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Abstract: Polypyrrole nanowires/graphene (PPyNG) nanocomposites as anticorrosive fillers were
prepared by in situ polymerization in order to improve the anticorrosion performance of waterborne
epoxy coatings. Field emission scanning electron microscope (FESEM) and Fourier transform infrared
spectroscopy (FTIR) characterized the morphologies and structures of the synthesized PPyNG. The
polypyrrole nanowires with about 50 nm in diameter were obtained. Conjugation length of PPy
was increased with the addition of graphene. Open circuit potential (OCP) measurements, Tafel
polarization curves, and electrochemical impedance spectroscopy (EIS) using an electrochemical
workstation evaluated the anticorrosion properties of the waterborne epoxy/PPyNG coatings
(EPPyNG). The studied nanocomposite coating possessed superior corrosion protection performance
when the graphene content of the filler was 2 wt %. Its corrosion rate was about 100 times lower than
that of neat epoxy coating. The higher barrier properties of nanocomposite coating and passivation
effect of polypyrrole nanowires were beneficial in corrosion protection.

Keywords: polypyrrole nanowires; graphene; waterborne epoxy; corrosion protection

1. Introduction

Metal corrosion is a disturbing phenomenon in which chemical or electrochemical reactions
damage metal materials. It would not only result in economic losses, but also threaten the safety
of industrial production. Many methods for corrosion protection have been developed, such as
environmental modification, anodic protection, cathodic protection, protective coatings, and corrosion
inhibitors, or any combination thereof [1–3]. Among them, polymer coatings are the most common
approach for protecting metal surface from corrosion due to their low cost and high anticorrosion
performance. For instance, especially, epoxy coatings have attracted many researchers due to their
strong adhesion to substrates and excellent mechanical properties. However, even these coatings
fail over prolonged exposure in corrosive media [4]. Many researchers have investigated polymer
composites incorporating various functional fillers [5], such as montmorillonite [6], carbon nanotubes [7],
graphene [8], and intrinsically conducting polymers (ICPs) [9], to overcome this problem.
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ICPs have attracted tremendous attention due to a wide range of potential applications in
sensors, supercapacitor electrodes, biological industries, and corrosion protection [10,11]. In the
anticorrosion field, the ICPs can be used to form a protective barrier layer and release inhibitors in
the coating [12]. Among the available ICPs, polypyrrole (PPy) is the most promising polymer due to
its easy polymerization, mechanical stability, and better biocompatibility, as well as tunable electrical
property [13]. The electroactive nature of PPy allows for it to oxidize the metal substrate, which
results in the formation of a passive oxide layer at the interface between the PPy and underlying
metal substrate [14]. PPy is an excellent candidate for replacing hexavalent chromate, since it shows
anticorrosion performance that is similar to that found for chromate [6,15]. Loading PPy can also
enhance the corrosion inhibiting properties of zinc-filled epoxy coatings [16,17]. The surface treatment
of pigment with PPy is found to be beneficial to the anticorrosion and mechanical properties of the
epoxy paint [18].

Despite these advantages, the aggregation tendency of PPy particles is a major restriction of the
processing and application of epoxy/PPy coating. Integration with montmorillonite and graphene turns
out to be an effective method for avoiding aggregations and improve dispersion of PPy in the polymer
matrix, which contributes to a great corrosion protection enhancement [6,19,20]. Graphene has higher
aspect ratio than clay platelet, which can simultaneously improve not only the barrier properties, but
also several mechanical, functional, and thermal properties of epoxy coatings [21,22]. The synergistic
effect of PPy/graphene greatly enhances the anticorrosion performance of epoxy coating [23].

PPy with one-dimensional nanostructure, such as nanotube [24], nanorod [25], and nanowire [26],
are used in various applications including sensors, supercapacitors and battery electrodes [13,27,28].
Up to now, there has been no report on using PPy nanowire as additive for waterborne anticorrosion
coatings. In this paper, the PPy nanowires (PPyN) were prepared by a soft template method. The
PPyN/graphene (PPyNG) nanocomposites were synthesized through in situ polymerization. The
molecule structures and morphologies of the PPyNG nanocomposites were also analyzed. After
that, the PPyNG nanocomposites were incorporated into waterborne epoxy coatings to study their
anticorrosion performance for mild steel. For the convenience discussion, the present nanocomposite
referred to as PPyNG, and nanocomposite coating corresponded to the epoxy/PPyNG coating.

