, desethylhydroxyatrazine, and
deisopropylhydroxyatrazine, each one with variable persistence and toxicity [10].

One alternative method employed for the removal of ATZ is the adsorption process through the
development of novel adsorbent materials, which is widely used. Some advantages of this method
are (i) effectiveness, since it can reduce ATZ concentration to prevent the formation of a metabolite
of the herbicide; (ii) simplicity, because its application is the use of columns through which water is
passed; (iii) environmentally friendly, thanks to the use of small amounts of adsorbents that can be
regenerated; and (iv) economical, because materials are cheaper than those used in other methods.
One example of these kinds of materials involves clays modified with a cationic surfactant, also called
organo-modified clays, because the nature of the hydrophilic clay is modified by organic cations to
form a richer organophilic surface, which confers them a great affinity for organic compounds, being
able to remove them from water bodies [11–14].

These organo-modified clays are incorporated into polymer matrices to obtain clay polymer
nanocomposites that attracted attention as adsorbents, since they can be reusable and have a high
retention capacity [15–17]. It is noteworthy that a nanocomposite consists of at least two main
components that are chemically distinct and insoluble. The first of them is the matrix that serves as the
continuous phase and could be a polymeric, a metallic, or a ceramic material. The second one is the
filler, in the nanoscale range, i.e., from 1 to 100 nm, whose main function is to reinforce the matrix; some
examples of fillers are graphene, dichalcogenide materials like MoS2 MoSe2, WS2, or MoTe2, or natural
materials such as clays or zeolites. Specifically, in our research group, we synthesized different types of
clay polymer nanocomposites for different purposes, i.e., for the removal from aqueous solutions of
azo dyes [18,19], a triarylmethane dye [20], or even phenolic compounds [21].

The compound 4-vinylpyridine (4VP) is a weak base that, when protonated, can increase its
volume due to the incorporation of solvent and electrostatic repulsion between the charged sites.
Moreover, the presence of the pyridine ring offers the possibility of anchoring different species, making
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it a good adsorbent [22]. Acrylamide (AAm) has two reactive centers: the amide group carries out the
characteristic reactions of an aliphatic amide and also has weakly acidic and basic properties [23,24].
The double bond of AAm is deficient in electrons and produces Michael-type addition reactions, many
of which are reversible. AAm is used in the treatment of water to flocculate solids. On the other
side, sepiolite is a raw clay mineral that is used for its organo-modification. This is because of the
enhancement in the mechanical properties that it offers to any polymer matrix and because it is very
easy to modify with a cationic surfactant [25–27].

In this work the organo-modification of a raw clay mineral, consisting mainly of sepiolite, and
its nanocomposites, comprising monomers 4VP and AAm in different percentages, were synthesized
and characterized. For this purpose, a raw clay mineral, a sepiolite, from Puebla State, in Mexico, was
organo-modified with two different cationic surfactants, namely, hexadecyltrimethylammonium
bromide (HDTMA-Br) or phenyltrimethylammonium chloride (PTMA-Cl). Afterwards, these
organo-modified clays were incorporated into the copolymer structures, p(4VP-co-AAm), to obtain
two different series of nanocomposites. At last, their morphology, their thermal properties, their
spectroscopic characteristics, and their ATZ kinetics adsorption were gauged.

2. Materials and Methods

2.1. Materials

All the chemicals and materials used in the synthesis and characterization of nanocomposites, as
well as those for the ATZ adsorption tests, were used as received without any further purification,
unless otherwise stated. Firstly, 4-vinylpyridine (4VP; (FW) = 105.14 g·mol−1, b.p. = 62–65 ◦C) and
acrylamide (AAm; FW = 71.08 g·mol−1, m.p, = 82–86 ◦C) monomers, N,N’-methylenebis(acrylamide)
(BIS; FW = 154.17 g·mol−1, m.p. ≥ 300 ◦C) cross-linking agent, hexadecyltrimethylammonium bromide
(HDTMA-Br; FW = 364.45 g·mol−1, m.p. = 212 ◦C) and phenyltrimethylammonium chloride (PTMA-Cl;
FW = 171.67 g·mol−1, m.p. = 246–248 ◦C) cationic surfactants, and formamide (FW = 45.04 g·mol−1,
b.p. = 210 ◦C) solvent were obtained from Sigma-Aldrich. Sodium chloride (NaCl, FW = 74.55
g·mol−1, Tm = 776 ◦C) was obtained from JT Baker (Mexico City, Mexico). The ionic-liquid radical
initiator of the polymerization, tetrabutylphosphonium persulfate (TBPPS; FW = 710 g·mol−1),
was synthesized according to the procedure previously reported elsewhere [28]. Atrazine (ATZ,
6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine ≥90%) was kindly supplied by Servicios
Tecnológicos para la Agrigultura S.A. de C.V. (Irapuato, Mexico) in its commercial form “Calibre 90
DF”. Finally, a raw clay mineral, with sepiolite, supplied by Zeolitech S.A. de C.V. (Puebla, Mexico)
and identified by the supplier as A1, was employed.

