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Abstract: Three-dimensional (3D) bioprinting is a family of rapid prototyping technologies, which
assemble biomaterials, including cells and bioactive agents, under the control of a computer-aided
design model in a layer-by-layer fashion. It has great potential in organ manufacturing areas
with the combination of biology, polymers, chemistry, engineering, medicine, and mechanics. At
present, 3D bioprinting technologies can be used to successfully print living tissues and organs,
including blood vessels, skin, bones, cartilage, kidney, heart, and liver. The unique advantages of
3D bioprinting technologies for organ manufacturing have improved the traditional medical level
significantly. In this article, we summarize the latest research progress of polymers in bioartificial
organ 3D printing areas. The important characteristics of the printable polymers and the typical 3D
bioprinting technologies for several complex bioartificial organs, such as the heart, liver, nerve, and
skin, are introduced.

Keywords: polymers; biomaterials; 3D bioprinting; organ manufacturing; cells

1. Introduction

At present, the severe shortage of organ donor supply is a major problem that plagues
the clinical medical community around the world. Organ manufacturing has become a
major research topic for defective/failure organs [1,2]. Organ manufacturing is a complex
interdisciplinary field that requires a large number of talents in biology, materials, chemistry,
physics, mechanics, informatics, computer, medicine, etc. It is also a compositive process
that requires model construction, biomaterial selection, and the combination of multiple
cell types along with other biomaterials using advanced processing technologies [3–5]
(Figure 1). The program to form a functional structure is a key step for the construction of
multiple cell types with hierarchical vascular/neural/lymphatic networks in a biological
artificial organ (i.e., bioartificial organ).

Three-dimensional (3D) bioprinting technology is traditionally termed as rapid proto-
typing (RP), additive manufacturing (AM), and solid free-form manufacturing (SFM). It
can produce bioartificial organs through automatic layer-by-layer deposition methods [6].
The most obvious feature of 3D bioprinting technology is the use of living cells, polymeric
hydrogels, and other bioactive agents as “bioinks” to construct bioartificial organs under
the instruction of a computer-aided design (CAD) model [7,8]. Multiple cell types can be en-
capsulated in different polymeric hydrogels and deposited (or delivered) at the same time.
Under certain biological/physical/chemical conditions, hydrogels can absorb and retain
a large amount of water, which is beneficial for cell growth, proliferation, differentiation,
and the formation of tissues/organs [9–11].
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Polymers can not only provide a template for cells to grow, proliferate, and differentiate, 

but also supply nutrients and discharge metabolites for cells in the constructs. For organ 

manufacturing, it is normally necessary for the polymers to be biocompatible and bio-
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Figure 1. Organ 3D printing and application.

The properties of polymeric hydrogels are very important in organ 3D printing. Poly-
mers can not only provide a template for cells to grow, proliferate, and differentiate, but
also supply nutrients and discharge metabolites for cells in the constructs. For organ manu-
facturing, it is normally necessary for the polymers to be biocompatible and biodegradable
with adjustable mechanical properties (Figure 2) [12–15].
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Figure 2. Historical events of 3D printing and organ 3D bioprinting.

In this review, we give a comprehensive overview of the latest advances in organ 3D
bioprinting using various polymers. The unique advantages of 3D bioprinting technology
in the field of organ manufacturing have been highlighted.
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1.1. 3D Bioprinting Technologies

During the last decade, 3D printing technologies have developed rapidly and have
been applied to almost every biomedical field [16]. Compared with traditional manu-
facturing technologies, these technologies have many advantages in bioartificial organ
manufacturing, especially for fast, precise, and customized biomedical applications. In
Table 1, we have compared the advantages and disadvantages of several commonly used
3D bioprinting technologies for bioartificial organ manufacturing (Figure 3). The construc-
tion of hierarchical vascular and neural networks has been emphasized.

Table 1. Comparation of 3D bioprinting technologies for organ manufacturing.

Printing
Technology Principle Material Advantages Defects Ref.

