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Abstract: Different degradable plastics have been promoted as a solution for the accumulation
of waste in landfills and the natural environment; in Mexico, the most popular options are oxo-
degradable, which degrade in a sequential abiotic–biotic process, and compostable plastics. In
this research, high-density polyethylene, oxo-degradable high-density polyethylene, and certified
compostable plastic were exposed to simulated landfill conditions in an 854-day-long experiment
to assess their degradation. High-density polyethylene showed limited degradation, due mainly
to surface erosion, evidenced by a 13% decrease in elongation at break. The pro-oxidant additive
in the oxo-degradable plastic increased this loss of mechanical properties to 27%. However, both
plastic films kept their physical integrity and high molecular weight by the end of the experiment,
evidencing degradation but no biodegradation. While the compostable film fragmented, had a
lower molecular weight at the end of the experiment, and decreased the presence of C=O bonds,
this degradation took place remarkably slower than expected from a composting process. Results
show that oxo-degradable and compostable plastics will not biodegrade readily in landfills. This fact
should be known and understood for decision-makers to match the characteristics of the materials to
the features of the waste management systems.

Keywords: oxo-degradable; polyethylene; biodegradation

1. Introduction

Plastics emerged as a basic material for the functioning of the global society in the 20th
century. The plastic production has increased continuously since the 1950s, reaching 359 Mt
in 2018 [1]. Although they are used in different sectors, such as communication, medicine,
agriculture, and transportation, 36% of the global plastic production in 2015 was related to
packaging [2], mainly in products with short useful lives, such as bags and bottles. As a
result of the growing production and discard, plastic waste has become an issue of global
concern, accounting for 12% of the waste produced worldwide [3]. Conventional plastics
do not biodegrade quickly, as microbial species that can metabolize polymers are rare in
nature [4].

Different strategies have been implemented in order to decrease the environmental
impact of plastic waste. While some of them focus on reducing the consumption and use of
plastics, such as plastic bag bans, other interventions tackle the end-of-life impacts through
recycling and energy recovery [5]. However, the recovery of the material or energetic
value of plastics requires complementary actions, such as separate collection or sorting and
infrastructures [5–7]. The spread of the recycling and recovery of the heat capacity has been
limited by a lack of technical or economic resources, especially in developing countries. As
a result, a significant proportion of plastics end up buried in landfills and on dumpsites.
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Besides, improper management leads to losses of plastic waste to the environment [8]; it
was calculated that 6.2 Mt of macroplastics were lost to the environment in 2015 [9], and it
was estimated that 50–90% of marine debris is plastic [10]. For this trend to change, the
current infrastructure for waste management would need to increase by fourfold [11].

In this scenario, biodegradation of plastics has been promoted as an alternative to
decreasing these materials’ impact at the end of their useful life. This attribute is expected
to be helpful for the plastic products which are most likely to be mismanaged or whose
recycling is not feasible [12], such as packaging and medical products [13]. Alternatives
include biobased and biodegradable plastics, such as polyhydroxyalkanoates (PHA) [14]
and novel materials produced from proteins and polysaccharides [15]. They are considered
a promising option to decrease the plastics’ environmental impact by lowering the use of
fossil resources and promoting these materials’ integration into natural cycles. Different
microorganisms capable of degrading conventional plastics in laboratory conditions have
been isolated. The enzymatic process usually happens in two stages: surface adsorption
of enzymes and hydroperoxidation or hydrolysis of chemical bonds [16], and is highly
dependent on the chemical structure of the plastics [17]. However, the specific process of
polymer cleavage by bacteria remains largely unknown [18].

The idea of biodegradable plastics appeals to consumers [19]. However, their potential
to be a solution to plastic pollution is uncertain, given that the conditions required for
biodegradation are not always fulfilled in the environment [20] or in waste management
scenarios. Two main types of plastics have been promoted as biodegradable in developing
countries: compostable, which degrade aerobically by the action of microorganisms under
the conditions of an industrial composting plant [21–23], and oxo-degradable, which
degrade in a sequential abiotic-biotic process triggered by the oxidation promoted by UV
radiation [24–26].

