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Abstract: The synergic features and enhancing strategies for various photopolymerization systems are
reviewed by kinetic schemes and the associated measurements. The important topics include (i) photo
crosslinking of corneas for the treatment of corneal diseases using UVA-light (365 nm) light and
riboflavin as the photosensitizer; (ii) synergic effects by a dual-function enhancer in a three-initiator
system; (iii) synergic effects by a three-initiator C/B/A system, with electron-transfer and oxygen-
mediated energy-transfer pathways; (iv) copper-complex (G1) photoredox catalyst in G1/Iod/NVK
systems for free radical (FRP) and cationic photopolymerization (CP); (v) radical-mediated thiol-ene
(TE) photopolymerizations; (vi) superbase photogenerator based-catalyzed thiol−acrylate Michael
(TM) addition reaction; and the combined system of TE and TM using dual wavelength; (vii) dual-
wavelength (UV and blue) controlled photopolymerization confinement (PC); (viii) dual-wavelength
(UV and red) selectively controlled 3D printing; and (ix) three-wavelength selectively controlled in
3D printing and additive manufacturing (AM). With minimum mathematics, we present (for the
first time) the synergic features and enhancing strategies for various systems of multi-components,
initiators, monomers, and under one-, two-, and three-wavelength light. Therefore, this review
provides not only the bridging between modeling and measurements, but also guidance for further
experimental studies and new applications in 3D printings and additive manufacturing (AM), based
on the innovative concepts (kinetics/schemes).

Keywords: 3D printings; additive manufacturing; polymerization kinetics; photoredox; monomer
conversion; synergic effects; cationic; free radical; UV visible light

1. Introduction

The advantages of photopolymerization over the conventional thermal-initiated poly-
merization include the following: (i) Fast and controllable reaction rates, (ii) spatial and
temporal control over the formation of the material, without the need for high temper-
atures or harsh conditions, and (iii) synergic effects and enhancement are available by
using co-initiators or catalytic complexes [1,2]. Photopolymerizations using various lights
with wavelengths in UV, visible, and near IR have been studied for both industrial and
medical applications. A variety of photoresponsive materials such as conjugated poly-
mers have been reported for additive manufacturing (AM) and recently for 3D and 4D
bioprinting [3–11]. Both spatial and temporal controlled 3D processes were reported using
single-and multiple-wavelength lights. For 3D photo printings, the key factors include
polymerization depth, resolution precision, and speed, in which the monomer conver-
sion efficacy could be improved by various strategies [12–18]. They include (i) a thiol–
Michael/acrylate hybrid, epoxy/acrylate curable resins, thiol–acrylate/thiol–acetoacetate
thermosets, and thiol–ene/epoxy-based polymers [12–14]; (ii)the use of novel materials
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as enhancers or co-initiators in both single and multiple components [15–17]; and (iii)
two-stage polymerization under two wavelengths to eliminate the oxygen inhibition ef-
fects [17–19].

UV light (at 365 nm) has been commonly used in most type-I photoinitiators for the
photopolymerization of (meth)acrylate monomers [1–3]. However, the UV wavelength
suffers the disadvantages of being unsafe to skin and eyes, having a small penetration
depth, and larger light scattering in tissues [1,2]. Camphorquinone (CQ), due to its good
visible absorption properties, is the most common type-II free radical photopolymerization
of (meth-) acrylates under blue light [15,20]. The classical diaryliodonium salts, such as
diaryliodonium, suffer low solubility in monomers and the formation of side products due
to the release of HF. To overcome this drawback, Kirschner et al. [15] recently reported a
new counter anion-free and fluoride-free aryliodonium ylides (AY) to avoid the formation
of HF and to enhance their solubility. They reported (CQ)/amine/AY as a new and efficient
PI system for the polymerization of methacrylates under air and blue light (477 nm)
irradiation. Kirschner et al. [15] also reported the chemical mechanisms involved in the
presence of various AY and amines, which lead to additional reactions and initiating
radicals for improved conversion efficacy.

In comparison, near-infrared (NIR) light offers advantages of safer, less light diffusion
and scattering, and deeper penetration into the materials. Thus, the curing of a thick and
filled material can be potentially enhanced compared to curing with UV or visible light.
However, the use of NIR photoinitiating systems such as cyanine is often associated with
low reactivity and requires a high light intensity. Phthalocyanines, conjugated macrocycles,
have been used as commercial pigments and dyes with a high molar absorptivity coefficient
in the red and NIR wavelength of 650–810 nm. Efficient polymerization conversions using
NIR photoinitiation by cyanine/iodonium salt couples are reported by Schmitz et al. [16].
Recently, Bonardi et al. [17] reported the first three-initiator system for high-performance
NIR (785 nm) photopolymerization of thick methacrylates, in which a dual-function en-
hancer (phosphine) was used to prevent oxygen inhibition, and to regenerate the PS upon
irradiation, in which a stable radical is coupled with the enhancer. The three-initiator
system with a dye as a photosensitizer absorbing in the NIR range, an iodonium salt (as an
initiator), and a phosphine (as a co-initiator) was reported, in which the phosphine is used
to reduce oxygen inhibition (OIH) during the free radical polymerization of (meth)acrylate
monomers [17,18].

Oxygen inhibition plays a critical role specially for optically thin polymers. Various
strategies to reduce oxygen inhibition in photoinduced polymerization have been proposed
such as: (i) Using a higher photoinitiator concentration; (ii) using a higher light dose or
intensity; (iii) using co-initiators; (iv) the addition of oxygen scavengers; and (v) working
in an inert environment [19]. Besides the above methods, chemical mechanisms were also
reported, such as the thiol-ene and thiol-acrylate-Michael systems, which are insensitive
to oxygen [12–14]. An additive enhancer-monomer was proposed to improve the curing
(crosslink) efficacy by either reducing the oxygen-inhibition effect by stable-monomer
or increasing the lifetime of radicals in clinical applications. Dual-wavelength (red and
UV) photopolymerization was also reported, in which pre-irradiation of the red light
eliminated the oxygen-inhibition effect and thus enhanced the conversion efficacy of the
UV light [10,18,19].

An example of a blue and UV dual-wavelength system (without the red-light) for
enhanced conversion by reducing the oxygen inhibition was reported by de Beer et al. [8]
and van der Laan et al. [9], in which a blue (470 nm) and a UV (365 nm) light were
used for the photopolymerization of methacrylate formulated with camphorquinone (CQ)
and ethyl 4-(dimethylamino)benzoate (EDAB), where CQ is the blue-light active initiator
(A), butyl nitrite (BN) is the UV-activated initiator (B), and EDAB is a co-initiator (or
donor D). Lin et al. [20] reported the theoretical modeling for the above-described two-
wavelength system.
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An example of a two-wavelength (red and UV) system (without the blue-light) for 3D
printing was reported by Childress et al. [10], in which a monomer of ethyl ether acrylate
(DEGEEA) was mixed by zinc 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (ZnTTP)
as an initiator under a UV-light, where ZnTTP/DEGEEA has a distinct absorption peak at
UV-365 nm and red-635 nm, respectively, and thus it can be independently excited by a
UV and a red light, respectively. Lin et al. [21] reported the theoretical modeling for the
above-described two-wavelength system. A novel strategy using three wavelengths of
UV, blue, and red lights was recently theoretically proposed by Lin et al. [22] for future
experimental studies.

