Supplementary Material

Assessing the Effect of CeO$_2$ Nanoparticles as Corrosion Inhibitor in Hybrid Biobased Waterborne Acrylic Direct to Metal Coating Binders

Edurne González 1, Robin Stuhr 1, Jesús Manuel Vega 2, Eva García-Lecina 2, Hans-Jürgen Grande 2,3, Jose Ramon Leiza 1 and María Paulis 1*

1 POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastián, Spain; edurne.gonzalezg@ehu.eus (E.G.); rob-in.stuhr@studium.uni-hamburg.de (R.S.); jrleiza@ehu.eus (J.R.L.)

2 CIDETEC, Basque Research and Technology Alliance (BRTA), Paseo Miramón 196, 20014 Donostia-San Sebastián, Spain; jvega@cidetec.es (J.M.V.); egarcia@cidetec.es (E.G.-L.); hgrande@cidetec.es (H.-J.G.)

3 POLYMAT, Polymers and Advanced Materials: Physics, Chemistry and Technology Department, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastián, Spain

* Correspondence: maria.paulis@ehu.eus

Figure S1 presents the XRD diffractograms of the neat and hybrid Bioacrylic films prepared in this study.

![Figure S1. XRD of the neat Bioacrylic film and the hybrid CeO$_2$-Bioacrylic film.](image)

The two main peaks of cubic crystalline form of CeO$_2$ can be seen in the diffractogram of the hybrid film (at 28° (111) and at 47° (220)). Using Scherrer equation: $D = \frac{0.94\lambda}{B\cos\theta}$ to obtain the mean diameter of the CeO$_2$ nanoparticles (D), being λ the wavelength of the CuK radiation (0.15406 nm) and B the line broadening at half height in radians, we retrieve a mean D (diameter) of 6.8 nm from the broadening of both peaks. So, the initial CeO$_2$ nanoparticles (8 nm in average as measured in the initial dispersion in the organic solvents) are not agglomerating in this system.