Inkjet 3D
printing

Unsing acoustic, thermal
or piezoelectric nozzle to
jet biomaterials in drops

Polymer solutions
or cell suspensions

Efficient control of
“bioinks”, low cost and

high throughput

Biomaterials need to
be in a liquid state,
and the viscosity

needs to be
precisely controlled

[17–19]

Fused deposition
modeling

Thermoplastic material
melted through one or
more heated extrusion

heads with small holes in
a specific laying method

Thermoplastic
polymers with a
certain viscosity

after heating, such
as PCL, PLA,

ABS, etc.

Low cost, a wide range
of nonbiodegradable
synthetic polymers

with excellent
mechanical properties

can be printed

High printing
temperature in

which cells, growth
factors and other
bioactive agents

cannot
be incorporated

[20–26]

Extrusion based
3D printing

Polymeric solutions or
hydrogels are drawn,

extruded and deposited to
form solid structures

A variety of
natural polymers,
such as alginate,

collagen, and
chitosan can
be selected

High accuracy and
speed, cells and other
bioactive agents can be

incorporated

Some of the
extrusion setups

may cause damage
to cells

[27–35]

Stereolithography

Laser or projected light
converts the liquid

photosensitive material
into a solid platform

Only photosensitive
polymers can

be used
High accuray

Most of the
photosensitive resins
are toxic to cells and

the light in the
printing process

affect the survival
rate of the cells

[36–41]

Aerosol jet
printing

Ultrasonic or pneumatic
atomization is formed by
squeezing the “bioinks”

around the airflow

Any substance that
can be suspended

in an aerosol

High resolution and
flexibility, it can be
printed on various

substrates such
as metals,

semiconductors, and
polymers

Denature DNA [42–46]
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Figure 3. Commonly used 3D bioprinting technologies: (A) inkjet-based 3D printing; (B) extrusion-based 3D printing; (C) fused
deposition modeling (FDM); (D) stereolithography; (E) aerosol jet printing.

1.1.1. Inkjet-Based 3D Printing

Inkjet-based 3D printing is a non-contact AM technology adapted from industrial 2D
printers. In traditional 2D printing, a layer of droplets are selectively deposited, while in 3D
bioprinting, cells and proteins can be printed into desired shapes of an organ by changing
the content of “bioinks” and deposition layers. Drop-on-demand inkjet printers are the
most commonly used equipments, consisting of acoustic, thermal, piezoelectric, or electro-
static inkjet nozzles [17]. Inkjet printers are usually employed to print tissue engineering
scaffolds for cell seeding. Recently, different inkjet printing heads with multiple nozzles
have been developed to improve the printing speed and structural size [18]. Although this
printing method has some advantages in organ manufacturing, poor printing resolution
and low printing speed have greatly limited its fidelity and clinical implementation. Until
now, only simple structures with few layers of “bioinks” can be achieved. For example,
Gao et al. [19] developed a bioprinting platform for 3D cartilage tissue engineering using
thermal inkjet printers and polyethylene glycol (PEG)-diacrylate (PEGDA, MW 3400). Us-
ing this platform, the precise distribution and arrangement of human mesenchymal stem
cells (h MSC) can be realized. After printing, the cells in the 3D PEGDA hydrogel showed
a chondrogenic phenotype with gradually increased glycosaminoglycans (GAG) and type
II protein expression during the in vitro cultures, while the constructed cartilage-like con-
struct showed a natural composition band organization and ideal mechanical properties.

1.1.2. Fused Deposition Modeling (FDM)

FDM is a 3D printing method that deposits molten thermoplastic polymer layer-by-
layer in a specific laying pattern through one or more heated extrusion heads with small
holes [20,21]. It is also called “thermoplastic extrusion”. In FDM, one of the traditional
methods is to melt the thermoplastic polymer into a semi-liquid state, and then extrude
the semi-liquid polymer layer-by-layer onto the platform. The thermoplastic polymer
before printing are generally in the form of filaments or particles. When the thermoplastic
polymer is heated to a temperature above its melting point, it becomes fluid and flows
out of the nozzle. As soon as the plastic polymer flows out of the nozzle, it hardens and
bonds with the underlying layer. Once a layer is built, the platform is lowered or the nozzle
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is raised, the extrusion nozzle deposits another layer, and the printed layers are fused
together in layers [20,21].