2.2. Raw Clay Mineral Organo-Modification and Cationic Exchange Capacity (CEC)

Firstly, the raw clay mineral (sepiolite) was milled and sieved until it was obtained with a particle
size lesser than 44 µm (325 mesh); subsequently, it was stored in plastic bottles free of moisture until it
was used. Afterward, 50 g of this clay was put in contact with 500 mL of a NaCl solution (0.1 M) for 3 h
with reflux. Next, phases were separated and the clay was decanted; then, another 500 mL of NaCl
solution was added, repeating the same procedure until it completed 6 h of reflux. At the end of the
total reflux time, the clay was allowed to cool to room temperature and the solution was decanted.
After its homoionization, the clay material was washed with deionized water for the elimination of
chloride ions, which was verified using silver nitrate (AgNO3). In addition, CEC of the clay material
was performed as reported by the American Petroleum Institute, API [29,30]. Briefly, 1 g of the raw
clay material, 10 mL of distilled water, 15 mL of hydrogen peroxide (H2O2; 3% v/v), and 0.5 mL of a
sulfuric acid (H2SO4) solution (0.5 N) were mixed. Subsequently, the mixture was heated and allowed
to boil for 10 min. After this time, distilled water was added until a volume of 50 mL was obtained;
finally, it was titrated with a methylene blue solution of 0.01 mEq.
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2.3. Modification of the Homoionized Clay Mineral with HDTMA-Br and PTMA-Cl

The modification of the homoionized clay mineral was carried out with two different cationic
surfactants, namely, HDTMA-Br and PTMA-Cl. In the case of the modification of the clay mineral with
HDTMA-Br, it was carried out as reported by Hernández-Hernández et al. [21]. Specifically, 10 g of
clay material was put in contact with 100 mL of a solution of HDTMA-Br (0.03 M, 30 mEq·L−1) for 48 h
at 30 ◦C and 100 rpm. In the case of the modification with PTMA-Cl, 10 g of clay material were put in
contact with 100 mL of a 0.03 M PTMA-Cl solution (30 mEq·L−1), applying the same conditions of
temperature and contact time. The concentration of the used surfactant was in concordance with the
CEC that was calculated for the raw clay mineral. At the end of this time, the two organo-modified
clay minerals, with HDTMA-Br (OMH) or with PTMA-Cl (OMP), were washed with deionized water
until the complete removal of bromide or chloride ions, respectively.

2.4. Synthesis of the Organo-Modified Clay Nanocomposites (CC)

Organo-modified clay nanocomposites (CC) were obtained according to the following procedure:
appropriate amounts of 4VP and AAm comonomers, OMH or OMP organo-modified clays, BIS
cross-linking agent, TBPPS polymerization initiator, and a solvent mixture consisting of formamide
and deionized water (50% v/v) were added to a polymerization reactor (Table 1). In all cases, the total
amount of the two comonomers (0.1 mol), initiator (TBPPS, 0.25 mol. % referred to the total molar
amount of the two comonomers), cross-linking agent (BIS, 3 mol. % referred to the total molar amount
of the two comonomers), and the solvent mixture (2 mL) were kept constant. Then, mixtures without
TBPPS to avoid spontaneous polymerization were placed in an ultrasonic bath for 3 h at 100 rpm to
exfoliate and disperse the clay [17]. After, TBPPS initiator was added and the polymerization reactors
were again ultrasonicated until TBPPS was totally dissolved. Finally, nitrogen was bubbled for 30 min
and reactors were sealed and placed in an oil mineral bath at 55 ◦C for 24 h. After polymerization,
all samples were extracted and washed with deionized water for several days to remove the solvent
mixture and all reagents that did not react.

Table 1. Experimental data of the synthesized samples. 4VP—4-vinylpyridine; AAm—acrylamide;
OMH—organo-modified with hexadecyltrimethylammonium bromide; OMP—organo-modified with
phenyltrimethylammonium chloride; BIS N,N’-methylenebis(acrylamide).

