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Abstract: This paper describes a procedure to measure the permeability P, diffusivity D, and rate of
adsorption k1, thus determining the solubility S and rate of desorption k2 of He, N2, O2, CH4, and
CO2 on a polydimethylsiloxane (PDMS) membrane. The described procedure is able to determine
experimentally all the physical quantities that characterize the gas transport process through a
thin rubber polymer membrane. The experiments were carried out at room temperature and at a
transmembrane pressure of 1 atm. The results are in good agreement with the available data in the
literature and offer an evaluation of k1 and k2.
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1. Introduction

Membrane technology is a promising green technology that can solve several problems such
as waste water treatment or desalination, CO2 capture in fuel power plants, gas pure production
technology, gas sensing, etc. The complete understanding of gas transport through polymer films is
still a challenge. Different models, depending on the gas/membrane system, have been developed
to describe this phenomenon: Knudsen or Poiseuille diffusion for porous membranes, molecular
sieve effects, solution–diffusion (SD) for dense membranes, with dual-mode sorption theory in case
of glassy polymers [1]. The experimental results confirm the models in the range of validity of the
theory. Considering the permeation of a gas through a dense polymer, the SD model [2,3] describes
quite well this phenomenon and is routinely employed to determine the parameters that characterize a
membrane, such as permeability P, diffusivity D, and solubility S. However, the behaviour of polymeric
materials with respect to gas permeation depends on a great number of variables, including method of
fabrication, composition of the polymeric matrix, glass transition temperature, grade of confinement.
Consequently, it can happen that the simple SD model does not describe accurately the experimental
results. In fact, works that denote some anomalies in the measurements of these quantities are not
rare in the literature. This occurs when the permeability of a polymer to gases is measured by using a
constant-volume variable-pressure (manometric) method and a constant-pressure variable-volume
(volumetric) method, as Lundstrom reports in a recent review [4]. Several of these discrepancies could
be avoided by following the procedure suggested by the American Society for Testing and Materials
(ASTM International) in one of their reports on standard test methods to determine gas permeability of
plastic films and sheeting [5]. This designation highlights that P should not be used unless its constancy
with different membrane thicknesses has been verified, implying the possibility that permeability may
be thickness-dependent. However, also following all recommendations of the previous designation to
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determine the values of the physical quantities that describe the mechanism of gas transfer along the
membrane, remain some discrepancies between experimental and theoretical results.

In this paper, we focused our attention on the role of surface in the gas transport behaviour in
dense polymer membranes. The paper investigated polydimethylsiloxane (PDMS), which is the most
permeable rubbery polymer and can also be used as a rubber polymer model system [6]. Several
authors [6–11] have already pointed out that, for these kinds of membranes, the overall mechanism of
gas transport can be fully characterized only if the SD model is generalized by assuming non-equilibrium
conditions at the upstream and downstream surfaces and by introducing the adsorption and desorption
coefficients k1 and k2 to describe the dynamics of the adsorption process (SDk1k2 model). In the
present experiments, we used a dynamic apparatus that measures the gas transmission rate through
a membrane of PDMS subjected to a known differential partial pressure of the tracer gas (He, N2,
O2, CH4, and CO2). By following the electrical analogy proposed in reference [12] and by using the
experimental set up of reference [6], this paper determined permeability P and rate of adsorption k1.
In addition, a lag-time method measured diffusivity D. The knowledge of D permitted the calculation of
solubility S and of desorption rate k2, allowing to determine all the physical quantities that characterize
the permeation process. The paper reports the surface kinetic parameters, k1 and k2, as a function of
Lennard–Jones temperatures for all gas tested. The dependence of solubility and solubility-selectivity
on gas critical parameters is also reported and compared with theoretical considerations [13].