The often printed thermoplastic polymers include acrylonitrile butadiene styrene (ABS),
polylactic acid (PLA), nylon/polyamide, acrylonitrile styrene acrylate (ASA), polyethylene
terephthalate (PET), polyethylene terephthalate modified (PETG), polycarbonate (PC), polyether
ether ketone (PEEK), polyether imide (ULTEM), and their derivatives, such as fiber reinforced
composites and polymer ceramic composites [22]. The most important advantage of FDM
technology in the AM field is that it can create complex scaffolds with excellent mechanical
strength and high geometric accuracy. One of the fatal shortcomings of FDM technology in the
field of organ 3D printing is that cells, growth factors, and other bioactive agents cannot be
directly printed at high polymer melting temperatures. Nowadays, the 3D printing technology
of FDM with PEEK as raw material is widely used in bone tissue engineering, orthopedic
implants, joint replacement, spinal implants, prostheses, and dentistry [23–25]. A research
team has used CT-guided FDM to manufacture a polycaprolactone (PCL)/hydroxyapatite
bone scaffold with cortical bone-like characteristics, which is similar to natural bone in terms
of structural features, mechanical properties, and chemical composition [26].

1.1.3. Extrusion-Based 3D Printing

Similar to FDM, extrusion-based 3D printing deposits “bioinks” from a syringe or
nozzle onto a build platform based on the CAD models [27]. Unlike FDM, the extrusion-
based extrusion process does not involve any heating process unless it is particularly
necessary. Polymer solutions or hydrogels with cells, growth factors, and other bioactive
agents can be extruded through a nozzle in a controlled manner by pneumatic pressure
or physical force (i.e., piston or screw). The deposition system is selected based on the
sensitivity of the “bioinks”, with the purpose of gradually pushing them down without
damaging the cells inside the “bioinks” [28]. Compared with other 3D printing processes,
the extrusion-based 3D printing technology provides a higher printing speed. With the
development of this 3D printing technology, multiple cell types can be deposited together
with different biocompatible polymer solutions/hydrogels at very high cell density. The
solidification of polymer solutions or hydrosols is through a series of physical and chemical
methods, such as sol–gel conversion (i.e., physical crosslinking), polymerization, chemical
crosslinking, and enzymatic reactions [29].

In some extrusion-based 3D printing experiments, the cell viability after printing is at
the range of 40% to 80% [30,31]. The cell survival rate can be improved by optimizing the
printing parameters, such as deposition rate, pressure, and temperature. Some researchers
use gelatin methacrylamide loaded with cells, as “bioinks”, for printing, and the cell
viability can be as high as 97% [32]. It was reported that adopting PEG cross-linking
after 3D priniting can improve the mechanical properties of the 3D constuct while the cell
viability is maintained [33].

In the past decade, extrusion-based printing has been the most widely used technology
in the field of organ 3D bioprinting, and the products have been applied in many biomedi-
cal fields, such as high through-put drug screening, customized organ substitution, surgical
assistance model preparation and pathological analyses. For example, Gu et al. [34] re-
ported a reversible physical cross-linking strategy to accurately deposit gelatin methacrylic
“bioinks” loaded with human chondrocytes at low concentrations without any sacrificial
materials. Chen et al. [35] introduced 1% aldehyde hyaluronic acid (AHA) and 0.375%
N-carboxymethyl chitosan (CMC) to obtain a polysaccharide gelatin (GEL, 5%)-alginate
(ALG, 1%) “bioink”. This GEL-ALG/CMC/AHA “bioink” has a weak temperature depen-
dence when it was printed in vivo at about 37◦C using traditional printing methods. The
printed cell-laden structure can have high underwater fidelity after being reinforced with
3% calcium chloride for only 20 seconds. The fidelity can be maintained for 30 days.