Multicomponent photoinitiating systems using dye as visible light absorbing com-
pounds have also attracted much attention for visible light curing [23–27]. These systems,
often based on dye/iodonium salt/amine combinations, often have the great advantages
of simultaneously generating initiating radicals and cations species [25]. Therefore, these
latter systems can advantageously initiate both free radical and/or cationic polymeriza-
tion processes. Three-component (Coum/NPG/Iod) photoinitiating systems for the free
radical photopolymerization of (meth)acrylates using the new synthesized set of in silico
developed coumarin derivatives were investigated by Abdallah et al. [25,26], which of-
fers two distinct strategies: A photooxidation approach based on an iodonium salt and a
photoreduction approach based on an amine under visible LED as source of irradiation.

Recently, another three components of G1/Iod/NVK and G1/Iod/EPOXY photoini-
tiating systems were invested by Mokbel et al. [28,29] using a copper complex (G1), in
which the co-initiators/additives Iod/NVK have dual functions: (i) Regeneration of the
photoinitiator, and (ii) generation of extra radicals. The synergic effects lead to higher con-
version of free radical polymerization (FRP) and cationic polymerization (CP). The kinetics
of the copper complex photoredox catalyst including the roles of oxygen, thickness, and
the optimal concentration for radical/cationic hybrid photopolymerization was reported
by Lin et al. [30].

Table 1 summarizes various reported enhancing strategies for photopolymerization
including one component (or monomer) and one-wavelength, two-component, and one-,
two-, and three-wavelength [9–12,14,19–21] and three-component and one-wavelength
systems [26–31]. We note that all these systems have been theoretically and experimentally
studied, except the three-wavelength systems, which were recently proposed theoretically
by Lin et al. [22].

Table 1. Summary of enhancing strategies for photopolymerization.

System Light Enhancer References

One-component co-initiators

blue (477 nm) CQ/EDB/AY Kirschner et al. [15]

UV (365 nm) BP/EDB/Iod Liu et al. [23]

green (532 nm) CQ/rose-Bengal Wertheimer et al. [31]

NIR (785 nm) phosphine/Iod Bonardi et al. [17];
Chiu et al. [18]

two-component co-monomers

UV (365 nm) thiol–Vinyl (Michael) - Claudino et al. [12]

thiol–Ene Chen et al. [14]

dual (365 + 660 nm) -DEGEEA/ZnTTP van der Laan et al. [9]

Childress [10]

Lin et al. [19]

Dual (365 + 430 nm) -DEGEEA/ZnTTP Scott et al. [11]

- Lin et al. [20,21]
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Table 1. Cont.

System Light Enhancer References

3-wave (365,430, 660) DEGEEA/ZnTTP Lin et al. [13,20,21]

UV (365 nm) PI/EDB/Iod Liu et al. [24]

UV (405 nm) Meth/Iod/NPG Abdallah et al. [26,27]

UV (405 nm) G1/Iod/NVK Mokbel et al. [29,30]

5.9 352.7 Lin et al. [31]
* CQ = Camphorquinone, AY = aryliodonium ylides, EDB = ethyl 4-(dimethylamino)benzoate; Iod= (4-tert-
butylphenyl)iodonium hexafluorophosphate; BP = benzophenone; DEGEEA = ethyl ether acrylate, ZnTTP = zinc
2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine; BMP = 1-butyl mercaptopropionate; EVS = ethyl vinyl sulfone;
BA = 1-butyl acrylate. G1 = copper complex, NVK = N-vinylcarbazole.

This article will review, for the first time, the following kinetics and the synergic
features of various systems (as summarized in Table 1), in which measured data are
analyzed by modeling.

(1) Photo crosslinking of corneas for the treatment of corneal diseases using UVA-light
(365 nm) light and riboflavin as the photosensitizer.

(2) Synergic effects by a dual-function enhancer in a three-initiator system (one-monomer).
(3) Synergic effects by a three-initiator C/B/A system, with electron-transfer and oxygen-

mediated energy-transfer pathways for free radical (FRP) and cationic photopolymer-
ization (CP).

(4) Copper-complex (G1) photoredox catalyst in G1/Iod/NVK systems for FRP and CP.
(5) Radical-mediated thiol-ene (TE) photopolymerizations.
(6) Superbase photogenerator-based catalyzed thiol−acrylate Michael (TM) addition

reaction and the combined system of TE and TM.
(7) Dual-wavelength (UV and blue) controlled photopolymerization confinement (PC)
(8) Dual-wavelength (UV and red) selectively controlled 3D printing.
(9) Three-wavelength selectively controlled in 3D printing and additive manufacturing

(AM).

With minimum mathematics, we present (for the first time) the synergic features and
enhancing strategies for various systems of multi-components, co-initiators, co-monomers,
and under one-, two-, and three-wavelength light. Therefore, this review provides not only
the bridging between modeling and measurements, but also guidance for further experi-
mental studies and new applications, based on the innovative concepts (kinetics/schemes)
published in the most recent few years.

2. Kinetic Systems and Discussions
2.1. Photo Crosslinking of Corneas

Figure 1 shows the schematics of one-component photochemical pathways: (i) Radical-
mediated and (ii) oxygen-mediated pathways. A typical example is applying a riboflavin
solution (photoinitiation agent) to the cornea, which is irradiated by a UVA light (at 365 nm)
for a procedure called corneal collagen crosslinking (CXL) [32–34]. Similar to the procedure
of CXL is a type-II procedure for anti-cancer, in which cancer cells are killed by the oxygen
singlet radical [35–37]. Synergic therapy combining photodynamic therapy (PDT) and
photothermal therapy (PTT) has also been studied recently [38–40].
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linking, or oxygen [O2], or be terminated by coupling with R’, or bimolecular recombination (2R2). 
For the type-II process, T* interacts with [O2] to form an oxygen singlet [1O2] (X), which could relax 
to its oxygen [O2], or interacts with [A] for crosslinking, or coupling with C. All rate constants are 
shown in reds next to the arrows. After Lin [34], Ophthalmology Research, 2017;7:1–8. 
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Figure 1. Schematics of photochemical pathways: (i) Radical-mediated (ii) and oxygen-mediated
pathways; where PS is the ground state photosensitizer, having an excited state (PS*) and triplet state
(T*), which interacts with the substrate A to form radicals R′ and R. It also may interact with the
oxygen to form singlet oxygen. After Lin [33], Ophthalmology Research, 2017, 7, 1–8.