Sample Codes 4VP (mol. %) AAm (mol. %) OMH/OMP (wt. %) BIS (mol. %) TBPPS (mol. %)

CC01 100 0 - 3 0.25
CC02 85 15 - 3 0.25
CC03 65 35 - 3 0.25
CC04 50 50 - 3 0.25
CC05 30 70 - 3 0.25
CC06 10 90 - 3 0.25
CC07 0 100 - 3 0.25

CCH01 100 0 5 3 0.25
CCH02 85 15 5 3 0.25
CCH03 65 35 5 3 0.25
CCH04 50 50 5 3 0.25
CCH05 30 70 5 3 0.25
CCH06 10 90 5 3 0.25
CCH07 0 100 5 3 0.25
CCP01 100 0 5 3 0.25
CCP02 85 15 5 3 0.25
CCP03 65 35 5 3 0.25
CCP04 50 50 5 3 0.25
CCP05 30 70 5 3 0.25
CCP06 10 90 5 3 0.25
CCP07 0 100 5 3 0.25
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2.5. Swelling Behavior

Equilibrium swelling behaviors were recorded for the synthesized dry materials, one for each
stoichiometric ratio, and their initial weight (Po) was recorded. Dry disc samples were immersed in 50
mL of deionized water at room temperature. Weights of swollen discs were measured at different time
intervals after excess surface water was removed. This procedure was repeated until there was no
weight change. The swelling percentage was calculated according to the following equation:

Sw (%) = [(Ws −Wd)/Wd] × 100, (1)

where Wd and Ws are the initial dried disc sample and the final swollen disc sample weights after a
certain period of time, respectively.

On the other side, the critical pH points of the samples were studied while they were immersed in
distilled water for 8 h, at room temperature in solutions of pH ranging from 2.2 to 11. In all cases, the
inflexion point of the swelling as a function of pH gives us the critical pH point.

Finally, the pH sensitivity was defined from the following equation:

(pH)s = W3/W7, (2)

where W3 and W7 are the swollen weights of the samples at pH = 3 and 7, obtained after 8 h of swelling.

2.6. Characterization

2.6.1. Raw Clay Mineral, Organo-Modified Clay Materials, and CC

X-ray diffraction (XRD) of both the raw clay mineral and the organo-modified clay materials was
obtained on a Rigaku X-ray diffractometer to identify the main crystalline phases that compose them.
The analyses were performed by the powder method, running the samples from 2◦ to 85◦ in 2θ and
with a step size of 0.02◦.

FTIR spectra for all samples were recorded on an infrared absorption spectrophotometer with
Fourier transform (FTIR Varian 640-IR) equipped with a diamond ATR (attenuated total reflectance)
accessory. The absorption was measured in a wavenumber range between 4000 and 600 cm−1, with a
resolution of 16 cm−1 and 16 scans.

The morphology of the clay minerals and CC was studied by means of scanning electron
microscopy (SEM) using a scanning electron microscope SEM JEOL model JSM 5900LV (Mexico City,
Mexico).

In the case of the thermal analysis, the thermal stability of the samples was studied through the
thermogravimetric analysis (TGA) in a thermogravimetric analyzer, TA Instruments, model Q5000
TGA (Mexico City, Mexico) under N2 atmosphere, from 25 to 850 ◦C, at a heating rate of 10 ◦C·min−1.
Moreover, differential scanning calorimetry (DSC), using a differential scanning calorimeter, TA
Instruments model 2910 (Mexico City, Mexico), was employed in order to determine the thermal
transitions of the polymeric materials. For each sample, two consecutive scans were performed in a
temperature range from −80 to 200 ◦C under N2 atmosphere, with a heating rate of 20 ◦C·min−1.

2.6.2. ATZ Quantification and Adsorption Kinetics Evaluation

Firstly, absorption spectra were obtained at different ATZ concentrations, from 1 to 11 mg·L−1, in
a Perkin Elmer Lambda 35 ultraviolet–visible light (UV–Vis, Metepec, Mexico) spectrophotometer, at a
wavelength value of 222 nm. Subsequently, mixtures of 35 mg of raw clay mineral, OMH, OMP, or CCC
samples, and 10 mL of ATZ solutions (5 mg·L−1) were shaken in an orbital bath for different periods of
time, from 4 to 24 h, at 25 ◦C and 100 rpm. Lastly, samples were decanted, and the supernatants were
centrifuged at 1500 rpm for 20 min, and the concentration of ATZ in the supernatant was determined



Polymers 2019, 11, 721 6 of 20

by means of the UV–Vis technique, following the procedure reported previously [16]. It is noteworthy
that all adsorption kinetics experiments were performed at least in triplicate.

The qe values (equilibrium adsorption capacity) were determined from the adsorption kinetics
curve: once the qt values did not change, we could assume that the equilibrium was reached; therefore,
qe = qt.

In addition, qt was determined from the following equation:

qt = [(Ci − Ct)/w] V, (3)

where Ci is the initial concentration of the ATZ solution in mg·L−1, Ct is the ATZ concentration in a
determined time t (mg·L−1), w is the mass of the dry adsorbent material (g), and V is the volume of the
solution (L).