Furthermore, in order to avoid the disadvantages related to the traditional extrusion-
based 3D printing, more and more researchers are applying microfluidic techniqe into this
group of technologies to produce biological structures. Beside producing tubular vascular
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structures, many elaborate vascular and neural networks have been obtained through the
updated multiple nozzles or syringes [15].

1.1.4. Stereolithography (SLA)

As the earliest 3D printing technology, SLA is the most mature 3D printing method
and is widely used in the industry [36]. In SLA, a concentrated ultraviolet beam is irradi-
ated on the liquid photopolymer, and the CAD model is interpreted to the liquid surface
to start the building of the first layer. Subsequently, each layer plane polymerizes at a
predetermined time to form a solid layer until the desired object is completely manufac-
tured [37]. Compared with other traditional methods, light-curing biological 3D printing
has the characteristics of high flexibility, high resolution, and fast manufacturing speed.
These characteristics make it widely used in corneal stromal tissue regeneration, insulin
delivery, tissue engineering scaffold manufacturing and other fields. Greatly promoted the
progress in the field of tissue and organ regeneration. [38–41].

SLA has some advantages in tissue engineering areas, but its development and
popularization in the field of organ manufacturing have been seriously restricted by
many factors. (1) Printing technology limitations: different SLA technologies have dif-
ferent lamp wavelengths, printing sizes, and “bioink” viscosity requirements, which are
hard to be standardized. (2) Material limitations: there are fewer photocurable bioma-
terials can be used as “bioinks” with the required low viscosity. (3) Cost restriction: the
price of SLA instruments and their printed biomaterials are expensive, resulting in the
limited clinical trials.

1.1.5. Aerosol Jet Printing

Aerosol jet printing is another non-contact printing method with high resolution and
flexibility. It has been developed recently, in which the “bioink” is placed in an atomization
generator and atomized into aerosol particles via ultrasonic or pneumatic atomization,
before being delivered to the print nozzle via inert gas. Inside the nozzle, a surrounding gas
is applied to constrain the “bioink” before it was deposited on the surface of the substrate
to form a functional pattern [42].

In aerosol jet printing, the “bioinks” can be printed on various substrates, such as
metals, semiconductors, and polymers [43], and the products can be widely used in the field
of electronics [44]. However, studies have shown that ultrasonic treatment can denature
DNA [44], which has limited its application in the field of biomedicine. Until present, there
are few studies on organ 3D printing using this method except heart patch engineering
and protein detection [45,46].

2. Natural Polymers for Organ 3D Printing

Natural polymer refers to a high molecular weight compound whose basic structure
is a linear long chain connected by repeating units that exists in animals, plants, and other
organisms. Natural polymers include proteins, polysaccharides, and their combinations,
such as glycoproteins, proteoglycans [47,48]. Most of natural polymers can dissolve in
inorganic solvents, such as water and acetic acid. Water solvents under certain potential of
hydrogen (pH) values are non-toxic to cells. Some natural polymer solutions, such as gelatin
and agarose, can be cross-linked to form hydrogels with certain viscosity. These polymers
usually have good biocompatibility and degradability and can meet the requirements for
3D bioprinting [49]. Living cells and bioactive agents can be embedded into the natural
polymer solutions before 3D bioprinting. During the 3D printing process, the polymer
chains can protect cells from squeezing pressures. After 3D printing, the 3D constructs
can be stabilized by cross-linking the polymer chains, and nutrients and oxygen can be
transported to the cells through the interpenetrating networks [50].

Currently, the most commonly used natural polymers for organ 3D printing are
collagen, gelatin, alginate, fibrinogen, hyaluronic acid, chitosan, and agarose [50]. Each
of these polymers has advantages and disadvantages in organ 3D bioprinting. In Table 2,
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the typical properties, advantages, and disadvantages of several commonly used natural
polymers for organ 3D bioprinting have been summarized [51–65].