2. Materials and Methods

2.1. Materials

The pyrrole monomer was purchased from Aladdin Bio-Chem Technology Co., Ltd.
(Shanghai, China). Ammonium persulfate (APS), potassium permanganate (KMnO4), sulfuric acid
(H2SO4), hydrogen peroxide (H2O2), N-methyl pyrrolidone (NMP), Sodium chloride (NaCl), and
cetyltrimethylammonium bromide (CTAB) were obtained from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China). The flake graphite powder (325 mesh) was purchased from Sigma-Aldrich
Chemicals (Shanghai, China). All of the chemicals were of analytical reagent grade and used
without further purification. Hexion Inc. (Columbus, Ohio, US) provided waterborne epoxy resin
(Epikote 6520-WH-53) and curing agent (Epikur 8538-Y-68). The Q235 mild steels (C: 0.14%, Mn: 0.3%,
S: 0.05%, P: 0.045%, and rest being Fe) with area of 42 mm × 10 mm were purchased from Biuged
Laboratory Instruments (Guangzhou) Co., Ltd. (Guangzhou, China). The mild steels were polished
while using 400 grift sand papers and then cleaned in ethanol and acetone.

2.2. Preparation of Graphene

Graphene was prepared by following the method by Dong et al. [29]. In brief, 100 g KMnO4

(1 wt % equiv.) was added in batches into concentrated H2SO4 (2 L, 98%) over a period of 45 min. in
an ice-water bath. 100 g graphite (1 wt % equiv., 325 mesh) was then added in batches under stirring
at 35 ◦C for 2 h. The black flakes were filtered through a 200-mesh sieve and poured into 2 L of ice
water after reaction. Subsequently, 30 wt % H2O2 was added to decompose the insoluble manganese
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dioxide. The wet powders of pretreated graphite were obtained after filtering and washing. Pretreated
graphite was then dispersed in the alkali water (pH = 14) under ultrasonication while using a sonic
vibra-cell VC505 processor in 60% power for 1 h, resulting in black graphene slurry. The graphene
slurry was centrifuged at 10,000 rpm for 10 min. and then repeatedly washed by a large amount of
water (4–6 times) until pH approached 10. The prepared graphene was re-dispersed in N-methyl
pyrrolidone (NMP) for further use.

2.3. Synthesis of PPy Nanowires/Graphene Nanocomposites

The PPy nanowires/graphene nanocomposites (PPyNG) were synthesized through in situ chemical
oxidative polymerization. In a typical process, 0.31 mL pyrrole monomer and 0.91 g CTAB were
added in a mixture of 125 mL 0.2 M hydrochloric acid and graphene-NMP dispersion and stirred
for 2 h at ambient temperature, and then cooled to 0–5 ◦C. A precooled aqueous solution of 10 mL
0.2 M HCl containing 4 mmol APS was added into above solution in batches. The reaction was
allowed to proceed under stirring for 4 h at about 0–5 ◦C. The resulting product was filtered and
rinsed with deionized water and ethanol (4–6 times) until the filtrate was colorless. Finally, the product
was dried in a vacuum oven at 40 ◦C for 24 h. The weight ratio of pyrrole to graphene varied as
99:1, 98:2, 97:3, and the resulting black composites were named as PPyNG1, PPyNG2, and PPyNG3,
respectively. For comparison, neat PPy nanowires (PPyN) were fabricated by similar method absence
of graphene dispersion.

2.4. Fabrication of Nanocomposites Coatings

The investigated coatings in this study consisted of the epoxy without the addition of filler as well
as with the incorporation of PPy nanowires and PPy nanowires/graphene as the functional additives.
Three weight concentrations of PPy nanowires additives had been prepared in order to achieve the
optimal level of additives, and their anticorrosion properties are shown in Supplementary Materials,
Figure S1 and Figure S2. The 0.5% additive based on the total formulation was finally determined. The
preparation procedure was as follows. Firstly, the PPy nanowires and PPyNG nanocomposites were
completely dispersed in 10 mL of deionized water with a high-speed dispersion and then added into
30 g waterborne epoxy resin. Next, 10 g curing agent was added into the above dispersive media and
the mixture was painted on the pretreated mild steels. The resulting coating was obtained after curing
for 48 h at room temperature. The prepared epoxy coatings that were loaded with PPy nanowires,
PPyNG1, PPyNG2, and PPyNG3 were denoted as EPPyN, EPPyNG1, EPPyNG2 and EPPyNG3,
respectively. The dry coating thickness was around 37 µm. For comparison, the neat epoxy coating
was also prepared through a similar method without loadings, which was named Blank. Figure 1
shows the preparation process for the fabrication of waterborne epoxy/PPyNG coatings (EPPyNG)
coating materials.
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2.5. Characterization