3. Results

3.1. Organo-Modification of the Raw Clay Mineral

3.1.1. CEC

Table 2 summarizes the obtained CEC results for the raw clay mineral (sepiolite), as reported
by the API [29]; this procedure was carried out in triplicate. Furthermore, to be more accurate, 0.1
and 0.5 g samples were weighed to compare the obtained results. The mineral presented a CEC of
29.6 mEq/100 g, which is in concordance with what is reported in the literature for a sepiolite [31–33].

Table 2. Cationic exchange capacity (CEC) results for the raw clay mineral.

Raw Clay Mineral (g) Volume of Methylene Blue (mL) CEC (meq/100 g)

0.5006 15 29.96
0.5003 15 29.86
0.4996 14 28.02
0.1006 3 29.82
0.1004 3 29.88
0.1002 3 29.94

3.1.2. XRD Analysis

Figure 2a shows the XRD patterns of the raw clay mineral, the OMH, and the HDTMA-Br cationic
surfactant. In the case of the first pattern, reflections corresponding to the main clay minerals present
in the structure were identified and corresponded to sepiolite (JCPDS 00-023-0330), albite (JCPDS
00-001-0739), and quartz (JCPDS 00-005-0490). Moreover, the pattern corresponding to the HDTMA-Br
surfactant was also observed, and it was compared to the JCPDS 00-030-1746 card. In general terms,
it can be seen that the obtained XRD pattern maintained the same crystallographic structure of the
HDTMA cationic surfactant. Finally, the pattern of the OMH presented a displacement to the right, in
angles 2θ, compared to the raw clay mineral, which was a result of the decrease of the interlaminar
space and is proof that a change in the crystalline structure of the material was carried out mainly in
the interlaminar zone.
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Figure 2. X-ray diffraction (XRD) patterns of the (a) raw clay mineral, the organo-modified
with hexadecyltrimethylammonium bromide (OMH), and the hexadecyltrimethylammonium
bromide (HDTMA-Br) cationic surfactant. (b) The raw clay mineral, the organo-modified with
phenyltrimethylammonium chloride (OMP) and the phenyltrimethylammonium chloride (PTMA-Cl)
cationic surfactant.

On the other side, the XRD patterns of the raw clay mineral, the OMP, and the PTMA-Cl cationic
surfactant are shown in Figure 2b; however, a different behavior was observed. In this case, peaks did
not present any shift and maintained the same pattern. Therefore, it is suggested that the exchange
process of the PTMA cations within the clay structure was achieved mainly with the external cations
present in the surface of the raw clay mineral [21].

3.2. Organo-Modified Clay Nanocomposite (CC) Characterization

3.2.1. Swelling Behavior

Firstly, we studied the swelling properties of the synthesized materials. Figure 3a shows the
swelling percentage of a synthesized p(4VP-co-AAm) copolymer, sample CC04, and the homopolymers
p(4VP) and p(AAm), which correspond to samples CC01 and CC07, respectively. Sample CC07 reached
its equilibrium after 8 h with a maximum swelling percentage of 400%. However, it showed poor
mechanical properties when it was swollen, since its structure collapsed. Meanwhile, the sample CC01
reached its maximum swelling capacity at 12 h with a maximum percentage of 140%. Finally, the
copolymer CC04 had its maximum swelling capacity at 12 h with a percentage of 190%; this decrease
in the swelling capacity, compared to the homopolymer CC07, was mainly due to the presence of the
4VP moiety in the copolymer matrix, which is more hydrophobic than the AAm moiety.

Figure 3b shows the equilibrium swelling of nanocomposites with OMH, which occurred very
quickly during the first 4 h for all the materials. In the case of nanocomposite CCH07, a maximum
swelling percentage of 400% was found. On the other side, the nanocomposite CCH01 had a maximum
swelling percentage of 140%. Finally, the nanocomposite CCH04 presented a maximum swelling
percentage of 190%. It is important to mention that the swelling capacity between polymers and their
nanocomposites with OMH did not vary significantly; however, the time in which the equilibrium was
reached changed significantly, going from an equilibrium swelling time of 12 to 4 h.

At last, Figure 3c shows the swelling behavior for nanocomposites synthesized with OMP. For all
synthesized materials, the equilibrium time was found after 8 h; in the case of nanocomposite CCP07, it
reached a maximum percentage of 290%. Meanwhile, the nanocomposite CCP01 exhibited a maximum
swelling percentage of 190%, and the nanocomposite CCP04 showed a swelling capacity of 200%.
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Figure 4a displays the critical pH value of the synthesized homopolymers and copolymer. For
the homopolymer CC07, it was confirmed that the swelling capacity did not depend on the pH of the
aqueous solution; therefore, it is a polymer that does not respond to the pH stimulus. In contrast,
the homopolymer CC01 showed variable swelling capacities due to the basic nature of the pyridine
nitrogen ring [34]. The critical pH value determined was found to be 4.9, which was very similar to
that reported by Clara-Rahola et al. [35]. This homopolymer presented a significant swelling capacity,
because, at these values, the pyridine groups of p(4VP) are protonated; thus, the repulsive electrostatic
contribution induces the swelling of the polymer structure forming hydrogen bonds with the water
molecules in the medium. Finally, the copolymer CC04 showed a very similar behavior to that of
homopolymer CC01, with a critical pH value of 5.0; thus, it is understood that the behavior of this
copolymer was significantly influenced by the p(4VP) moiety in its structure.