Greater details of Figure 1 are shown in Figure 2 for the kinetics of a photosensitizer
(PS), monomer-A, with three reactive radicals, R’ and R and singlet-oxygen. The two
pathways are described as follows. The ground state PS molecules (C) are excited by
the UV light to its singlet excited state (C1), which could be relaxed to its ground state
or to a triplet excited state (T*). In the type-I process, T* could interact directly with the
substrate [A] to produce the first-radical (R’), which could produce (by chain reaction)
a second-radical (R), which could interact with the ground state oxygen [O2], with the
first-radical (R’), or the bimolecular termination (R2). For a type-II process, T* interacts
with [O2] to form an oxygen singlet [1O2], which could relax to its ground state [O2], or
interacts with the substrate [A]. For example, in a CXL procedure, A (monomer) is the
corneal stroma matrix and C is riboflavin solution.
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Figure 2. Schematics of photochemical pathways of a one-monomer system. The ground state PS (C)
is excited by a UV-light to its singlet excited state (C1), which could be relaxed to its ground state or
to a triplet excited state (T*). In the type-I process, T* could interact directly with the monomer [A] to
generate a free radical (R′) by recombination. The radical R could interact with [A] for crosslinking,
or oxygen [O2], or be terminated by coupling with R’, or bimolecular recombination (2R2). For the
type-II process, T* interacts with [O2] to form an oxygen singlet [1O2] (X), which could relax to its
oxygen [O2], or interacts with [A] for crosslinking, or coupling with C. All rate constants are shown
in reds next to the arrows. After Lin [34], Ophthalmology Research, 2017, 7, 1–8.
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2.2. Synergic Effects of a Dual-Function Enhancer (3-Initiator System)

There are many strategies for improved photopolymerization such as the reduction of
oxygen inhibition effects (OIH) and using co-initiators (or enhancers). A three-component
system using phosphine to reduce the OIH effects during the free radical polymerization
of (meth)acrylate monomers has been reported [17,18]. Figure 3 shows the kinetic scheme
of a three-initiator system, [C], [A], and [B], in the presence of oxygen, using an enhancer-
initiator [B]. Under near-infrared (NIR) light exposure, the initiator dye (C) is exited to its
triplet-excited state, given by C*, which could react with the initiator [A] to produce an
active radical (R) or react with the co-initiator [B]; where the dye [C] is regenerated in both
reactions. The coupling of a radical [R] and oxygen [O2] produces a peroxyl radical [ROO◦],
which is too stable for the polymerization to proceed. Therefore, an enhancer-initiator [B]
is required to create a less-stable radical [RO] for extra crosslinks of the monomer, [M].
We note that the initiator [B] plays a dual function of (i) regeneration of the dye [C], and
(ii) reducing OIH and generating an extra active radical [RO] for improved conversion.
Without the dual-function enhancer [B], OIH reduces the radical [R] and the conversion
efficacy, in which an induction time is defined for the delayed rising of the conversion
curve [18].
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Figure 3. Schematics of photochemical mechanisms in a three-initiator (C/B/A) system under a
near-infrared light; in which the initiator dye (C) is excited to its excited triplet state C*, which could
react with [A] to regenerate [C] and produce active radical (R). R could initiate the crosslink of the
monomer [M] or react with oxygen to produce a radical [ROO], which reacts with [B] to produce a
radical [RO] causing an extra crosslink of [M]. After Chiu et al. [18], IEEE Access, 2020, 8, 83465–83471.

An example of the above system was reported by Bonardi et al. [17], in a three-
component system of C/B/A, in which [C]= IR-140 borate, [B] = 4-(Diphenylphosphino)
benzoic acid (4-dppba), and [A] = iodonium salt Ar2I + PF6

−, with an initial concentration
of [0.1/2.0/3.0] wt% and mixed in a monomer [M] = methacrylate.

Several unique features for the conversion are demonstrated [18]. For example, reverse
trends (roles) are found in (i) the light intensity and enhancer concentration, and (ii) the
coupling rate constants of radical-oxygen and radical-monomer. The monomer conversion
is an increasing function of enhancer, oxygen concentration, and light intensity. However,
they have significantly different steady-state features. Lin et al. [17] reported that the steady-
state conversion increases from 10% without the enhancer (with an enhancer concentration
[B]0 = 0) to (30%, 50%, 80%) for [B]0 = (0.5, 1.0, 2.0)%.

2.3. Synergic Effects of a 3-Initiator Enhanced C/B/A System

Figure 4 shows the schematics of photochemical pathways in a three-initiator C/B/A
system [20]. Figure 4 shows an example of the reported (CQ)/amine/AY system of
Kirschner et al. [15], corresponding to our C/B/A system, where AY (aryliodonium ylides)
is our [A] and the amine (our [B], the enhancer) could be Ethyl-4-(dimethylamino)benzoate
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(EDB) or 4-(dimethylamino)benzonitrile (DMABN) additives in multicomponent PI sys-
tems. The aryl radical (R) was generated through an electron transfer between CQ and the
AY. In the presence of an amine (EDB or DMABN), additional reactions were expected [15]
leading to additional initiating radicals (R), via the interaction of the excited molecule
(CQ-H*) with AY. The free radical initiates the photopolymerization of the monomer,
(meth-)acrylates, besides the oxygen-mediated photopolymerization.
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The measured system reported by Kirschner et al. [15] showed that the conversion
could be improved by a higher concentration of the additive initiators and the kinetic
rate constants. These features are consistent with our modeling. Competing mechanisms
between the reduction of conversion due to the reduction of light intensity (in a thick
polymer) and the reduction of oxygen inhibition (higher conversion) were analyzed in a
thick polymer [20]. The optimal conditions are governed by the product function of the
light intensity and main initiator concentration (C0), in which the conversion efficacy has
a normal-trend proportional to C0I0, for the transient-state, but a reversed-trend for the
steady-state. Strategies for an improved conversion include increasing the photoinitiator
concentration, the light dose and intensity, the addition of oxygen scavengers, and the use
of multiple photoinitiators. In the CQ/DMABN/AY system, Kirschner et al. [15] reported
that higher AY (from 0% to 0.75%) leads to higher conversion (from about 40% to 60%).

2.4. Synergic Effects in a 3-Initiator (A/B/C) System for FRP and CP

Figure 5 shows the schematics of a three-initiator system, (A/B/C), with electron-
transfer and oxygen-mediated energy-transfer pathways. A specific system was reported
by Liu et al. [23], where [A] is the benzophenone (BP) photoinitiator, the co-initiator
[B] is ethyl 4-(dimethylamino)benzoate (EDB), and [C] is (4-tert-butylphenyl)iodonium
hexafluorophosphate (Iod). Under UV (365 nm) LED irradiation, [A] transforms from
a ground state (PI) to an excited triple state 1,3PI. For BP alone, PI-H’ (or R) and PI(-H)
(or R’) are the active species for FRP. In the presence of EDB, the extra radical PI-H’ is
produced and could couple with [C] to produce aryl radical Ar’ and cation PI’, which
lead to free radical (FRP) and cationic photopolymerization (CP), respectively. Associated
with the photolysis of BPC1/Iod and BPC1/EDB/Iod, the photoredox catalytic cycle was
proposed in a three-component PI/EDB/Iod system [23,24]. The regeneration of PI speeds
up the photopolymerization and slows down the consumption of PI in the photolysis
experiments. Trimethylolpropane triacrylate (TMPTA) and (3,4-epoxycyclohexane)methyl
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3,4-epoxycyclohexylcarboxylate (EPOX) were used as benchmark monomers for FRP and
CP, respectively.
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Figure 5. The schematics of a three-initiator system, (A/B/C), where A is the ground state initiator,
with a first excited state PI*, and a triplet state T, which interacts with initiator [A] and [B] to produce
radical R; and interacts with initiator [C] to produce radical S, in which the coupling of the radical R
with [C] and S′ with [B] could lead to the regeneration of [A]. After Chen et al. [24], Res. Med. Eng.
Sci. 2019, 8(2), 853–860.