The consumption of plastics in Mexico reached 6221 kTon in 2019 (50 kg/person/year);
3499 kTon were covered by local production, and the rest was imported [27]. As a result of
the increase in plastic waste, oxo-degradable and compostable plastics have been promoted
by local authorities to substitute conventional plastics, especially for carrying bags. How-
ever, in Mexico, as well as in other Latin American countries, compost facilities are scarce.
This lack of infrastructure and improper waste management practices by consumers [28]
provoked that the most likely end-of-life scenario for plastics sold as biodegradable are
landfills and dumpsites, where aeration, microorganism population, and humidity will be
remarkably different from those of composting. The need to develop research that realisti-
cally predicts the degradability of plastics has been signaled before. Although there were
studies focused on the analysis of biodegradation of plastics in anaerobic environments [29],
most of them aimed to assess digestion processes [30], which do not represent the condi-
tions found in landfills and dumpsites: long retention times (in the order of decades), lack
of aeration and mixing, heterogeneity, varying temperature, and moisture [31]. The goal
of our research was to contribute to filling this gap of knowledge. In this context, this re-
search aimed to assess the in-laboratory degradation of compostable, oxo-degradable, and
conventional plastics under the burial conditions that could be found in local landfills in
order to determine the fate of these materials in the current waste management conditions.
Besides comparing the different materials, we tried to assess if they would degrade in the
current waste management conditions, as well as the consequences that could be inferred
from their performance.

2. Materials and Methods

In this research, three different plastic films available in the Mexican market were
used to assess their behavior in landfill conditions. Ecovio®, a certified compostable plastic
produced by BASF, is produced by combining the compostable fossil-based plastic Ecoflex®

(polybutylene adipate terephthalate, PBAT) and biobased polylactic acid [32]. High-density
polyethylene (HDPE) containing the prooxidant additive d2w® and a conventional HDPE
with the same gauge were used as examples of oxo-degradable and conventional plastic
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films used in the production of plastic bags. Conventional HDPE and oxodegradable
HDPE were provided by Plásticos Degradables (Cuernavaca, Mexico), while ECOVIO®

was provided by the Mexican filial of BASF.

2.1. Preparation of the Solid Waste Mixture

A mixture resembling the composition of the urban solid waste of Mexico City, as
reported previously [33], was prepared (Table 1) to guarantee similar characteristics when
assessing the plastics. All the materials were cut roughly into 5 cm × 5 cm squares and
mixed with a shovel. The mixture was divided into three portions, and each one was
amended with a specific type of plastic film: HDPE, oxo-degradable polyethylene (HDPE-
OXO), and ECOVIO®. In all cases, plastic films, cut into 5 cm × 10 cm strips, accounted
for 6.5% (in weight) in their corresponding waste mixture. This proportion reflects the
proportion of plastic bags in the waste of the city.

Table 1. Composition of the waste mixture.

Waste % Weight

Food and yard waste 44
Paper and cardboard 20
Glass 4
Metal 4
Textile 4
Foamed and rigid plastics 6.5
Plastic film 6.5
Wood 1
Disposable diapers 7
Other 5

2.2. Simulation of Landfill Conditions in the Laboratory

The simulation of landfill conditions was carried out in reactors named lysimeters.
Each lysimeter is a cylinder (1.9 m height, 0.5 m diameter) built with acrylic. They have
a stainless-steel perforated plate in their base, which works as a support for the waste.
Valves located at the base and the top of the lysimeters allowed for leachate extraction
and recirculation. A manometer was located at the top to measure the increase in pressure
produced through biogas.

Each lysimeter was filled with a waste mixture containing a specific type of plastic
film (HDPE, HDPE-OXO, or ECOVIO®). Before introducing each waste mixture into its
corresponding lysimeter, water was added (52.3% in mass) to reach the field capacity and
promote leaching. A 10 cm layer of porous rock was placed in the base, and then the waste
was added to form a 1.47 m column, compacted to 418.5 kg/m3. A top layer, composed of
0.1 m porous rock and 0.05 m compost, was added to resemble the cover in a landfill cell.
A perforated plate was placed at the top to distribute leachate during the recirculation. The
systems were tested to ensure no gas leaks were present, and the biogas produced by the
biodegradation of the waste was stored in an inflatable vinyl bag. Lysimeters were covered
with a black cover to simulate the dark conditions in a landfill.