The Fourier transform infrared spectrometer (FTIR) spectra of PPyNG films were collected by a
Bruker-Veretex70 spectrometer (Bruker Company, Karlsruhe, Germany) while using KBr pellets. The
scanning electron microscopy (SEM) images of PPyN and PPyNG composites were obtained while
using a Zeiss Sigma FE-SEM (Carl Zeiss AG, Geraniah, Germany). The electrochemical measurements
were carried out to characterize the anticorrosive properties of blank epoxy, EPPyN and EPPyNG
coatings using a CHI 660E electrochemical workstation (Chinstruments Co., Ltd., Shanghai, China)
that was equipped with a conventional three-electrode cell with a saturated calomel electrode (SCE)
as reference, a platinum counter electrode with 1 cm2 area, and a working electrode. The bare mild
steels or mild steels with coatings were sealed while using sealant (paraffin: Rosin = 1:1) and Teflon
to leave 1 cm2 area opening to the electrolytic solution. The electrolyte was 3.5 wt % NaCl solution.
Open-circuit potential (OCP) was recorded for the blank epoxy, EPPyN and EPPyNG coatings up to
30 days of immersion time. The potential dynamic polarization curves of blank epoxy, EPPyN, and
EPPyNG coatings were performed with a sweep rate of 2 mV/s from the cathodic direction to the anodic
direction. The electrochemical impedance spectroscopy (EIS) measurements were collected in the
frequency range of 100 kHz to 0.01 Hz while using an alternating current signal with the amplitude of
5 mV. All of the electrochemical tests were conducted at room temperature. A ZQ-401 microscope was
used to record the optical microscopic images of EPPyN coatings (Zhiqi Co., Ltd., Shanghai, China).

3. Results

Figure 2 shows the FTIR spectra of the PPyN and PPyNG nanocomposites. The broad band
at 3000–3500 cm−1 arose from N–H stretching vibrations [30]. The characteristic polypyrrole peaks
located at 1558 and 1478 cm−1 were due to the asymmetric and symmetric ring-stretching modes,
respectively [31]. The bands at 1048 and 1321 cm−1 were attributed to C–H deformation vibrations
and C–N stretching vibrations, respectively [32]. In addition, the peaks that were centered at 1202 and
923 cm−1 were assigned to the doping states of PPy [33]. When comparing to the FTIR spectra of PPyN,
all peaks had also appeared in the PPyNG nanocomposites. It was worth noting that the C–N stretching
vibrations peak of PPyNG nanocomposites had been downshifted to 1310 cm−1, which was probably
due to the π–π interactions between graphene layers and aromatic polypyrrole rings [34]. Moreover,
the ratio between the peak area of the skeletal band 1478 cm−1 and oxidization state sensitive 1558 cm−1

band (I1478/I1558) could be used to calculate the conjugation length [35,36]. The ratio was 0.1304, 0.1328,
0.1427, and 0.1515 for PPy, PPyNG1, PPyNG2, and PPyNG3, respectively, which suggested that the
conjugation length increased with further incorporation of the graphene. It might be ascribed to the
fact that the strong interfacial interaction between PPy and graphene induced more electrons that were
delocalized either in the pyrrole units or in the benzene ring units of graphene [35,37].