Table 2. Commonly used natural polymers for 3D bioprinting.

Polymer Chemistry Characteristic Disadvantage Ref.

Gelatin Partial degraded product
of collagen

Excellent
biocompatibility

Unstable solution at room
temperature, fast

degradation rate, and poor
mechanical property

[51,52]

Alginate A linear anionic
polysaccharide copolymer

Rich source, low price,
good hydrophilic

property, easy to form
penetrating networks

Few cells attachment sites
and fast degradation rate [53,54]

Fibrin Polymerization product
of fibrinogen

Excellent
biocompatibility

and biodegradability

Poor long-term stability
and mechanical strength [55–57]

Hyaluronic acid A linear high molar mass
natural polysaccharide

Non-allergic and
non-inflammatory

Fast degradation rate and
poor mechanical property [58,59]

Collagen

A kind of protein composed of
three intertwined polypeptide
chains, which are connected to
each other by hydrogen bonds

and covalent bonds

In vivo
immunogenicity, good

cell compatibility
Poor mechanical properties [60,61]

Silk fibroin A natural protein from insects
Good biocompatibility

and mechanical
properties

Slow degradation rate [62]

Chitosan Obtained through
deacetylation of chitin

Good biocompatibility,
biodegradability, cell
adhesion capability,

low cost

Poor mechanical strength,
unstable gel state [63,64]

Agarose Linear polysaccharide

Slow degradation rate,
low cost, good

mechanical properties
after gelling

Poor cell compatibility [65]

2.1. Gelatin

Gelatin is derived from collagen, obtained by partial hydrolysis and incomplete
cleavage of collagen molecules [51,52]. Its water solution is a hydrocolloid with high
freezing point, rapid degradation rate, low gel strength, and poor mechanical properties.
As a natural polymer, gelatin has many advantages for organ 3D printing, such as excellent
biocompatibility, physical gelation property, and low cost [66,67].

Gelatin can be printed with other natural polymers, such as chitosan, alginate, fibrino-
gen and hyaluronate [68–75]. There are several chemical cross-linking strategies for the
stabilization of the gelatin-based 3D constructs during or after 3D printing. In Table 3, some
commonly used gelatin-based composite hydrogels for organ 3D printing are summarized.
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Table 3. Gelatin-based polymers for organ 3D printing.

3D Bioprinting Technique “Bioink” Formulation Crosslinking Method Application Ref.

One nozzle extrusion-based
3D bioprinting

Hepatocytes in gelatin/chitosan hydrogel 3% sodium tripolyphosphate (TPP) Hepatic tissue manufacturing [70]
Hepatocytes in gelatin hydrogel 2.5% glutaraldehyde Hepatic tissue manufacturing [71]

Hepatocytes in gelatin/fibrinogen hydrogel Thrombin induced polymerization Hepatic tissue manufacturing [72]
Gelatin/hyluronan 2% glutaraldehyde Brain tissue repair [73]

Two-nozzle low-temperature
extrusion-based 3D printing

Polyurethane (PU)-gelatin/5% or 10% lysine hydrogel 0.25% glutaraldehyde Liver manufacturing [74]
PU-adipose-derived stem cell

(ADSC)/gelatin/alginate/fibrinogen/glycerol or dimethyl
sulfoxide (DMSO) hydrogel

Double crosslinking with CaCl2 and
thrombin solutions Bioartificial liver manufacturing [75]

One-syringe extrusion-based
3D printing Nanosilicate/GelMA UV light (320–500 nm) for 60 s at an

intensity of 6.9 mW/cm2
Electrical conductive agent for bone

tissue engineering [76]

EnvisionTEC 3D-Bioplotter® Polyethylene glycol (PEG)/gelatin-PEG/fibrinogen

Gelatin scaffolds were cross-linked with
15 mM EDC and 6 mM NHS,

fibrinogen-containing samples were
treated post-printing with 10 U/mL

thrombin in 40 mM CaCl2 for ~30 min

Grid structures for cell seeding [77]