The co-initiators/additives B and C have dual functions of (i) regeneration of photoini-
tiator A and (ii) generation of extra radicals. The synergic effects lead to higher conversion
of free radical polymerization (FRP) and cationic polymerization (CP), consistent with the
measured work of Liu et al. [24]. However, there are other theoretically predicted new
features (findings), which are either not identified or explored experimentally, including (i)
co-initiator [C] always enhances both FRP and CP conversions, whereas co-initiator [B]
leads to more efficient FRP, but it also reduces CP; (ii) the FRP conversion is proportional
to the square-root of (bIg)([A] + [B] + [C]), whereas CP conversion is proportional to the
linear power of (bIg)[A][C]/[B], where I is the light intensity, [A], [B], and [C] are the
initial concentrations of the co-initiators, and b and g are rate constants; (iii) the dominant
polymerization is FRP or CP depending on the relative concentration of [A], [C], and [B]
and the rate constants that define the number of radicals; (iv) the steady state CP conversion
profile is independent to the light intensity, whereas higher light intensity reaches a lower
steady state value for the profile of FRP. The specific systems analyzed are benzophenone
derivatives (A) ethyl 4-(dimethylamino)benzoate (B) and (4-tert-butylphenyl)iodonium
hexafluorophosphate (C) under a UV (365 nm) LED irradiation; and two monomers of
trimethylolpropane triacrylate (TMPTA, for FRP) and (3,4-epoxycyclohexane)methyl 3,4-
epoxycyclohexylcarboxylate (EPOX, for CP).

We note that Figure 5 is more general than the Scheme proposed by Liu et al. [23],
which ignored the coupling of PI+ and epoxy monomer producing a propagating cation
(Q), which could be terminated by [B] as cationic polymerizations were not experimentally
carried out in the presence of B due to its inhibitor effect. Furthermore, the measured
data of Liu et al. [23] for the case of CP were limited to two initiators of [A] and [C],
although three-initiator systems of [A]/[B]/[C] were studied in FRP. The modeled system
of Chen et al. [24] in Figure 5 and the associated kinetic equations include three-initiator
systems for both FRP and CP.

2.5. Copper-Complex (G1) Photoredox Catalyst in G1/Iod/NVK Systems

Figure 6 shows the schematics of a three-initiator system, (A/B/N) for copper-complex
(G1) photoredox catalyst systems for FRP and CP [28–31]. A specific measured system
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of G1/Iod/NVK related to Figure 6 was reported by Mokbel et al. [28] with a proposed
scheme (shown by Figure 7), in which the G1 in combination with iodonium salt (Iod),
(oxidizing agent) generates the radical species through an electron transfer reaction. A
propagation system containing the N-vinylcarbazole (NVK) additive leads to simultaneous
regeneration of G1 and the formation of highly reactive cations (Ph- NVK+), which can
very efficiently initiate the CP conversion [28]. Figure 8 shows the 3D-photopolymerization
experiments using an LED projector @405 nm [28].
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Figure 6. The schematics of a three-initiator system, (A/B/N), where A is the ground state of
initiator-A, with an excited triplet state T, which interacts with co-initiator [B] to produce radical R
and oxidized-A (or [C]); R interacts with co-initiator (or additive) N to produce radical S′, which
couples with [C] to produce another radical S and lead to the regeneration of [A]. Monomer M′

and M coupled with radicals S′ and S for FRP and CP conversion, respectively. After Lin et al. [30],
Polymers (2021, in press).
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The general conversion features of a three-initiator system (A/B/N), based on the
proposed mechanism of Mokbel et al. [29,30], for both FRP of acrylates and the free radical
promoted CP of epoxides using a copper complex as the initiator are summarized as follows
based on the modeling of Lin et al. [30]. Higher FRP and CP conversion can be achieved by
co-initiators concentration [B] and [N], via the dual function of (i) regeneration [A] and
(ii) generation of extra radicals S’ and S. The FRP and CP conversion is proportional to,
respectively, the nonlinear and linear power of bI[A][B], where b and I are the absorption
coefficient and the light intensity, respectively. The system in the air has lower conversion
than in laminate due to the oxygen-inhibition effects. For thick samples (with thickness z),
there is an optimal concentration [A*], which is inversely proportional (bzI), in contrast
with a very thin sample, in which the conversion is an increasing function of [A] and [B].
The unique feature of dark polymerization in CP conversion enables the polymerization
to continue in living mode, in contrast with that of the radical-mediated pathway in most
conventional FRP.

2.6. Radical-Mediated Thiol-Ene (TE) Photopolymerizations

Radical-mediated thiol-ene (TE) photopolymerizations, as shown by Figure 9, exhibit
the advantages of being rapid and optically clear excellent mechanical properties, exhibit
delayed gelation, are relatively uninhibited by oxygen, and enable radical polymerization of
a wide range of thiol and vinyl functional group chemistries [14]. Depending on the specific
ene selected, they exhibit reaction kinetics strongly dependent on the electronic density
of the ene and the thiol-ene structures. However, competing vinyl homopropagation of
the vinyl group, particularly for acrylates, is an undesirable side reaction in thiol−ene
photopolymerizations [14].
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Figure 9. Schematics of thiol ([A]) and ene ([B]) functional groups, in which the thiyl radical R reacts
with [B], to form a carbon radical (S) which reacts with thiol and regenerates R to form the reaction
cycle; R and S could interact with each other or terminated by bimolecular recombination. After
Chen et al. [14], Polymers 2019, 11, 1640; doi:10.3390/polym11101640.

Our numerical results for the conversion efficacy, CT (for thiol [A]) and CV (for ene
[B]) show that the roles of the reaction rate ratio, RK = kP/kCT, and the concentration ratio,
RC = [A]0/[B]0 are consistent with our predicted results based on analytic formulas, which
provide more general features for the roles of RK and RC, summarized as follows:

(i) Without the viscosity or homopolymerization (or kCV = 0) effects, [A] and [B] have an
equal overall polymerization rate (RP); CV (CT) is an increasing (decreasing) function
of the ratio RC = [A]0/[B]0. For RK = 1 (or kp = k) CT, CV, and CT have the same
temporal profiles, but have a reversed dependence on RC.
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(ii) For RK > >1, [A] and CT are almost independent of RC, but the second-order correction
is inversely proportional to R2, an opposite trend in comparing with CV. As predicted
by analytic formulas.

(iii) With the presence of the viscosity effect, the free volume is reduced when crosslink
efficacy increases. The reduction factor only affects the propagation rate constant;
therefore, the viscosity effect does not affect the efficacy for the case of RK > > 1 and
affects the efficacy for other ratios of kp and k CT where the viscosity effect reduces
the efficacy of [B].