1.1. Gas Transport Model

The SDk1k2 model considers the permeation of a gas through a dense polymer membrane as a
three-step mechanism: (1) sorption of the gas on the upstream surface of the membrane, (2) diffusion
through the bulk of the membrane driven by a gradient concentration, (3) desorption through the
downstream surface of the membrane. Considering the first step, the molar flux J in mol m−2 s−1 at the
interface is given by:

J = k1pu − k2Cu (1)

where pu is the upstream pressure, and Cu the upstream concentration in the membrane at the first
interface (see Figure 1); k1 is expressed in mol m−2 s−1 Pa−1, k2 in m s−1, and Cu in mol m−3. Under the
hypothesis of Henry’s law, Cu can be expressed as S × pu*, where S = k1/k2 is the solubility, and pu* is
the upstream pressure in conditions of equilibrium at the interface. Consequently, Equation (1) can be
written as:

J = k1pu − k1pu
∗ = k1∆pu (2)

where ∆pu = (pu – pu
*). From equation (2), it is possible to write Ohm’s law (by unit of membrane area

A) for the case of a gas surface sorption on the polymer membrane:

∆pu

J
=

1
k1

= rs (3)

where rs is the surface resistance. Recent papers report a complete analysis of the phenomenon
considering non-equilibrium at the surfaces [4,6,8]

With the same previous electric analogy applied to steps (2) and (3), the overall permeation process
can be represented by the following equation that corresponds to the Ohm law’s in the case of three
resistances in series (Figure 1):

∆p
J

=
1
k1

+
1
P

+
1
k1

(4)

In this case, ∆p = (pu – pd), L/P is the bulk resistance RB, where P is the product of diffusivity D
by solubility S (Fick’s law). For L→0, RB→0, and the permeation process is limited only by the two
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upstream and downstream surface resistances rs. On the contrary, for great thicknesses, rs is negligible
with respect to RB, and Equation (4) becomes

∆p
J

= RB (5)

Following reference [6], a thickness above 100 µm warranties that the surface resistance will
be negligible.
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Figure 1. Electric analogy of the permeation process.

A membrane of area A and thickness L exposed to a transmembrane pressure ∆p, experiences
a flow J; pu and pd are, respectively, upstream and downstream pressure, and pu* is the upstream
pressure in conditions of equilibrium at the interface. Cu and Cd are the upstream and downstream
concentrations in the membrane at the interface. The dotted line in Figure 1 represents the linear
variation of the concentration in the bulk (diffusivity is supposed to be independent from concentration).
RB and rs are bulk and surface resistances, respectively, defined as in Equations (5) and (3).

1.2. Experimental Method

The present experiments measured the molar flux J across the membrane at room temperature,
with ∆p =1 atm. The procedure used to determine P and k1 is reported below. We first measured P for
a membrane with L >> 100 µm. In this case, by measuring the quantity φ = ∆p/J, one obtains:

P =
L
φ

(6)

Second, we measured the same quantity for a membrane with thickness L << 100 µm. In this case,
Equation (4) holds, and k1 is easily determined:

k1 =
2P
φP− L

(7)

By using the previously measured value of P, k1 can be determined by a measurement of φ.
By measuring φ for two membranes with different thicknesses, it is therefore possible to measure

P and k1.
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Diffusivity can be obtained by the lag-time method. Supposing to admit a gas at the upstream side
of a membrane at t = 0, the equations of diffusion [14] give the following expression for the diffusivity:

D =
L2 Jss

6

Jsst∗ −
t∗∫

0
J(t)dt


(8)

where JSS is the gas flow at steady state, and t* is greater than or equal to the time to reach the steady
state. Considering that S = k1/k2 = P/D:

k2 = k1
D
P

(9)

2. Materials and Methods

PDMS was the rubbery polymer used to measure surface kinetics parameters, and the tracer gases
were: CO2, N2, He, O2, and CH4. The experimental setup employed to measure φ and diffusivity was
the same reported in references [6,12], as was the assembling of the sample that guaranteed the same
exposed area on the upstream and downstream sides. The apparatus was a high-vacuum chamber,
where J and ∆p were measured by means of pressure gauges with high accuracy. The method measured
transient fluxes J directly as the product of the pressure of the vacuum chamber by the pumping speed
of the system to the tracer gas. The tracer gases were tested without a systematic order because none
of them created irreversible effects on PDMS (CO2 plasticization occurs only for glassy polymers, for
example). However, we waited for a complete degassing of the polymer between two measurements
with different tracer gases. The membranes tested had two different thicknesses, i.e., 2 mm and 10 µm,
to measure P in the first case and k1 from Equation (7).