Figure 3 shows the morphologies of pure PPyN and the PPyNG nanocomposites. The SEM image
(Figure 3a) revealed the uniform nanowire structure with an average diameter of about 50 nm and
length of several micrometers. For PPyNG1 and PPyNG2 nanocomposites (Figure 3b,c), PPy held
its wire-like morphology with a similar size to pure PPyN. However, from Figure 3d, the granular
morphology of PPyNG3 was observed. The isolated graphene nanosheets could also be seen due to
increasing concentration of graphene nanosheets. The result of the SEM images indicated that the
morphology of PPy nanowires was affected by the higher content graphene. Similar phenomenon was
observed in other’s research [38].
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Figure 4 shows the evolution of open circuit potential (OCP) for coatings on mild steels in a 3.5%
NaCl corrosive solution. The monitoring of OCP allowed for the assessment of the inclination of
corrosion [39]. In the initial immersion, the OCP values exhibited a less negative potential for the
Blank, EPPyN, and EPPyNG3 coatings, (−0.3 to −0.45 V), but the EPPyNG2 showed a more noble
OCP value of around −0.14 V. This relative high potential demonstrated that EPPyNG2 provided
excellent protective performance. The OCP value tended to decrease with the immersion time for all
of the studied coatings. However, the lower rate of declination was observed in EPPyN, EPPyNG1,
EPPyNG2, and EPPyNG3 when compared to the blank epoxy coating after immersion 20 days. It
indicated that the oxidative PPy functional fillers passivated the steel, resulting in higher OCP [18]. The
passivation layer effectively prevented the steel from corrosion. A few slight increases were observed
for Blank and EPPyNG1 after immersion several days, probably due to the accumulation of corrosion
products [23]. The potential of EPPyNG3 coating dropped sharply to −0.70 V after immersion 20 days,
revealing that excess graphene was detrimental to the anticorrosion property [40].
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The potentiodynamic polarization tests were carried out to study the anticorrosion performance of
EPPyNG composites coatings. Figure 5 shows the Tafel curves of the as prepared coatings immersion in
corrosive solutions. Table 1 shows the electrochemical parameters that were obtained from Tafel curves.
The corrosion current density (Icorr), corrosion potential (Ecorr), anodic Tafel slope (ba), and cathodic
Tafel slope (bc) were estimated from the Tafel extrapolation of anodic and cathodic lines to the point of
intersection. The more negative Ecorr and larger Icorr suggested a faster corrosion rate, while the more
positive Ecorr and the smaller Icorr indicated a slower corrosion process [41]. The Ecorr of the neat epoxy
resin coated mild steel was −784 mV. A significantly positive shift Ecorr of −565 mV was obtained for
the composites coating with PPyN, confirming that EPPyN engaged in redox reactions, resulting in the
formation of metal oxide passive layer [20,42]. By addition of PPyNG, the Ecorr dramatically increased
to −537 mV with 1 wt % graphene and −482 mV with 2 wt % graphene. Advanced corrosion protection
effect of EPPyNG coating compared to EPPyN might arose from dispersing graphene nanosheets to
increase the tortuosity of the diffusion pathway of H2O, O2, and Cl− [43]. However, the coating with
excess graphene (EPPyNG3) exhibited lower Ecorr than EPPyNG2, probably because larger fraction of
graphene affected the growth of PPy nanowires and induced the defects in PPyNG3 composites [38],
which was in agreement with the results of SEM. Furthermore, the higher ba/bc ratio of EPPyNG2 was
observed, which revealed a reduction of the anodic dissolution [23]. The Icorr values of EPPyNG1 and
EPPyNG2 coated mild steel considerably decreased when compared with EPPyN. For the EPPyNG2
coatings, the Icorr was lowest than other coatings, which indicated the best anticorrosion performance
in all of the studied samples, which corresponded to results of OCP tests.
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Table 1. Parameters of Tafel polarization curve for coated Q235 substrates.

Sample Ecorr (mV) Icorr
(A/cm2)

ba
(mV/dec)

bc
(mV/dec)

vcorr
(mm/year)

Rp (Ω
cm2)

PE (%)

Bare −1019 1.1 × 10−5 170.9 −173.5 0.13 3.4 × 103 -
Blank −784 7.6 × 10−7 193.8 −221.8 8.8 × 10−3 5.9 × 104 94.3
EPPyN −565 5.7 × 10−7 201.4 −195.3 6.6 × 10−3 7.6 × 104 95.5

EPPyNG1 −537 1.9 × 10−8 209.1 −192.1 2.2 × 10−4 2.3 × 106 99.8
EPPyNG2 −482 7.7 × 10−9 203.9 −193.9 8.9 × 10−5 5.6 × 106 99.9
EPPyNG3 −713 3.0 × 10−7 211.8 −186.1 3.5 × 10−3 1.4 × 105 97.6

The quantitative analysis of Tafel curve was also investigated, and Table 1 summarizes the result.
The corrosion rate, vcorr (mm/year) was obtained from Equation (1) [44]:

vcorr =
MIcorr

nρ
× 3270 (1)

where the molecular weight (M) is 55.85 g/mol for Q235, Icorr is the corrosion current density (A/cm2),
n is 2 for the oxidation of steel, and the density (ρ) is 7.85 g/cm3 for Q235, 3270 is a constant. Rp is the
polarization resistance calculated by the slope of the polarization curve at the Ecorr according to the
Stern–Geary Equation (2) [45]:

Rp =
babc

2.303(ba + bc)Icorr
(2)

Here, ba and bc are the anodic and cathodic Tafel slopes, Icorr is the corrosion current density. The
protection efficiency (PE, %) was calculated via Equation (3) [46]:

PE =
R−1

p (bare) −R−1
p (coated)

R−1
p (bare)

× 100% (3)

where Rp(bare) and Rp(coated) denote the polarization resistance of bare and coated steel, respectively.
Figure S3 shows the Tafel curve of bare steel.