2.3. Monitoring of the Process

Temperature, moisture, and conductivity inside the lysimeters were measured in real-
time using a Decagon Devices ECH2O sensor. A manometer at the top allowed to follow the
biogas production up. The production and composition of biogas were measured weekly.
The biogas composition was measured in a gas chromatograph Agilent Technologies 7890B
equipped with an ECD detector, and the amount of biogas produced was measured by
the displacement of liquid (Bagi et al., 2007). After the biogas, remotion leachate was
recirculated (30% v/v) to promote biological processes [34]. The monitoring of sampling
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included pH, measured potentiometrically, and chemical oxygen demand (OCD), assessed
with a HACH by the EPA method 8043.

2.4. Assessment of the Degradation of Plastics

After 854 days, waste was removed from the lysimeters, and the plastic strips were
recovered. They were washed carefully with a 1:50 (v/v) chloride solution and rinsed
with distilled water, to be later dried at room temperature. The plastic strips were visually
inspected to look for changes in color, holes, and fissures. Degradation was measured by
the loss of mechanical properties by assessing the loss in elongation at break. This was
measured in a universal test machine LF Plus following the ASTM D882-12 method. Only
complete strips, without holes or fissures, were used for this test, which was performed
for ten samples of each plastic. The chemical changes in the plastics were assessed by
Fourier Transform Infrared Spectroscopy (FTIR) in a Perkin Elmer Spectrum 2 equipment.
This analysis allowed for the measurement of different functional groups produced by
degradation. The final molecular weight of the plastics was assessed by gel permeation
chromatography in an Agilent PL-GPC 220. Finally, samples of each plastic film were
analyzed by scanning electron microscopy using JSM 6610LV equipment.

3. Results

The main characteristics of biogas and leachate were analyzed during the 854 days
of the experiment. A leak of gas in the reactor containing ECOVIO® prevented a precise
measurement of the biogas produced in that lysimeter. However, the positive pressure
generated inside that reactor allowed maintaining the anaerobic conditions that developed
inside the reactors. The Lysimeter containing ECOVIO® reached its maximum methane
concentration around day 280, while for PEAD, it was reached around day 400. This
parameter reached a plateau in both cases, which lasted until day 600 before beginning
a gradual decrease. The quality of biogas for PEAD-OXO was different, given that the
maximum amount of methane was achieved around day 600. The composition of the
biogas during the experiment is shown in the Supplementary Materials.

Leachate had an initial acidic condition in the three reactors (pH = 5.2) due to the
dissolution of volatile fatty acids produced by organic waste degradation. This condition
remained stable during the 200–250 days of latency for biogas production. Afterward, the
pH increased until it reached values close to 7.0. Neutrality coincided with the decrease
of methane in biogas, as expected. Similar behavior was observed before [35,36]. The
DQO showed a constant decrease along with the experiments, from initial values in the
36,000–48,000 mg/L range to end values ranging from 284 mg/L to 1553 mg/L.

3.1. Visual Assessment of Degradation

Degradation of plastics commonly requires work with two or more techniques [37],
which, combined, were used to assess the extent of both biotic and abiotic processes. The
simulation of landfill conditions produced visible effects in the ECOVIO® films, which
showed changes in color, embrittlement, and fragmentation (Figure 1). As a result, it was
not possible to retrieve complete strips of this plastic. On the other hand, both polyethylenes
showed no significant changes in their shape or size.
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standard deviations of ten samples. 

Figure 1. High-density polyethylene, compostable plastic ECOVIO® and oxo-degradable polyethylene films before and
after degradation in simulated landfill conditions.