By means of a residual gas analyzer (RGA) (purchased from Stanford Research Systems 1290-D
Reamwood Ave. Sunnyvale, CA, USA), we measured diffusivity. Considering that the value of J
depends on the value of the ion current I of the RGA and changing the integral with a finite sum of
resolution equal to the sampling time of RGA (see Figure 2), Equation (8) could be rewritten in the
following form:

D =
L2(Iss − I0)

6
[
(Iss − I0)t∗ − ∆t

n∑
i=1

(Ii − I0)

] (10)

where ISS and I0 are the ion currents of the tracer gas at steady state and at the background,
respectively, ∆t is the RGA sampling time, and n is the number of samples of ion currents equal to
t*/∆t. Measurements of permeability and diffusivity were always taken for pure gases (purity grade
N5.0, minimum purity 99.999%).

The method to measure φ was the one reported in reference [11]; in this case the error for L
was negligible with respect to that for gas flow J. For this reason, the percentage errors for φ and P
were always less than 10%. The accuracy of D depended only on the accuracy of the ion current (see
Equation (10)) and was always less than 10%.

3. Results and Discussion

Table 1 reports the values of P and k1 measured following the previously described procedure.
The values of P were in good agreement with those reported in the literature [6,15,16].
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Table 1. Permeability P, sorption rate k1, diffusivity D, solubility S, desorption rate k2, Lennard–Jones
temperature ε/k. The transmembrane pressure was ∆p = 1.013 × 105 Pa. The temperature was T = 293 K;
*data were taken from reference [13].

Gas P × 1013

(mol m−1 s−1 Pa−1)
k1 × 108

(mol m−2 s−1 Pa−1)
D × 109

(m2 s−1)
S × 104

(mol m−3 Pa)
k2 × 104

(m s−1)
ε/k*
(K)

He 2.3 ± 0.1 2.7 ± 0.4 16.8 ± 0.3 0.14 ± 0.01 20 ± 4 10.2
N2 1.8 ± 0.1 3.9 ± 0.7 3.5 ± 0.2 0.52 ± 0.06 8 ± 2 71
O2 2.8 ± 0.2 4.5 ± 0.7 3.1 ± 0.2 0.9 ± 0.1 5 ± 1 107

CH4 4.6 ± 0.3 7 ± 1 2.2 ± 0.2 2.1 ± 0.3 3 ± 1 149
CO2 17 ± 1 17 ± 2 2.4 ± 0.2 7.3 ± 0.9 2.3 ± 0.6 195

The lag-time method allowed the determination of diffusivity of all five gases by means of RGA
measurements (L = 2 mm). Figure 2 reports the behavior of the ion currents of the tracer gases from
the filling of the upstream chamber (t = 0) up to steady state.
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Figure 2. Diffusivity measurements. (a–e) Ion currents vs time of the tracer gases after filling the
upstream chamber a t = 0 (pu = 105 Pa); (f) representation of the parameters of Equation (10); in our
case ∆t = 2 s.

The measured values of D are reported in Table 1. S and k2 were obtained by using
Equations (8) and (9).

The fundamental process for gas dissolution in a polymer is the condensation of the gas on
the polymer surface. Gas solubility is determined by measuring the penetrant gas condensability
through Lennard–Jones temperature ε/k, where ε is the depth of the potential well of the Lennard–Jones
potential, and k is the Boltzmann’s constant. Because solubility is the ratio of k1 and k2, it is interesting
to report this parameter as a function on ε/k. Figure 3 shows this relationship.
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k1 and k2 on Lennard–Jones temperature ε/k.