Dual-syringe Fab@Home
printing device

Gelatin ethanolamide methacrylate
(GE-MA)-methacrylated hyaluronic acid (HA-MA)

(GE-MA-HA-MA)/HepG2 C3A, NIH 3T3, or Int-407 cell

Ultraviolet (UV) light (365 nm,
180 mW/cm2) photocrosslinking

Tubular hydrogel structures for cell
attachment [78]

EHD inkjet printing system GelMA solution Illuminating with a UV light source Microvascular constructs [79]
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Due to its excellent biocompatibility and degradability, a gelatin derivative known as
gelatin-methacryloyl (GelMA) has been widely explored for heart, cartilage, nerve, and
other tissue 3D printing [76–79].

Some researchers used a pneumatic extrusion printer to precisely control the channel
geometry of the 3D printed gelatin scaffold and seeded undifferentiated liver cell lines
(Huh7) on the scaffolds. Compared to 2D cultures, hepatocytes in 3D-printed gelatin
scaffolds were functionally increased in albumin secretion, cytochrome P450 oxidase
activity, and bile salt transport activity [68]. Lam et al., printed methacrylated gelatin
(GelMa) and methacrylated hyaluronic acid (HAMA) using a stereolithographic bioprinter,
creating cartilage models with different chondrocyte densities. After 14 days in vitro
culture, cells in the GelMA and HAMA hydrogels differentiated into a monolayer of
chondrocytes, as evidenced by cartilage typical proteoglycan, cartilage specific type II
collagen deposition, and cartilage marker gene expression. The technique can be applied
to create cartilage repair models and treat articular cartilage defects using autogenous cells
and compatible polymers with tailored sizes and shapes [69].

Gelatin prepared by a single modification sometimes cannot meet all the requirements
for organ 3D printing. Many combinations and modifications have been exploited without
increasing its toxicity to cells, enhance the mechanical properties, and stabilize the 3D
printed constructs (Table 3) [76–79].

2.2. Alginate

Alginate is usually extracted from brown algae (Phaeophyceae), including kelp, Asco-
phyllum, and Macrocystis. Alginate solution is polyanion and has certain pH sensitivity.
The higher the pH, the stronger the hydrophilicity of the solution, on the contrary, the
weaker the hydrophilicity [53]. Sodium alginate hydrogel has good biocompatibility, strong
gel-forming capability, low toxicity, low cost, and wide sources, which make it the most
widely used natural polymer in organ 3D printing areas [54].

A sodium alginate molecule often has three parts, namely “M area (rich in mannuronic
acid), “G area” (rich in guluronic acid), and “MG area” (containing mannuronic acid and
Guluronic acid) [53]. Alginate solution has an important character that can be chemically
crosslinked by divalent cations, such as calcium (Ca2+), strontium (Sr2+), and barium (Ba2+)
ions. The crosslinked hydrogels have been applied in many biomedical fields, such as
wound healing, drug delivery, and regenerative medicine [80–82].

The Na+ on the G unit can be ion-exchanged with divalent cations such as Ca2+,
resulting in a large accumulation of G units to form a 3D network, which can quickly form
a hydrogel. The preparation methods of sodium alginate hydrogel mainly include physical
crosslinking, chemical crosslinking, and enzyme crosslinking. It is worth mentioning that
the chemical crosslinking of alginate molecules using Ca2+ is reversible. When the 3D
printed construct is placed in a liquid that does not contain or contains less Ca2+, the
crosslinked Ca2+ will gradually dissolve within about one week.

As a natural polymer, there are fewer cell attachment sites in the alginate molecules,
which makes it not the good candidate for cells to grow and proliferate inside the single
alginate hydrogels. Thus, alginate is often used with other natural polymers, such as
gelatin and fibrin. In organ 3D printing, the properties of the 3D printed costructs are often
needed to adjust to meet the special requirements as regard to the water holding capacity,
degradation rate, stability, and mechanical properties (e.g., rigidity) (Table 4).