3.2. Loss of Mechanical Properties

The loss of mechanical properties is used as an indicator of plastic degradation [38–41].
In this case, the elongation at break of the films was measured at the end of the experi-
ment and compared to their initial value. It was not possible to measure the final value
for ECOVIO® because of the fragmentation of this plastic (Figure 1), which indicated a
complete loss of physical integrity that could be related to the degradation. While PEAD
and PEAD-OXO both showed some loss of the referred property (Figure 2), there is no
significant statistical difference between the initial and final values. On average, the elon-
gation at break decreased by 27% for PEAD-OXO and 13% for PEAD; the higher loss of
mechanical properties in OXO-PEAD could be expected because of the prooxidant additive
in the plastic. The elongation at break is not linearly related to the plastics’ chain length;
even an extensively weathered, embrittled plastic has an average molecular weight in the
tens of thousands g/mol [4].
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3.3. Changes in Chemical Composition

FTIR allowed the identification of distinct functional groups based on previously
reported data [40,42–45]. As shown in Figure 3, the conventional HDPE profile did not
show significant changes, as it kept the same characteristic peaks [46,47]. A decrease in
the peaks related to the C=O and OH groups was also observed. Similar behavior was
observed in PEAD-OXO. On the other hand, ECOVIO® showed a decrease in the intensity
of the peaks, which was related to the higher mobility of the molecules due to changes
in the flexibility of the film [48]. The main change was the disappearance of the peak
attributed to the ketonic C=O groups.
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3.4. Decrease in Molecular Weight and SEM

Photodegradation and thermal degradation of plastics can cause changes in the aver-
age molecular weight (MW) and MW distribution [49]. This shortening in the molecule
length is very relevant and is generally considered the first and necessary step to promote
plastic mineralization. It was proposed that polyethylene, oligomers produced by abiotic
degradation, could be biodegraded when they reach an MW of 500 g/mol [4]. At the end
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of the experiment, ECOVIO®, HDPE, and HDPE-OXO had a molecular weight of 27,522,
218,460, and 191,545 g/mol, respectively. The SEM images (Figure 4) show the deterio-
ration in the surface of all the plastics. Precipitation, possibly caused by salts, could also
be observed. ECOVIO® showed punctures and fissures, while both polyolefins presented
only small holes.
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4. Discussion

Plastic degradation in the environment and different end-of-life scenarios are usually
the result of simultaneous or consecutive abiotic and biotic processes. The process is
commonly begun by abiotic oxidation or hydrolysis. Oxidation is commonly associated
with photo or thermal degradation. It can be hindered by the depletion of oxygen in
landfills, decreasing the abiotic processes that would take place in surface weathering
conditions. Light-induced oxidation is considered by several orders of magnitude faster
than other degradation processes [4]. Hydrolysis is relevant for plastics containing different
atoms than carbon in their main chain. It can be enzyme-induced, producing significant
loss of mass due to surface erosion of the material, or begin with an abiotic process, which
changes properties but does not significantly affect mass loss [50].

Polyethylene showed a low level of degradation in the landfill simulation experiment,
as evidenced by a low loss of mechanical properties and minimal chemical structure
changes. Previous research found that the degradation of this plastic in landfills was
related to the level of oxygen present in the media, which tends to vary with depth [51].
However, evidence showed that, given enough time (i.e., more than 20 years), physical
degradation of PE in real landfills was possible, as microplastics (100–1000 µm) were found
in leachate [52]. Fragmentation, loss of gloss, and augmentation in carbonyl index were
found in samples excavated from landfills [53], suggesting that oxidative processes were
the leading cause of the fragmentation process [54].

Low degradation of PE by bacteria and consortia isolated from landfills [42,55,56]
and in other anaerobic environments was found before [57]. However, reported results
only described partial processes which did not reach mineralization [58]. Additionally, in
those experiments, it was common to use a pretreatment to promote the enzymatic attack
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of the PE. The proposed mechanism included the formation of free radicals from tertiary
carbons, with the production of CH4 and H2 [59]. It was also shown that fungi could
produce pits and erosions in plastics [50]. However, it was reported that the apparition in
those holes could take decades and measurable weight loss when PE is buried in the soil.
The environmental conditions in an oxygen-depleted landfill or dumpsite could increase
the time for these processes to take place. Based on this evidence, it can be concluded that
the oxygen profile in a landfill will be the main driver for the fragmentation of PE films.
Furthermore, it was suggested that plastics could inhibit anaerobic degradation processes;
polypropylene microplastics (also a polyolefin) decreased 58% of the methanogenic activity
in the anaerobic treatment of wastewater [60]. Further research is needed to clarify if any
possible inhibition was caused by chemical or physical characteristics and behavior, such
as possible mass transfer interference.