The calculated vcorr value of 8.9 × 10−5 mm/year for EPPyNG2 was about 100 times lower than
that for blank epoxy coating. The result of vcorr demonstrated that the EPPyNG coatings displayed
higher anticorrosion performance than epoxy coating with PPyN alone, and the best performance was
achieved when the graphene-doped ratio was 2 wt %. The mild steel that was coated with EPPyNG2
exhibited a Rp value of 5.6 × 106 Ωcm2, which was higher than that of bare mild steel, neat epoxy,
EPPyN, EPPyNG1, and EPPyNG3 coated ones. In the case of protection efficiency, the highest PE value
from EPPyNG2 (99.9%) described that PPyNG2 loading in the epoxy coating can provide superior
inhibition corrosion performance.

EIS is a powerful tool for investigating the corrosion protection of the coatings [47]. Figure 6
shows the Nyquist and Bode plots of the coated mild steels during different immersion days. For neat
epoxy coating (Figure 6a), the Nyquist plots displayed two capacitive arcs after 15 days immersion,
which indicated that the electrolyte was in contact with the metal surface. The first semicircle at high
frequency region and the second part at middle-low frequency region were due to the impedance
of coating and corrosion reactions, respectively [48]. The radius of capacitive impedance loop in
high-frequency domain diminished during the immersion, which implied declined corrosion protective
properties for mild steel. The EPPyN (Figure 6c), EPPyNG1 (Figure 6g), and EPPyNG3 (Figure 6i)
showed the same trend. However, for the EPPyNG2 coating, the radius of capacitive impedance arc
at low frequency region in the immersion seven days suddenly expanded beyond that of three days,
which suggested that PPy might react to passivate the metal substrate [23]. The second semicircle was
also observed after long time immersion for EPPyNG2, but its radius was significantly smaller than that
of other coatings, which indicated less response from the pitting corrosion of the metal substrate [43].
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The impedance modulus at low frequency (|Z|0.01Hz) was used as a semi-quantitative standard of
coating’s protective performance for the Bode patterns [49], as summarized in Table 2. The impedance
modulus dramatically decreased after 15 days and then progressively reduced with the increasing
immersion time for all studied coatings, probably owing to the penetration of water and movement
of ions through the coatings [50]. The |Z|0.01Hz of EPPyNG2 (Figure 6h), in the early immersion time,
was up to 7.7 × 106 Ωcm2, higher than those of neat epoxy (1.0 × 106 Ωcm2). The EPPyNG2 coating
had better barrier properties when compared to neat epoxy, because the well dispersed PPyNG could
fill the structural and pinhole porosity of neat epoxy and then inhibited the water penetration. The
conjugation length of EPPyNG2 was longer than those of EPPyN and EPPyNG1, which resulted in
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electrons easier delocalization and in favor of the formation of passivation layers [51,52]. Hence, the
EPPyNG2 also exhibited better anticorrosion performance than those of EPPyN (4.5 × 106 Ωcm2) and
EPPyNG1 (5.4 × 106 Ωcm2). Although EPPyNG3 possessed longer conjugation length, its excess
graphene content might increase the defects due to influence of polypyrrole nanowires, and probably
generated micro galvanic corrosion that showed the corrosion-promotion activity [53]. Therefore, the
EPPyNG3 (1.6 × 106 Ωcm2) displayed worse anticorrosive property when compared with EPPyNG2.
In addition, the impedance modulus of EPPyNG2 remained 1.2 × 105 Ωcm2 after 30 days, which was
higher than other coatings.

Table 2. Results of electrochemical impedance spectroscopy (EIS) for coated Q235 substrates.