The graphs in Figure 3 exhibit the dependence of sorption and desorption rates on Lennard–Jones
temperatures. A high value of Lennard–Jones temperature facilitates the binding of gas molecules with
the membrane surface and, consequently increases gas condensability and solubility. This behavior
is intuitively the opposite for the desorption rate, as demonstrated by the graph for k2 in Figure 3.
The results were in accord with the thermodynamic approach developed by Teplyakov et al. [17] which
gives the following expression for the solution of a gas in polymers:

Ln S = N × ε/k + constant (11)

where S is the solubility, and N is a coefficient. Freeman [13] pointed out that N has the same value for
many materials and indicated 0.023 as its value for a variety of liquids, rubbery polymers, and glassy
polymers. In Figure 4, we reported S as function of ε/k.
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Figure 4. Solubility vs ε/k. The graph reports solubility as a function of Lennard–Jones temperatures.

The best-fit analysis of the curve of Figure 4 gave N = 0.021 ± 0.001 and constant = −11.4 ± 0.1
with an Adjusted R-Square = 0.991 (Adjusted R-Square is a modified version of the coefficient of
determination that qualifies the linear regression; it also considers the number of predictors in the
fitted line). These values were in good agreement with those reported in the literature [18,19].

4. Conclusions

This paper describes a procedure to evaluate all the characteristic parameters of the gas permeation
process, i.e., P, D, k1, k2. The method was carried out for simple molecules, such as He, N2, O2, CH4,
and CO2 permeating a PDMS membrane. The results are in excellent agreement with those reported in
the literature. The values of k1 and k2 depend on Lennard–Jones temperatures of the studied gases,
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showing that a high value of Lennard–Jones temperature facilitates the binding of gas molecules with
the membrane surface and, consequently increases gas condensability and, finally, solubility.

Author Contributions: G.F. and U.V. initiated and designed the entire project. E.A., D.P., and P.G. prepared
the polymer membranes. D.R. and L.R. contributed to the analysis of the data. L.R. supported the study. G.F.
performed the experiments. G.F. and U.V. prepared and checked the manuscript. U.V. conceived the research
project and directed the study. All the authors reviewed the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by grants from the Italian Ministry of Education, University and
Research, Flagship Project Nanomax. The authors wish to thank Janez Setina for useful discussions on gas
transport measurements.

Conflicts of Interest: The authors declare no conflict of interests

References

1. Pandey, P.; Chauhan, R.S. Membranes for gas separation. Prog. Polym. Sci. 2001, 26, 853–893. [CrossRef]
2. Wijmans, J.G.; Baker, R.W. The Solution–Diffusion Model: A Unified Approach to Membrane. In Materials

Science of Membranes for Gas and Vapor Separation; Yampolskii, Y., Pinnau, I., Freeman, B.D., Eds.; John Wiley &
Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 159–189. ISBN 0-470-85345-X.

3. Nagy, E. Basic Equation of Mass Transport through a Membrane Layer, 2nd ed.; Elsevier: Amsterdam,
The Netherlands, 2019; ISBN 978-12-813722-2.

4. Lundstrom, J.E. Sorption, desorption and diffusion processes in membrane permeation. J. Membr. Sci. 2015,
486, 138–150. [CrossRef]

5. ASTM International, Designation: D1434-82. Standard Test Method for Determining Gas Permeability
Characteristics of Plastic Film and Sheeting; ASTM International: West Conshohocken, PA, USA, 2015.