The addition of pro-degradant additives in the oxo-degradable film produced a low
increase in the degradation rate of PE, mainly evidenced by a loss of elongation at break,
punctures, and holes in the films, which were mainly related to surface degradation,
as found before [61]. These surface morphology changes were not directly related to
bulk property changes [25]. Although a biofilm formation was found in this type of
plastics [26,62,63], the abiotic–biotic process was triggered by weathering. The limitation
of UV radiation and oxygen hindered the process in landfills, as photodegradation was the
primary mechanism for the abiotic degradation stage [64]. This requirement of an abiotic
degradation process, triggered mainly by UV radiation, was one of the main barriers to the
degradation of oxo-degradable plastics in landfills and dumpsites, where most of them
would be buried in the dark. The use of additives that caused observable changes in color,
when the desired abiotic photodegradation was achieved, was suggested as an option to
guarantee this technology’s proper performance [64].

Further, the compostable plastic ECOVIO® evidenced higher degradation through the
complete loss of physical integrity, decreased C=O groups, and had a low final molecular
weight. Aliphatic polyesters such as polyhydroxybutyrate (PHB) and polycaprolactone
(PCL) could degrade (measured by weight loss) in strictly anaerobic conditions [65]. Poly-
lactic acid (PLA), one of the components of the compostable plastic tested in this study,
was considered less degradable in anaerobic conditions than PHB and PCL [66]. It showed
different levels of anaerobic degradation depending on the environmental conditions. It
could be biodegraded (91%) in environments such as an anaerobic sludge [67]. Although
PLA anaerobically biodegraded and produced a high yield of biogas, the time frame of PLA
digestion was much longer than that of biowaste, making it unacceptable on a technical
scale under mesophilic conditions [68]. In other studies, PLA degradation on anaerobic
conditions was almost neglectable [57].

Reported results for PLA degradation in landfills vary depending on recirculation
rates, temperature, and oxygen [69]. Further, the degradation of PBAT (the second compo-
nent of ECOVIO®) by hydrolysis was proved by the imaging analysis and quantification of
degradation products in biogas sludge. However, the detected hydrolysis rates were still
too low for an efficient PBAT degradation in industrial biogas plants, much slower than
food waste [70].

Besides the oxygen profile, the rate of the hydrolytic degradation of compostable
plastics in landfill conditions could be affected by UV exposure [71], temperature, pH,
and water [25]. As a source of UV radiation, sunlight could promote oxidation and
increased wettability and intensity of carbonyl peaks in the three types of plastics assessed
in this research [71]. In the case of water, if the diffusion was high in the films, bulk
degradation occurred promoting a molecular weight decrease. This phenomenon is typical
for polyesters such as PCL and PLA and caused a non-linear mass-loss over time by causing
a decrease in Mw, mechanical properties, and mass [72]. As leachate recirculation usually
accelerated the decomposition of waste [73,74], it could be expected to increase rates of
degradation of compostable plastics in landfills. Medium pH also influenced the hydrolytic
degradation mechanism of polyesters, which affected the degradation kinetics [75].
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Besides environmental conditions, such as temperature, humidity, sunlight, water, and
oxygen availability [64], factors intrinsic to the degradable plastics would affect the extent
and rate of degradation. These included their degree of crystallinity [73], thickness [64],
C/N ratio [76], presence of additives, and antioxidants [58]. The process would also be
influenced by the composition of the waste mixture and the availability of alternative
carbon sources, which could complement or compete with plastics [58,76]. Degradable
plastics could also affect the global biodegradation of the waste mixture, or the quality of
the formed biogas, as shown for PLA [77].

The use of biodegradable plastics has been promoted without proper attention to
labeling or communication with society and decision-makers, leading to misunderstand-
ings and false expectations [78]. The concern was not only limited to the feasibility of
degradation: landfilling biodegradable plastics could lead to undesirable outcomes, such as
an increase in methane production, the complexity of leachate, changes in the temperature
profile, and accumulation [79].

5. Conclusions

Due to the governments and society’s interest in decreasing plastic waste accumulation
in landfills and the environment, different degradable plastics can be found in the market.
In emerging economies, it is common that such an introduction lacks a complete regulatory
framework that allows consumers to distinguish among the different options and their
possible end-of-life impact. In Mexico, for example, the lack of eco-labels and certification
schemes provoked that different plastics, including oxo-degradable polyolefins, are pro-
moted as biodegradable. Due to this disinformation and insufficient waste management
infrastructure, plastic films’ most common fate is their burial in dumpsites and landfills.

