Supplementary Information

Synthesis and Antibacterial Activity of Cationic Amino Acids-Conjugated Dendrimers Loaded With a Mixture of Two Triterpenoid Acids

Anna Maria Schito ¹, Gian Carlo Schito ¹ and Silvana Alfei ²,*

¹ Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, I-16132 Genova, Italy, amschito@unige.it (A.M.S); giancarlo.schito@unige.it (G.C.Z.)
² Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148, Genova, Italy, alfei@difar.unige.it (S.A.)

* Correspondence: alfei@difar.unige.it; Tel.: +39-010-335-2296 (S.A.)

Figure S1. ¹H NMR of G4 (300 MHz, DMSO-d6).
Figure S2. 1H NMR of G5 (300 MHz, DMSO-d$_6$).

Figure S3. 1H NMR of G5, Boc-protected intermediate and the final cationic dendrimer G5R(38)K(30)OH(28) (300 MHz, DMSO-d$_6$).
Figure S4. Starting from the left side, simplified structures of G4R(16)K(19)OH(13), G5R(66)OH(30) and G5R(38)K(30)OH(28).

Figure S5. 1H NMR spectrum of G5R(66)UOA(3) in CD$_3$OD (300MHz).
Figure S6. 1H NMR spectrum of G5R(38)K(30)UOA(8) in CD$_3$OD (300MHz).
Figure S7. Comparison between the 1H NMR spectra of UOA (a), the cationic empty dendrimer G4R(16)K(19)OH(13) and the UOACD G4R(16)K(19)UOA(4). In the unloaded dendrimer, the signal of the CH$_2$OH group appears slightly shifted due to the different solvents used during spectra acquisition.
Figure S8. Release profile of UOA from UOACDs.