Figure 4b illustrates the critical pH value of nanocomposites synthesized with the organo-modified
clay with HDTMA. From this figure, it can be seen that, for nanocomposite CCH01, the critical pH value
did not show any significant difference compared to the homopolymer CC01 and it was practically the
same, i.e., 4.9. Similarly, it was observed that the nanocomposite CCH04 did not show any significant
difference with the copolymer CC04, with a critical pH value of 5.

Finally, Figure 4c represents the critical pH value of nanocomposites synthesized with the
organo-modified clay with PTMA. From this figure, it can be observed that the critical pH values
for nanocomposites with this organo-modified clay had a similar behavior to the synthesized
nanocomposites with HDTMA, i.e., pH = 4.9.
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Figure 5a,b show the reversibility of the extended and collapsed states for the synthesized
p(4VP-co-AAm) nanocomposites with the organo-modified clays HDTMA and PTMA, respectively.
Measurements were performed below and above the critical pH value, that is, at pH = 3.3 and pH
= 9, after swelling for 4 or 8 h, depending on the nanocomposite sample. In the case of Figure 5a,
nanocomposites CCH01 and CCH04 showed very good reversibility response with pH sensitivity,
Sw9/Sw3.3 = 2.56. In the case of nanocomposite CCH07, since AAm did not have a response to pH, it
did not demonstrate any response to this external stimulus. Figure 5b corresponds to nanocomposites
CCP01, CCP04, and CCP07. Similarly, these materials displayed a pH sensitivity value, Sw9/Sw3.3 = 2.54,
which is in concordance with that obtained for nanocomposites modified with HDTMA.
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Figure 5. pH reversibility for different systems: (a) CCH01, CCH04, and CCH07 nanocomposites
modified with HDTMA; (b) CCP01, CCP04, and CCP07 nanocomposites modified with PTMA.

3.2.2. FTIR

Figure 6a shows FTIR spectra corresponding to raw clay mineral, OMH, and HDTMA
cationic surfactant. In this case, three important signals were observed that confirmed the OMH
organo-modification with HDTMA; namely, the first signals between 2918 and 2843 cm−1 were due to
the stretching vibrations of the –CH2 groups present in the hydrocarbon chain, and the third signal
at 1470 cm−1 corresponded to the bending vibration of this same bond. In addition, the increase
in the intensity of all these signals was related to the amount of ammonium salt used to obtain
this organo-modified clay. In the case of Figure 6b, the most important signal representative of the
organo-modification with PTMA was found at 1502 cm−1, which could be attributed to the bending
vibrations of the C–N bond of the quaternary ammonium salt.
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Figure 6. Fourier-transform infrared (FTIR) spectra of (a) raw clay mineral, OMH, and HDTMA-Br
cationic surfactant; (b) raw clay mineral, OMP, and PTMA-Cl cationic surfactant.

Figure 7 shows the FTIR spectra of samples CC01, CC04, and CC07. In the case of homopolymer
CC01, the absorption bands located between 1600 and 1419 cm−1 corresponded to the stretching
vibrations of the pyridine ring, while the band at 821 cm−1 was associated with the symmetric vibrations
of the monosubstituted ring of pyridine. Moreover, bands at 1492 and 1451 cm−1 were characteristic
of the C–C stretching vibrations of the benzyl ring and the stretching vibrations of the C–H bond of
this same ring, respectively. Finally, other bands in this spectrum were associated with the stretching
vibration of the aliphatic CH2, at 2914 cm−1, and aromatic CH, at 3026 cm−1, and the medium intensity
bands, located in the range between 1250 and 1000 cm−1, with C=N bonds.
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Meanwhile, in the spectrum corresponding to the copolymer CC04, the characteristic bands of
p(4VP) could be observed at 2914 cm−1, associated with the stretching vibration of the aliphatic CH2

bond, and at 821 cm−1, corresponding to the symmetric vibrations of the monosubstituted pyridine ring.
In the same way, the bands corresponding to acrylamide were found at 2100 cm−1 which corresponds
to the N–H combination of stretching and torsional vibrations, and at 1613 cm−1, which corresponds to
the stretching of the C=O bond of the acrylamide.