6. Firpo, G.; Angeli, E.; Repetto, L.; Valbusa, U. Permeability thickness dependence of polydimethylsiloxane
(PDMS) membranes. J. Membr. Sci. 2015, 481, 1–8. [CrossRef]

7. McGregor, R.; Mahajan, I.Y. Permeation of dyes through polymer films. Part 1—Acid dyes through cellulose.
Trans. Faraday Soc. 1962, 58, 2484–2492. [CrossRef]

8. Jadhav, J.S.; McGregor, R.; Mahajan, I.Y. Permeation of dyes through polymer films. Part 2—Chlorazol Sky
Blue FF through cellulose. Trans. Faraday Soc. 1965, 61, 2569–2586. [CrossRef]

9. Islam, M.A.; Buschatz, H.; Paul, D. Non-equilibrium surface reactions—A factor in determining steady state
diffusion flux. J. Membr. Sci. 2002, 204, 379–384. [CrossRef]

10. Fialova, K.; Petrychkovych, R.; Sharma, M.; Uchytil, P. Steady state sorption measurement and the transport
mechanism in polymeric membrane during vapor permeation. J. Membr. Sci. 2006, 275, 166–174. [CrossRef]

11. Firpo, G.; Angeli, E.; Repetto, L.; Guida, P.; Lo Savio, R.; Valbusa, U. The dependence on thickness of
permeability and its influence on gas separations of flat and corrugated polymer membranes. J. Chromatogr.
Sep. Tech. 2017, 8, 23.

12. Firpo, G.; Angeli, E.; Guida, P.; Lo Savio, R.; Repetto, L.; Valbusa, U. Gas permeation through rubbery
polymer nano-corrugated membranes. Sci. Rep. 2018, 8, 6345. [CrossRef]

13. Freeman, B.D. Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes.
Macromolecules 1999, 32, 375–380. [CrossRef]

14. Cranck, J. The mathematics of Diffusions; Clarendon Press: Oxford, UK, 1975.
15. Merkel, T.C.; Bondar, V.I.; Nagai, K.; Freeman, B.D.; Pinnau, I. Gas sorption, diffusion, and permeation in

poly(dimethylsiloxane). J. Polym. Sci. B 2000, 38, 415–434. [CrossRef]
16. De Bo, F.R.; Van Langenhove, H.; Pruuost, P.; De Neve, J. Investigation of the permeability and selectivity

of gases and volatile organic compounds for polydimethylsiloxane membranes. J. Membr. Sci. 2003, 215,
303–319. [CrossRef]

17. Teplyakov, V.; Meares, P. Correlation aspects of selective gas permeabilities. Gas Sep Purif. 1990, 4, 66.
[CrossRef]

http://dx.doi.org/10.1016/S0079-6700(01)00009-0
http://dx.doi.org/10.1016/j.memsci.2015.02.009
http://dx.doi.org/10.1016/j.memsci.2014.12.043
http://dx.doi.org/10.1039/TF9625802484
http://dx.doi.org/10.1039/TF9656102569
http://dx.doi.org/10.1016/S0376-7388(02)00064-9
http://dx.doi.org/10.1016/j.memsci.2005.09.015
http://dx.doi.org/10.1038/s41598-018-24551-4
http://dx.doi.org/10.1021/ma9814548
http://dx.doi.org/10.1002/(SICI)1099-0488(20000201)38:3&lt;415::AID-POLB8&gt;3.0.CO;2-Z
http://dx.doi.org/10.1016/S0376-7388(03)00024-3
http://dx.doi.org/10.1016/0950-4214(90)80030-O


Polymers 2019, 11, 910 8 of 8

18. Petropoulos, J.H. Mechanisms and Theories for Sorption and Diffusion of Gases in Polymers. In Polymeric Gas
Separation Membranes; Paul, D.R., Yampol’skii, Y.P., Eds.; CRC Press: Boca Raton, FL, USA, 1994; pp. 17–81.

19. Van Krevelen, D.W. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation
and Prediction from Additive Group Contributions; Elsevier: Amsterdam, The Netherlands, 1990.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Gas Transport Model 
	Experimental Method 

	Materials and Methods 
	Results and Discussion 
	Conclusions 
	References