(iv) For an optically thick polymer, the influence of dynamic light intensity is due to PI
depletion. In most previous modeling with constant light intensity, the assumption
suffers an error of 5% to 20% (underestimated) for a crosslink depth (ZC) ranging
300 to 500 um.

(v) Scaling law for the functional group concentration of thiol, [A], and ene, [B], given by
[A]m[B]n. For RK > >1, the polymerization rates are first order in the ene concentration
(or n = 1.0) and nearly independent of the thiol concentration (or m = 0); in contrast,
m = 1.0 and n = 0 for RK < <1. For RK values near unity, polymerization rates
are approximately 0.5 order in both thiol and ene functional group concentrations
(m = n = 0.5). However, a scaling law of m = 0.4 and n = 0.6 was found in an acrylate
system (with RK = 13), due to contributions from homopolymerization [14].

2.7. Superbase Thiol−Acrylate Michael (TM) Addition and TE/TM Systems

As shown in Figure 10, the TM addition reaction offers high modulus materials for
applications such as coatings, dental restorative materials, shape memory materials, and
composites [12,13]. It also has the unique potential for long-term dark-cure capability
and insensitivity to oxygen-inhibition effects. Claudino et al. [12] proposed a strategy
of a TM addition reaction using a superbase photogenerator as the initiation system
involving a photobase UV-initiator, such as 2-(2-nitrophenyl)propyloxy- carbonyl-1,1,3,3-
tetramethylguanidine (NPPOC-TMG) and coumarin-TMG, which have very low basicity
and remain relatively stable within formulated monomer mixtures, but once photocleaved,
led to a dramatic increase in the basicity of the released organobase. Claudino et al. [12] also
developed the modeling equations using a two-step reaction mechanism for the catalytic
cycle and predicted the overall kinetic behavior, where the fundamental phenomena,
driving mechanisms, and primary factors affecting TM are presented, but under certain
assumptions. We plan to further improve the proposed kinetics of Claudino et al. [12] to
include the vinyl group consumption by both propagation and the homopolymerization
effect. Furthermore, the viscosity effect in the TE system [14] may also affect the conversion
efficacy in the TM system. The light intensity, I(z,t), in the photoinitiation reaction was
assumed to be time and spatially independent by Claudino et al. [12]. This assumption
eliminates all the spatial profile information, and it is valid for optically thin samples and
is limited to a small light dose. Greater detail about the viscosity effect was reported by
Chen et al. [14] and Lin et al. [41]. Detailed discussion for the spatial profiles for thick
samples was reported by Lin et al. [32].

Figure 11 shows the schematic for a combined TE and TM system under a dual-
wavelength-initiated mixture of thiol ([T]), acrylates ([A]), and methacrylates ([M]) monomers.
Notations used are PB for the photobase catalyst, B for the photochemically yielded active-
site base; PI is the initiator for TM, with triplet excited state PT*; R’, R, S, and S’ are
reactive species.
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Figure 10. Kinetic scheme of a catalyzed thiol−Michael addition reaction with acid−base neutraliza-
tion included as a termination mechanism, shown by B + [HA]; also included is the homopolymeriza-
tion effect, shown by [C = C] + RC*. The reaction of deprotonations, propagation, and chain-transfer
are given by B + [SH], [C = C] + RS*, and [SH] + RC*, respectively. Notations used are PB for
the photobase catalyst, B for the photochemically yielded active-site base; [HB*], RS*, and RC* are
intermediate reactive species for the conjugated acid, thiolate anion, and thiocarbanion, respectively.
[HA] is the initial acidic impurities related to the induction time and limits the availability of base
catalyst for deprotonation.
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Figure 11. Kinetic scheme of a dual-wavelength-initiated mixture of thiol ([T]), acrylates ([A]),
and methacrylates ([M]) monomers; TM for catalyzed thiol−acrylate Michael addition reaction;
and TE for thiol-methacrylate reaction; notations used are PB for the photobase catalyst, B for the
photochemically yielded active-site base; PI is the initiator for TM, with a triplet excited state PT*; R′,
R, S, and S′ are reactive species. After Lin et al. (unpublished).

2.8. Dual-Wavelength (UV and Blue) Controlled Photopolymerization Confinement (PC)

A variety of photoresponsive materials such as conjugated polymers have been re-
ported for PC in AM and more recently for 3D and 4D bioprinting [3–5]. Both spatial and
temporal controlled 3D processes were reported using single- and multiple-wavelength
lights. For 3D photo printings, two-stage polymerization under two wavelengths to elimi-
nate the oxygen inhibition effects was also reported experimentally [9–11]. The advantages
of dual-wavelength concurrent inhibition and initiation photopolymerization include (i)
controllable high vertical print speeds, (ii) eliminating the need for thin, oxygen-permeable
projection windows, (iii) single-step fabrication of cured materials, and (iv) rapid gen-
eration of personalized products. One additional advantage is that the reflow into the
inhibition volume during printing can be optimized for large cross-sectional area parts.
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Two different mechanisms of dual-wavelength, selectively controlled, photo-initiation
and photo-inhabitation have been reported experimentally: (i) Oxygen inhibition reported
by Childress et al. [10] and (ii) radical inhibition reported by de Beer et al. [8] and van der
Laan et al. [9]. In the first mechanism, using red and UV light, the pre-irradiation time of
the red light could be controlled to tailor the induction time, such that photosensitization
and photoinitiation can be independently achieved for reduced oxygen inhibition for
faster and more efficient UV-light polymerization. Figure 12 shows the schematics of
photochemical dual-wavelength (blue and UV) controlled volumetric 3D printing and
AM for parallel lights and orthogonal lights patterns [8,9]. In the second mechanism,
as shown by a proposed scheme in Figure 13 [21], the photochemical decomposition of
butyl nitrite results in the formation of nitric oxide ([N]), an efficient inhibitor of radical-
mediated polymerizations, and alkoxide radical (X) for extra polymerization initiation,
beside the reactive radical (R). Concurrent with the blue-light photo-orthogonal, patterned
irradiation, the blue-light-produced initiation radical could be reduced/inhibited by [N],
such that photopolymerization confinement (PC) is achieved [18]. For PC application, a
large polymerization inhibition depth adjacent to the projection window and continuous
part production at high translation speeds are desired.
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3D printing and additive manufacturing (AM) for parallel-light (A), and orthogonal-light patterns
(B) [8,9].
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Figure 13. Schematics of photochemical pathways of dual-wavelength photopolymerization in which
crosslinkers are formed via two pathways, via the photoinitiator PA (under a blue light) and PB
(under a UV light). The initiation radicals R and [X] crosslink with the monomer [M]; whereas
the inhibition radicals [N] reduce the conversion efficacy by reducing the active radicals (R′ and
R). Shown also is the co-initiator (PC), which reacts with the triplet state of PA (T*) forming an
intermediate radical (R′). Bimolecular termination of R′ produces a propagating radical (R), which
leads to crosslinks; terminations could be also resulted by the interaction of R and R′, and R and [N].
After Lin et al. [21], Polymers, 2019, 11, 1819.
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As reported by van der Laan et al. [11], the effectiveness of a photoinhibitor is strongly
monomer-dependent, which also requires: (i) A high conversion of blue-photoinitiation
in the absence of the UV-active inhibitor; (ii) a strong chain termination with significant
reduction of blue and UV conversion in the presence of a UV-active inhibitor; and (iii)
short induction time or rapid elimination of the inhibitor species in the dark (or absence
of UV-light), such that the initiation–inhibition cycles may be switched on and off rapidly.
Fast switching time may be achieved by a high conversion rate or high blue-light intensity.