Lastly, in the case of the homopolymer CC07, two characteristic bands corresponding to the
N–H bond were observed; the first one was located at 3359 cm−1, which was due to its asymmetric
stretching vibrations, and the second one was at 3203 cm−1, due to its symmetric stretching vibrations.
In addition, between 2914 and 2800 cm−1, vibrations of the CH2 bonds of the aliphatic chain were
observed. Finally, the absorption band at 1684 cm−1 indicated the stretching vibrations of the carbonyl
group, C=O, corresponding to the primary amides of acrylamide.

3.2.3. SEM

Figure 8a–c show micrographs of the raw clay mineral (sepiolite), OMH, and OMP organo-modified
clays, respectively. In Figure 8b, the OMH surface showed agglomerates of some particles, which were
not identified on the surface of sepiolite, depicted in Figure 8a. The same behavior was observed in
Figure 8c, which corresponds to the OMP organo-modified clay, where a more homogeneous surface
could be observed, with respect to that of sepiolite. These changes could be attributed to the presence
of the cationic surfactants that were not present in the structure of the sepiolite, which is in concordance
with a previous report concerning the organo-modification of different types of clays [36,37].

In the case of Figure 9a–c, SEM micrographs of copolymer CC04, and nanocomposites CCH04
and CCP04, respectively, are shown. As it can be seen, copolymer CC04 had a more regular surface; in
comparison, nanocomposites CCH04 or CCP04 exhibited a more heterogeneous surface with some
little aggregates randomly distributed onto their surface. This change could be attributed to the
incorporation of the OMH or OMP into the structure of the material that was not present in the
sample CC04.
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3.2.4. Thermal Analysis

TGA and DSC analyses (not shown) of the raw clay mineral (sepiolite), the organo-modified
clays (OMH and OMP), and CC04, CCH04, and CCP04 polymer and nanocomposite samples were
performed and are summarized in Table 3.

Table 3. Thermogravimetric analysis (TGA) results of the employed materials.

Sample Code T5 (◦C) Tg (◦C)

Raw clay mineral 500 ND 1

OMH 480 ND 1

OMP 520 ND 1

CC04 150 165
CCH04 140 167
CCP04 140 168

1 ND = not determined.

In the case of the TGA analyses, the thermal stability of clay materials was very good, and, for
all materials, the obtained T5 values (i.e., the temperature at which the sample loses 5% mass) were
found between 480 to 520 ◦C depending on the nature of the raw clay mineral or the employed cationic
surfactant for its organo-modification. As for the copolymer or nanocomposite samples, these values
were found from 140 to 150 ◦C; however, this stability decreased when the organo-modified clay
was incorporated into the copolymer matrix structure, which is in concordance with some previous
reports [18,21].

Meanwhile, from the DSC analyses, it was found that Tg values for copolymer and nanocomposite
samples were around 165 to 168 ◦C, depending on the incorporated organo-modified clay into its
structure. This slight change could be attributed to the plasticizer effect that clay minerals could
provide to the polymer matrix, since they have an organophilic nature due to their organo-modification
with the HDTMA or PTMA cationic surfactants.

3.3. Adsorption Experiments

3.3.1. Adsorption Kinetics of the Synthesized Nanocomposites with the CC04 Copolymer

Adsorption kinetics allows evaluating the potentiality of a material to be used as an adsorbent.
Therefore, it is important to determine the time for which the adsorption process reaches its equilibrium,
as well as the kinetics parameters, to understand the behavior of the materials in the atrazine
adsorption process.

Figure 10 represents the adsorption kinetics for the CC04 and respective nanocomposites, i.e.,
CCH04 and CCP04. From this figure, it can be observed that all the synthesized materials presented
a maximum adsorption capacity at 12 h, with ATZ removal being slightly higher in the CCP04
nanocomposite. A similar behavior was obtained for the OMH and OMP (not shown).
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CCP04 nanocomposites.

It is noteworthy that, when all materials reached the equilibrium time (12 h), they maintained a
constant adsorption capacity; this indicates that the copolymer matrix contributed to keeping the ATZ
molecule stable on the surface of the material during the adsorption process. On the other hand, from
this same figure, it can be seen that nanocomposites CCP04 and CCH04 presented qt values slightly
higher with respect to the CC04 copolymer, since the incorporation of the organo-modified clays into
the copolymer matrix conferred synergic properties to the nanocomposite materials.