Sample |Z|0.01Hz (Ωcm2)

3 days 7 days 15 days 20 days 25 days 30 days

Blank 1.0 × 106 7.2 × 105 2.8 × 105 9.6 × 104 5.5 × 104 7.6 × 104

EPPyN 4.5 × 106 3.4 × 106 1.1 × 105 1.2 × 105 4.7 × 104 5.0 × 104

EPPyNG1 5.4 × 106 4.4 × 106 2.7 × 105 2.1 × 105 8.9 × 104 1.0 × 105

EPPyNG2 7.7 × 106 9.0 × 106 5.4 × 105 2.4 × 105 1.4 × 105 1.2 × 105

EPPyNG3 1.6 × 106 1.6 × 106 1.6 × 105 1.4 × 105 6.2 × 104 7.6 × 104

Moreover, ZSimpWin software further fitted the EIS measurements while using the equivalent
electric circuits, as shown in Figure 7. The electrical equivalent circuits were composed of Rs, Rpore, Rct,
Zw, Qc, and Qdl, which represented the solution resistance, pore resistance, charge-transfer resistance,
Warburg impedance, and the constant phase elements substituted for the coating capacitance (Cc) and
double-layer (steel/solution) capacitance (Cdl), respectively. Rpore modeled ionically conducting paths
across the coating, which could be used to evaluate the barrier performance of the coatings [54]. Models
(a) and (b) were fitted with the EIS data of pure epoxy coating and composites coatings, respectively.
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Figure 8 shows the time-dependent behavior of Rpore and Cc on the basis of the above fitting models.
Generally, a higher Rpore and lower Cc suggested that a small amount of corrosive media penetrated
into the coatings [55]. It could be observed that the Rpore of neat epoxy coating gradually decreased
from 7.3 × 105 Ωcm2 to a much lower value (1.3 × 104 Ωcm2). The Rpore of coatings with EPPyN,
EPPyNG1, and EPPyNG3 decreased to some extent, while the EPPyNG2 coating always maintained
much higher values. The Cc of pure epoxy coating continuously increased from 3.1 × 10−9 F/cm2 to
1.1 × 10−8 F/cm2. In contrast, the EPPyNG2 displayed a much lower Cc value when compared to
those of neat epoxy and EPPyN coating. The EPPyNG3 coating also exhibited lower Rpore and higher
Cc than EPPyNG2, which confirmed that excess graphene induced the defect coating and reduced
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corrosion protection. Consequently, it could be concluded that the EPPyNG2 composite coating
showed the outstanding corrosion resistance, which was in agreement with the potentiodynamic
polarization results.
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According to the above results, Figure 9 demonstrates the mechanism of corrosion protection
for the mild steel substrate with neat epoxy coating and PPyNG nanocomposite coatings. For pure
epoxy coating, corrosive mediums (H2O, O2, and Cl-, etc.) could penetrate the coating easily due to the
minute crevices of the surface. However, the well-dispersed PPyNG composite, as an anti-corrosion
barrier, repaired the cracks of epoxy coating, and enhanced the tortuosity of the diffusion pathway
at a great extent. Furthermore, PPyN reacted with steel to form a dense layer of passive oxide film,
which resulted in substantially reduced penetration of corrosive medias. Hence, the anti-corrosion
performance of the EPPyNG nanocomposite coatings was significantly improved.
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and (b) EPPyNG composite coating.

4. Conclusions

In this study, the PPy nanowires were synthesized while using CTAB as soft template, and
combined with graphene nanosheets by in situ oxidation polymerization. The incorporation of PPy
nanowires/graphene into waterborne epoxy on mild steel substrate was performed. Potentiodynamic
polarization plots, impedance measurements, and fitted Rpore and Cc were used to study the
anticorrosion performance of the coatings. The PPy nanowires/graphene nanocomposite coating
exhibited improved anticorrosion performance in comparison with pure epoxy and epoxy/PPy
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nanowires samples. The passivation effect of the PPy nanowires contributed to the effective inhibiting
corrosive effect. Meanwhile, the well-dispersed PPyNG could block the coating pores and decrease the
corrosive medias diffusion toward the substrate. Therefore, PPy nanowires/graphene nanocomposite
would be used as a promising anticorrosion pigment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/12/1998/s1,
Figure S1: t Water absorption of epoxy/polypyrrole nanowires coatings filled with 0%, 0.3%, 0.5% and 0.7%
polypyrrole nanowires., Figure S2: Tafel curves of mild steel with coatings of epoxy/polypyrrole nanowires
coatings filled with 0%, 0.3%, 0.5% and 0.7% polypyrrole nanowires in 3.5% sodium chloride solution after 20 days.
Figure S3: Tafel curve of the bare mild steel electrode. Figure S4. Optical microscopic images of epoxy/polypyrrole
nanowires coatings filled with 0%, 0.3%, 0.5% and 0.7% polypyrrole nanowires.
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