2.9. Dual-Wavelength (UV and Red) Controlled 3D Printing

There are many conventional strategies to reduce oxygen inhibition in photoinduced
polymerizations. Physical methods include working in an inert or closed environment,
increasing the photoinitiator concentration, increasing the light dose or light intensity (for
reduced induction time), the use of multiple photoinitiators with different rates of initiation,
or the addition of oxygen scavengers. Chemical mechanisms incorporate additives or
suitably functionalized monomers, which are insensitive to oxygen, such as the TE and TM
additive systems [12,14]. To overcome oxygen inhibition, phthalocyanines were explored
as with a relatively long triplet state lifetime (5 to 350 micro-second) and a high quantum
yield (0.58–0.65).

Figure 14 shows the schematics of photochemistry for the red-light, oxygen-mediated
(type-II) and UV-light, radical-mediated (type-I) pathways [19]. The strategy for the con-
trolled initiation–inhibition switch is based on two mechanisms: (i) Oxygen-inhibition
for improved conversion and (ii) radical-inhibition for spatial conformation in 3D print-
ing. Figure 14 shows an example of the kinetics reported by Childress et al. [11], based
on an ethyl ether acrylate (DEGEEA) mixed by zinc 2,9,16,23-tetra-tert-butyl-29H,31H-
phthalocyanine (ZnTTP), with a distinct absorption peak at UV-365 nm and red-635 nm,
such that it can be independently excited by a UV and red light, respectively.
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Figure 14. Schematics of photochemistry for pathway-1, red-light, oxygen-mediated (type-II) and
pathway-2, UV-light, radical-mediated (type-I); where A and B are the ground state photosensitizer
(PS) and photoinitiator (PI), with triplet excited states A* and B* and free radicals R′ and R; 3O2 and
1O2 are the ground state and singlet oxygen; M′ and M are the monomers. The absorption spectra
are also shown with peaks at UV (365 nm) and red (635 nm). After Lin et al. [19], J Polymer Science,
2020, 58, 683–691.
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2.10. Three-Wavelength Controlled in 3D Printing and Additive Manufacturing (AM)

Figure 15 shows the schematics of three photochemical pathways of a three-wavelength
photopolymerization [22]: (i) The photoinitiator A (under blue light), (ii) B (under UV
light), and (iii) oxygen-mediated C (under red light). A higher oxygen concentration leads
to a lower conversion, which could be enhanced by reducing the S-inhibition via a red
or blue light pre-irradiation. We found that pre-irradiation time is given by TP = 200 s
for red light only, and reduced to 150 s, for both red and blue light. The system under
UV-only leads to a conversion lower than that of blue-only. However, conversion could
be improved by the dual light (blue and UV), and further enhanced by the pre-irradiation
of red-light. The two competing factors, N-inhibition and S-inhibition, could be inde-
pendently and selectively tailored to achieve: (i) High conversion of blue-light (without
UV-light), enhanced by red-light pre-irradiation for minimal S-inhibition; and (ii) efficient
PC initiated by UV-light-produced N-inhibition for reduced confinement thickness and for
high print speed.
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Figure 15. Schematics of photochemical pathways of a three-wavelength photopolymerization,
in which crosslinkers are formed via three pathways: The photoinitiator A (under blue light), B
(under UV light), and oxygen-mediated C (under red light). The initiation radicals R, [1O2], and
[X] initiate the monomer [M] polymerization, whereas the inhibition radical [N] reduces the active
radical R. The co-initiator (D) is also shown, which reacts with the triplet state of A (A*) forming
an intermediate radical (R′) and a reactive radical (R), initiating crosslinkers; terminations may be
resulted by the interaction among R′, R, and [N]. We note that (as shown in the upper left corner), the
three wavelengths are orthogonally applied to the 3 initiators. After Lin et al. [22], IEEE Access, 2020,
8, 49353–49362.

The red-blue-UV system could be extended to the following as long as these three
wavelengths have minimal overlap in their absorbance spectra, such as (i) red-light
(635 nm), green (532 nm), and UV-A (365 nm); (ii) near-IR (750–810 nm), red (630–660 nm),
and near UV (365–405 nm); where most of these lights are available from the output of
LED and the associated photosensitizers (or photoinitiator). We note that one of the key
features is that the three wavelengths must be separated without overlapping such that
they can be orthogonally applied to the 3 initiators for independent control of the light.

3. Kinetics and Efficacy Formulas

We will first present the kinetic equations for more general systems than those selected
systems in Section 2. We will then present (without detailed derivations) the efficacy
formulas associated with the photopolymerization conversion and the key parameters for
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3D printing and AM. Dynamic profiles produced numerically will be shown for selected
systems with a comparison to measured data. Greater details and more complex formulas
can be found in the References cited.

3.1. The Kinetic Equations for General Systems

Photopolymerization, in general, includes free radical-mediated, cationic and anionic
catalyzed, and atom transfer radical polymerization [1,2]. Two classes of photoinitiating
systems were defined depending on the mechanisms of light conversion into chemical
radicals [1]. In type I, a unimolecular reaction, the photoinitiator produces two radicals
for free radical photopolymerization (FRP). A type-II system relies on the combination of
two molecules; the first molecule absorbs the photon. It is the chromophore, often called
the photoinitiator or the photosensitizer. The second one could be an electron donor or
acceptor, or a hydrogen donor, the so-called coinitiator (or additive), which produces the
initiating radicals (R) through an electron transfer when coupling with the excited triplet
state of the initiator (T*) [1].

Type I photoinitiators can exhibit high quantum yields of radicals; however, their
light absorptions are limited to the UV-to-blue region (360 to 430 nm) of the light spectrum.
By contrast, type II systems with a combination of organic dyes and coinitiators provide
tremendous flexibility in the selection of light wavelength from the UV to the near infra-red
region (360 to 980 nm). However, these type-II, two-component systems have limited
efficiency compared to type I systems [42].

In typical type II systems, photosensitizers with good absorption features in the UV-blue
region include [42] benzophenones [43–45], thioxanthones [46–48], camphorquinone [49–51],
and benzyls [52]. For visible light, photosensitizers can be selected from a whole panel of
organic dyes, such as coumarins [53], xanthenic dyes [54–56], cyanine dyes [57], phenazine
dyes, and pyrrome- thene dyes [57–59]. The hydrogen donor co-initiators are generally
amines and thiols [60–63].

In photopolymerization, the monomer is converted to a polymer after the light irra-
diation of the photoinitiator (PI) or photosensitizer (PS). The UV (or visible or infrared)
light-produced triplet excited state (T*) can couple with: (i) The monomer [M], (ii) the oxy-
gen (if the system is in the air), or (iii) additives (or co-initiators) producing extra reactive
radicals, which convert the monomer to a polymer. The chain growth of a polymer radical
with m-links stops as a result of chain termination reactions. Termination of the radicals
can occur due to self-recombination, radical-radical coupling, or reacting with the additives.
Each radical becomes the center of the origin of a polymer chain. Kinetic equations of an
m-component radical photopolymerization process may be described as follows.