Moreover, in order to know the nature of the system, the experimental data were associated with
the following kinetics models: pseudo-first-order and pseudo-second-order, as depicted in Figure 11a–c.
Comparing the two proposed models for the ATZ adsorption, it is observed in Table 4 that all the
synthesized materials presented a better fit with the pseudo-first-order model, obtaining higher values
of the correlation coefficient (R2) very close to 1, and lower values of chi-square (χ2), indicating that the
limiting step for the ATZ adsorption process was the mass transfer of the herbicide from the solution
to the surface of the adsorbent [38]. In the case of the value of the constant K, it was observed that
nanocomposites CCH04 and CCP04 presented higher values than the CC04 copolymer, which was
an indication that the adsorption speed of ATZ was higher; consequently, the value of constant K
depended on the content of the quaternary ammonium salt present in the nanocomposite.

Therefore, from these results, it can be observed that the pseudo-first-order model is the one that
was best fitted to the experimental data, which is an indication that the mechanism of physisorption
was predominant in the adsorption process.

Table 4. Parameters for the kinetics models of the synthesized materials.

Material qe(exp) (mg·g−1)
Pseudo-First-Order Model Pseudo-Second-Order Model

KL (h−1) qe (mg·g−1) R2 K2 (g·mg−1·h−1) qe (mg·g−1) R2

CC04 0.845 0.137 0.945 0.986 0.095 1.258 0.978
CCH04 0.900 144 0.972 0.983 0.100 1.278 0.974
CCP04 0.903 143 0.988 0.984 0.098 1.298 0.976
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3.3.2. Effect of the 4VP and AAm Molar Fractions in the Obtained Nanocomposites

Figure 12 presents the contact tests that were carried out for the polymeric matrix, and the
nanocomposites with HDTMA or PTMA in all the stoichiometric ratios considered for the synthesis.
Briefly, 0.0367 g of each material was put in contact with 10 mL of a commercial ATZ solution with
an initial concentration of 5 mg·L−1; all tests were carried out at 25 ◦C, 100 rpm, with an equilibrium
time of 12 h. After this period of time, samples were decanted to separate the aqueous phase from the
adsorbent material. From this figure, it can be observed that from the synthesized materials, the p(4VP)
homopolymer, and its nanocomposites, with HDTMA and PTMA organo-modified clays, showed the
highest adsorption capacities, with qt values of 1.192 mg·g−1 for the homopolymer, and between 1.286
and 1.293 mg·g−1 for the nanocomposites with HDTMA of PTMA, respectively.
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Moreover, it was also observed that, when the ratio of acrylamide in the copolymer and
nanocomposite structures increased, the adsorption capacity of ATZ with these materials decreased.
Nevertheless, in the case of copolymers or nanocomposites with 85:15, 65:35, and 50:50 ratios between
4VP and AAm, the ATZ removal capacity was very similar, i.e., around 15%, which is in agreement with
the data previously reported by Gardi et al. [5]. Finally, nanocomposites with PTMA organo-modified
clay into their structure were more efficient than HDTMA nanocomposites, which can probably be
attributed to the cationic surfactant structure that has an aromatic ring in its chemical structure. Table 5
shows the percentages of the synthesized copolymers, with different molar fractions of 4VP and AAm
in their structures.

Table 5. Removal percentages and q average value for the different synthesized materials.

Material
Copolymer (CC) HDTMA Nanocomposites (CCH) PTMA Nanocomposites (CCP)

Removal (%) qt Average (mg·g−1) Removal (%) qt Average (mg·g−1) Removal (%) qt Average (mg·g−1)