In this research, the assessment of the degradation of conventional and oxo-degradable
plastics was carried out in reactors simulating landfill conditions for almost three years. The
different parameters used to assess degradation allowed us to conclude that, as expected,
HDPE evidenced only a low-level surface erosion and minimal changes in mechanical
properties, which increased slightly with the presence of the prooxidant additive. Further,
although degrading faster, the compostable film could still be identified in the waste
mixture. It might seem obvious, but the promotion of these materials, if they ended up in
sites different from a composting plant, was not a solution for the plastic waste problem.

Landfills and dumpsites present different conditions, depending on their location,
management, and waste characteristics. Although each site has a particular profile, features
such as a continuous depletion of oxygen can be expected. For polyolefins, this condition,
added to the lack of UV produced by burial, slowed down the degradation processes
as compared with the possible behavior of these plastics when exposed to the surface.
The presence and flow of water were also relevant, as they favored the mass transfer
and hydrolytic process required for the degradation of compostable plastics. It should be
noticed that, in this experiment, periodic recirculation of leachate could have increased
the degradation rates. In real sites which do not operate as bioreactor landfills or where
leachate recirculation is limited, lower degradation levels could be expected, i.e., the time
required to achieve the same level of degradation will be longer.

The attained degradation of the plastics in this assessment resulted from concurrent
abiotic and biotic factors, as it was not possible to isolate the biodegradation process. This
fact reflects the difficulty of assessing biodegradation when experimental conditions try
to reproduce the conditions of real landfills. However, based on the results, it is evident
that oxo-degradable and compostable plastics will not biodegrade readily in landfills.
This fact should be known and understood for decision-makers to match the materials’
characteristics to the features of the waste management systems.

It is clear that for countries like Mexico, where landfills and dumpsites are the most
common destiny for plastic waste, the use of degradable plastics needs to be coupled with
regulations and changes in waste management. The expected performance of the different
materials available in the market must be identified, in order to couple the used plastics
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with the available management options that really promote a decrease in environmental
impacts. For compostables, certification schemes, ecolabeling, separation at source and
during collection, as well as infrastructure are required in order to guarantee the arrival
of these plastics at composting plants. For oxo-degradables, more research is required in
order to define the optimal conditions for their degradation and to translate them into real
operational situations during waste management. If these requirements are not fulfilled
and these types of degradable plastics just go to landfills, their use will not produce any
tangible environmental benefits.

Supplementary Materials: The following is available online at https://www.mdpi.com/2073-4360/
13/7/1014/s1; Figure S1: Composition of biogas; Figure S2: DQO evolution in leachate.
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19. Rujnić-Sokele, M.; Pilipović, A. Challenges and opportunities of biodegradable plastics: A mini review. Waste Manag. Res. 2017,
35, 132–140. [CrossRef]

20. Shen, M.; Song, B.; Zeng, G.; Zhang, Y.; Huang, W.; Wen, X.; Tang, W. Are biodegradable plastics a promising solution to solve the
global plastic pollution? Environ. Pollut. 2020, 263, 114469. [CrossRef]

21. Vaverková, M.; Adamcová, D.; Kotovicová, J.; Toman, F. Evaluation of biodegradability of plastics bags in composting conditions.
Ecol. Chem. Eng. S 2014, 21, 45–57. [CrossRef]

22. Leejarkpai, T.; Suwanmanee, U.; Rudeekit, Y.; Mungcharoen, T. Biodegradable kinetics of plastics under controlled composting
conditions. Waste Manag. 2011, 31, 1153–1161. [CrossRef] [PubMed]

23. Wojnowska-Baryła, I.; Kulikowska, D.; Bernat, K. Effect of Bio-Based Products on Waste Management. Sustainability 2020, 12, 2088.
[CrossRef]

24. Alvarez-Zeferino, J.C.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A. Degradation of Plastics in Seawater in Laboratory. Open J.
Polym. Chem. 2015, 5, 55–62. [CrossRef]
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