Considering an n-component system, with an initiator [A], its triplet excited state (T*),
and n-additive (or co-initiators) Bn (n = 1,2,3), and one monomer, M (for FRP), the kinetic
equations for each of the component concentration are given by [64,65]

d[A]

dt
= −(bI[A]− REG) (1)

dBn
dt

= −(kn Bn + Rn)T∗ (2)

dT∗

dt
= bI[A]− T/g (3)

dRn

dt
= (kMT∗ + kn BnT∗ +

∞

∑
n = 1

knBnRn+1)− Rn/g′ (4)

dM
dt

= −kT∗M−
∞

∑
n = 1

KnRnM (5)

where I(z) is a light intensity; b is an affective absorption constant proportional to the light
absorption and excited state quantum yield. Equation (2) shows the initiator excited triplet
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state (T), with a lifetime defined by g = 1/[k′′ + kM + Sum), with Sum = summation of T and
its coupling to all additives, knBnT. Equation (4) defines its lifetime defined by 1/g′ = KnM
+ Sum′, with Sum′ = summation of its coupling to all radicals, knRnRm. Equation (4)
also shows the radical Rn produced from three terms, the type-I, unimolecule cleavage
term, kMT*; the type-II bimolecular couplings of T* and additives (Bn), or enhanced extra
radicals (Rn) from its coupling with Bn; and the radical-radical couplings, including a self-
recombination (when n = n + 1). Rn. Equation (5) defines the monomer conversion total rate
function given by the type-I term, kT*M, and the sum of all radical-mediated type-II terms,
including contributions from additive-enhanced effects via the second term of Equation (4).
A longer lifetime of T* or R (or large g and g′) leads to higher conversion efficacy.

Solving for Equation (5), the conversion efficacy is defined by CE = 1 −M(t)/M0 for
FRP, where M0 is the initial concentration of the monomers. RGE in Equation (1) is the
initiator-regeneration term, which improves the conversion efficacy in a type-II system
catalytic cycle. An example of a photoredox catalytic cycle of a three-component system,
G1/Iod/EDB, is shown in Figure 6 [28]. The kinetic reactions for light initiated a copper
complex (G1) to its triplet excited state (G1*), which couples with the radicals for FRP and
CP conversation using radicals of Aro and EDBo (for FRP), and radical EDB(+) for CP.

3.2. Basic Formulas for Conversion and Rate Functions

Considering a simple system of Figure 1, a one-initiator system (in the air) with
an electron-transfer pathway-1 and an oxygen-mediated energy-transfer pathway-2, the
kinetic Equation (5) for the monomer of Figure 1 is given by [20]

dM
dt

= −(kT∗ + KR + K′′X)M (6)

where R and X (singlet oxygen) are the reactive radicals produced from the coupling of
T* with the monomer and with the oxygen, respectively. In a so-called quasi-steady-state
condition for the radicals, we obtain, T* = bIC0/(kM), R = [bIC0/k′]0.5, and X = k′′[O2],
with b being an effective absorption constant proportional to extinction coefficient and the
quantum yield of T*; I is the light intensity; C0 is the initial concentration of the initiator;
[O2] is the oxygen concentration; and k′ and k′′ are coupling constants for the coupling of
T* and M, and T* and oxygen, respectively.

We note that the rate function of Equation (6) has three terms: The direct type-I coupling
term kT*M, the radical term KRM, and the singlet oxygen term, K′′XM (oxygen-mediated).

Solving for Equation (6), the conversion efficacy is defined by CE = 1 − M(t)/M0,
where M0 is the initial concentration of the monomer. We obtain [20] for the case of perfect
regeneration (with dC/dt = 0), for type-I,

CE = (1− F)− d′(1 + F) (7)

with F(t) = exp(-dt); with d = K(T0)0.5, d′= (k′T0)0.5/([O2]0K2), and T0 = bIC0. The CE
(type-I) has a transient state, CE = dt − d′(2-dt) = (d + 2d′) t − 2d’; and steady-state
CE = (1 − d′), a decreasing function of light intensity.

For type-II (from K′′X term), we obtain

CE = 1− exp[−H(t)] (8)

where H(t) = p′[1 − exp(-Dt)]/D, with p′ = (k4g′) (bIA0[O2]0), D = k4T0 + k′′(T0/k)0.5. The
CE (type-II) has a transient state CE = 1 − exp(-p′t) = p′t, but a steady state CE = p′/D,
which is a decreasing function of light intensity.

3.3. Basic Formulas for 3D Printing

For dual-wavelength (UV and blue) controlled photopolymerization confinement
(PC), the maximum print speed (Smax) was defined by de Beer et al. [8], when the dose
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difference of blue light and UV light equals to a critical value (E*), and B1 = β B2, and we
obtain a similar formula:

Smax = [ B20 − β B10]/E∗ (9)

where Bj0 = bjIj0(z,t), β = (C2b20/b10)/(gC1C3), Cj (with j = 1,2,3) are the concentration
of the three co-initiators, Ij0, (with j = 1,2) the UV and blue light intensity and bj0 are a
coupling constant. The simplified function of de Beer et al. [9] is when β = b20/b10.

Curing depth and inhibition zone are the critical parameters for 3D printing and AM.
A curing depth (ZC) is defined by when the conversion efficacy is higher than a critical
value (CR) or CE > CR. Using Equation (7), with ignored d′ = 0, we obtain

Zc = [1/(2.3a′C0]ln[K′E0
0.5/lnE′) (10)

with K′ = K(bC0)0.5, E′ = 1/(1 − CR). The above curing depth (ZC) is proportional to the
pillar height measured in AM [10].

3.4. Conversion Profiles

We will show selected temporal profiles (numerically produced) for various systems
as follows.

Figures 16 and 17 show the dynamic profiles (in dual initiators system) of oxygen
and the conversion at various light intensities, in which higher light intensity leads to
faster oxygen depletion and higher efficacy [41]. Figure 18 shows conversion profiles in
an enhancer system, C/B/A (as shown in Figure 4), in which a higher concentration [B]0
leads to faster and higher conversion [41]. Figure 19 shows the conversion profiles for
the CQ/DMABN/AY system, in which a higher initiator concentration of CQ leads to
higher conversion. Figures 20 and 21 show the CP profiles of epoxy functions of the model
resin in the air in the presence of curve-1 for 2-ITX/Iod (0.25/4.3 %w/w), curve-2 for An-
thracene/Iod (0.23/4.8 %w/w), and curve-3 G1/Iod/NVK, demonstrating that G1 (copper
complex) is the most efficient initiator [29,30]. Figure 22 shows the methacrylate conversion
of a bisGMA/TEGMA resin formulated with 0.2 wt% CQ/0.5 wt% EDAB/0.5 wt% BN and
subject to continuous exposure of blue light, but an on–off exposure of UV-light, serving
as an optical switch [10,21]. Figure 23 shows that higher red-light pre-irradiation time
or light dose leads to a lower induction time for a fixed red-light intensity, in 3D or AM
systems. [10].
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Polymers 2021, 13, x FOR PEER REVIEW 20 of 25 
 

 

Figure 18. Conversion profiles in an enhancer system: (A) Concentration [B]0 = (0,0.5,1.0,2.0) %, for 

curve (1,2,3,4); with [A]0 = 3.0%, [C]0 = 0.1%, b’=bI0 = 0.6 (1/s/%); and (B) coupling constant b’ = bI0 = 

(0.15,0.3,0.6,1.2) (1/s/%), with [A]0 = 3.0%, [B]0 = 2.0%, [C]0 = 0.1%, [O2]0 = 1.5mg/L; and k’ = 0.7, k” = 

2.5, kT = k2 = 2.0, k1 = 0.7, k3 = 8, k5 = k7 = 1 (1/s). After Chui et al. [18]. 