01
92

1.192 ± 0.036
94

1.286 ± 0.015
95

1.293 ± 0.01492 94 95

02
81

1.026 ± 0.007
82

1.185 ± 0.011
83

1.165 ± 0.01581 82 83

03
76

1.024 ± 0.002
79

1.056 ± 0.023
80

1.054 ± 0.00975 78 80

04
71

0.938 ± 0.019
73

0.998 ± 0.033
78

1.122 ± 0.01569 73 78

05
37

0.505 ± 0.002
39

0.562 ± 0.038
44

0.625 ± 0.00736 41 46

06
28

0.366 ± 0.005
31

0.425 ± 0.007
35

0.476 ± 0.00127 31 36

07
15

0.210 ± 0001
19

0.266 ± 0.003
22

0.324 ± 0.00216 21 24

3.3.3. Effect of the Mass–Volume Ratio on the Capacity to Remove ATZ with the Modified and
Synthesized Materials

Finally, the relationship between the mass of the adsorbent and the initial concentration of ATZ
in the solution was evaluated in this work, and the results are presented in Figure 13. In the first
case, an unexpected behavior, i.e., a decrement of the mass of the adsorbent material, from 0.0367
to 0.01 g, favored the ATZ adsorption process with both copolymers and nanocomposites, with an
increase in the adsorption capacity of 400%. As for the effect of the initial concentration of ATZ on its
adsorption process, when the concentration increased from 5 to 20 mg·L−1 in the aqueous solutions, it
was observed that the adsorbed amount of the herbicide with materials was favored, until it reached
six times its initial removal capacity. It is worth noticing that this was only observed in the polymeric
materials; on the contrary, the organo-modified clays did not show this behavior, since the active sites
were occupied quickly by the herbicide, causing saturation of the material. Lastly, the effect of the
volume of solutions on the ATZ adsorption capacity was evaluated, and it was observed that this
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parameter was strongly associated with the initial concentration of the herbicide, since, at low ATZ
concentrations (5 mg·L−1), the adsorption capacity was 200%; however, when the concentration of the
analyte was increased to 25 mg·L−1, the adsorption capacity diminished to only 50%. Therefore, the
effect of the volume on the adsorption capacity was lesser compared to the effects of variations of the
adsorbent mass and initial ATZ concentration.
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4. Discussion

From these results, it was demonstrated that p(4VP-co-AAm) copolymers and their nanocomposites
with an organo-modified clay were obtained through the radical polymerization technique. Firstly,
the nature of the hydrophilic raw clay mineral was effectively changed to a hydrophobic one, with
the incorporation of two different types of organo cationic surfactants, HDTMA of PTMA. From the
obtained XRD patterns, it is important to remark that the expansion of the interlaminar spaces could
be an indication of the presence of the surfactant molecules in the organo-modified clay and this
became evident because of the shift of the peaks toward lower angles in 2θ, as well as the appearance
of new ones.

When the percentage of hydrophilic monomer (AAm) in the synthesis of the copolymers was
increased, the maximum swelling percentage at the equilibrium was augmented, and the absorption
time of water decreased by action of the ionic forces between the functional groups of the copolymer
chain and the surrounding medium. This decrement in the equilibrium time was attributed to the
incorporation of the organo-modified clay within the polymer matrices, and the swelling capacity
was similar between nanocomposites and these matrices, due to the hydrophobic nature of these
organo-modified clays. Furthermore, it was observed that, at pH values below the critical pH value,
the swelling capacity decreased in comparison with the polymer matrices; however, it was also lower
compared to the nanocomposite with the HDTMA-modified clay, because the organo-modification of
the clay with the PTMA surfactant and the type of structure that it presented prevented the penetration
of water inside the matrices; therefore, a decrement in the swelling capacity was observed. Furthermore,
all of the synthesized materials confirmed an excellent response to cyclical changes in pH, demonstrated
by their stable sensitivity to pH value.

In the case of FTIR spectra, the successful incorporation of the organo-modified clays into the
polymer matrices was confirmed by the appearance of bands related to silicates and the alkyl chains of
both cationic surfactants. In addition, according to the TGA, the amount of absorbed water decreased
when the organo-modified clays with HDTMA or PTMA were incorporated into the matrix structures.
Moreover, the thermal stability of nanocomposites was higher than that of the polymer matrices due to
the incorporation of these organo-modified clays in their structures. Specifically, the value of Tg for the
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p(4VP) differed from that reported in the literature probably due to the amount of cross-linking agent
used in the synthesis of the polymers, which gave them a higher plasticizer effect.

The kinetics results indicated that nanocomposites reached their maximum adsorption capacity
from 12 up to 24 h. This indicates that the copolymer matrix contribution was the stability of the ATZ
molecule on the surface of the material during the adsorption process. The kinetics model that best
fitted the experimental data was the pseudo-first-order model, which pointed out that the mechanism
of physisorption was predominant during the adsorption process. Finally, the relationship between
mass and volume with the initial concentration of ATZ played an important part in the removal
capacity of the obtained materials, and it is an important consideration for future applications.

5. Conclusions

In this work, two different series of copolymers and their nanocomposites, obtained from 4VP and
AAm with the incorporation of two diverse organo-modified clays, were successfully synthesized. It
was confirmed that the swelling capacity of the synthesized materials was influenced by the percentage
of the hydrophilic monomer (AAm) into their structure; i.e., the higher the hydrophobic monomer
(4-VP) moiety, the lower the swelling capacity of the materials. The critical pH value (pH = 4.9) did
not vary between the polymer matrix and the synthesized nanocomposites because of the amount
of the organo-modified clay that was dispersed within the polymer matrix. The pH sensitivity test
showed that the physical properties of the copolymers were not affected by the incorporation of the
organo-modified clay within its structure, since this dispersion was very low. As it was previously
confirmed, the thermal stability of the obtained nanocomposites was greater than that of the copolymers
due to the incorporation of the organo-modified clay into their structure. Lastly, from the adsorption
kinetics experiments, it was demonstrated that the modification of the raw clay mineral with the
HDTMA-Br and PTMA-Cl surfactants improved its performance for the ATZ removal; and the kinetics
model of pseudo first order was the one that best described the ATZ sorption from aqueous solutions.
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