 

Figure 19. Conversion profiles for the CQ/DMABN/AY (1.5/0.6/0.75 %w/w) system; curve-1 without 

AY (or A0 = 0), and curve 2 and 3 for A0 = 0.2 and 0.75% with B0 = 0.6% and C0 = 1.5%. Dots are 

measured data of Kirschner et al. [15], and solid curves are fit modeling curves of Lin et al. [20]. 

 

Figure 20. Photopolymerization profiles of epoxy functions of the model resin in the air in the pres-

ence of (1) 2-ITX/Iod (0.25/4.3 %w/w), (2) Anthracene/Iod (0.23/4.8 %w/w), and (3) G1/Iod/NVK 

(0.22/5/1 %w/w/w), upon LED@405 nm exposure, sample thickness = 1.4 mm. After Mokbel et al. 

[29]. 
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presence of (1) 2-ITX/Iod (0.25/4.3 %w/w), (2) Anthracene/Iod (0.23/4.8 %w/w), and (3) G1/Iod/NVK
(0.22/5/1 %w/w/w), upon LED@405 nm exposure, sample thickness = 1.4 mm. After Mokbel et al. [29].
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in the air in the system of: (A) G1/Iod/NVK (0.8/4.6/1 %w/w/w), or (B) BAPO/Iod/NVK. After
Mokbel et al. [29].
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Figure 22. Methacrylate conversion of a bisGMA/TEGMA resin formulated with 0.2 wt% CQ/0.5 wt%
EDAB/0.5 wt% BN and subject to a continuous exposure of blue light, but an on–off exposure of a
UV-light for 0.5 min, as indicated by the violet vertical areas; where black bars are measured data
from van der Laan et al. [10] and the red curve is the theoretical simulation of Lin et al. [21].
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34 mW/cm2 and I20(UV) = 10 mW/cm2; and (b) for TID vs. the red-light dose for I10 (red) = (10,20,30)
mW/cm2. Red curves are modeling data by Lin et al. [19]; also shown are the measured data (in bars)
of Childress et al. [10].

4. Conclusions

As shown in Table 1, we have reviewed the important topics that were recently
reported or proposed to conduct. Various modeling and kinetic schemes are theoretically
proposed and compared with specific reported measurements. We conclude the following
important features:

(i) CXL using UVA (365 nm) and a riboflavin solution as the initiator (photosensitizer)
has type-I and type-II FRP pathways. Oxygen plays an important role, especially for
type-II, in which the oxygen singlet radical has been used to kill cancer cells.

(ii) Synergic effects are achieved by a dual-function enhancer, in which the FRP is im-
proved by the reduction of oxygen inhibition effects. The reported measurement
system [17] is a three-component system of C/B/A, in which [C] = IR-140 bo-
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rate, [B] = 4-(Diphenylphosphino) benzoic acid (4-dppba), and [A] = iodonium salt
Ar2I+PF6

−, with an initial concentration of [0.1/2.0/3.0] wt%, mixed in a monomer
[M] = methacrylate.

(iii) Synergic effects are achieved by a three-initiator system, with two pathways of
electron-transfer and oxygen-mediated energy-transfer, in which the presence of
amine produces additional initiating radicals and hence improves the FRP. The re-
ported measurement system is a (CQ)/amine/AY system of Kirschner et al. [15], in
which higher AY (from 0% to 0.75%) leads to a higher conversion (from about 40%
to 60%).

(iv) The reported measurement system [29] was the copper-complex (G1) photoredox
catalyst in G1/Iod/NVK systems for FRP and CP, in which the co-initiators/additives
Iod and NVK have dual functions of (i) the regeneration of the photoinitiator and (ii)
the generation of extra radicals. The synergic effects lead to higher conversion of FRP
and CP.

(v) Radical-mediated thiol-ene (TE) photopolymerizations. It offers the advantages of
being rapid and optically clear, exhibits delayed gelation, and is relatively uninhibited
by oxygen for efficient FRP.

(vi) Superbase photogenerator-based catalyzed thiol−acrylate Michael (TM) addition re-
action. It has the unique potential for long-term dark-cure capability and insensitivity
to oxygen-inhibition effects. A dual-wavelength combined system of TE and TM
could offer very efficient conversion with controlled profiles.

(vii) A dual-wavelength (UV and blue) system was reported for controlled photopolymer-
ization confinement (PC) for volumetric 3D printing and AM using parallel lights and
orthogonal lights patterns [11].

(viii) A dual-wavelength (UV and red) selectively controlled 3D printing, in which red-light
pre-irradiation improves the conversion [9,19].

(ix) A three-wavelength system is proposed for controlled 3D printing and AM, in which
the two competing factors, N-inhibition and S-inhibition, could be independently and
selectively tailored to achieve: (i) High conversion of blue-light (without UV-light),
enhanced by red-light pre-irradiation for minimal S-inhibition; and (ii) efficient PC
initiated by UV-light-produced N-inhibition for reduced confinement thickness and
for high print speed.

(x) For dual-wavelength (UV and blue) controlled photopolymerization confinement
(PC), the maximum print speed (Smax) is proportional to the dose difference of blue
light and UV light, shown by Eq. (9). Curing depth (ZC) is proportional to the light
dose, as shown by Eq. (10), which also defines pillar height measured in AM.

To conclude, with minimum mathematics, we present (for the first time) the synergic
features and enhancing strategies for various systems of multi-components, initiators,
monomers, and under one-, two-, and three-wavelength light. Therefore, this review
provides not only the bridging of modeling and measurements, but also guidance for
further experimental studies and new applications in 3D printings and AM, based on
the innovative concepts (kinetics/schemes). As a final remark, we note that the present
review article focuses on the free-radical-mediated FRP and cationic-catalyzed CP, which
have available experimental results and proposed schemes, as the basis of our kinetic
modeling. Other processes involving 3D (and 4D) printings shall also include the reversible
deactivation radical polymerization (RDRP) techniques such as nitroxide-mediated poly-
merization, (NMP) [66], atom transfer radical polymerization (ATRP) [67], and reversible
addition–fragmentation chain transfer (RAFT) [68]. However, they are not the scope of the
present article, and they can be found in recent review articles by Corrigan et al. [68] and
Bagheri et al. [69].
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