A team used type I collagen, sodium alginate, and chondrocyte as 3D bioprinting
“bioink” to construct cartilage tissues. The results show that the “bioink” has good me-
chanical strength and biological function, and it is very promising in cartilage tissue 3D
bioprinting [83]. Another team used alginate/gelatin hydrogel to encapsulate aortic sinus
smooth muscle cells (SMC) and aortic valve interstitial cells (VIC), and successfully printed
aortic valve catheters. Both cell types achieved high survival rates in the 3D-printed con-
structs, indicating that aortic valve hydrogel catheters with complex anatomical structures
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and heterogeneous encapsulation can be 3D bioprinted with sodium alginate-based hy-
drogels [84]. Zohreh et al., used sodium alginate/chitosan/hesperidin hydrogel to print
bioartificial skins with good biocompatibility, mechanical properties, and antibacterial
properties. In the full-thickness rat skin trauma repair experiment, the hydrogel had a
better wound closure effect than the gauze-treated wounds [85]. Researchers, such as
Ning, used a composite hydrogel of alginate, fibrin, hyaluronic acid, and (Arg-Gly-Asp,
RGD) peptides to encapsulate Schwann cells to print 3D bio-scaffolds, and applied them
to neural tissue engineering. Histological experiments showed that Schwann cells in the
constructs had high viability, proliferation rate, and protein expression level. It shows
that the alginate-based mixture can be used to produce nerve repair scaffolds, and these
scaffolds have great potential in the field of post-peripheral nerve regeneration [86].

Table 4. Alginate-based polymers for organ 3D printing.

3D Bioprinting
Technique “Bioink” Formulation Crosslinking Method Bioprinter Ref.

One/two nozzle
extrusion-based 3D

bioprinting

GelMA/alginate/PEGTA Photo-crosslinking/
CaCl2 solution

Novogen MMX
Bioprinter™ [87]

Alginate/chitosan hydrogel CaCl2 solution EFD® Nordson printer [88]
Nanocellulose-alginate CaCl2 solution 3D discovery printer [89]

Zinc oxide (ZnO) nanoparticles
(NPs)/alginate CaCl2 solution BioBot 1 [90]

Propolis/sodium alginate CaCl2 solution Ultimaker2+ [91]
Sodium alginate/keratin CaCl2 solution Ultimus V [92]

Inkjet-based 3D
bioprinting

Collagen/sodium alginate CaCl2 solution HP DeskJet 550C [93]

Alginate solution CaCl2 solution
as substrate SEA-Jet™ [94]

Sodium alginate solution CaCl2 solution
A platform-assisted

3D inkjet
bioprinting system

[95]

Alginate solution CaCl2 solution
after printing

MicroFab MJ-ABL
piezoelectric inkjet
printhead printer

[96]

One/two-syringe
extrusion-based

3D printing

Gelatin/glucose-alginate
hydrogel

CaCl2 solution
after printing Fab@Home Model1-3 [97]

Laser-based bioprinting Sodium alginate/ Nano-HA Laser BioLP workstation [98]

Sodium alginate solution CaCl2 solution

Matrix-assisted
pulsed-laser
evaporation
direct-write

[99]

2.3. Fibrin

The fibrinogen molecule is composed of two sets of alpha, beta, and gamma chains
bridged by disulfide bonds. Each molecule contains two outer D domains, which are
connected to the central E domain by a coiled-coil segment (Figure 4). Fibrin is formed after
thrombin cleaves fibrinopeptide A from the Aα chain of fibrinogen, which initiates the
polymerization of fibrinogen [55]. Fibrin has super biocompatibility and biodegradability.
Fibrin gel is non-toxic and does not have immune rejection [56], so it is widely used in the
liver and heart 3D printing areas [57].
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Fibrin was first printed into large living tissues in 2007 [70–75]. Since then it has been uti-
lized for ogan printing with many other natural and synthetic polymers. Some researchers used
a multi-nozzle 3D printer to print gelatin/alginate/fibrinogen hydrogel scaffolds, and a 3D
biological printing glioma stem cell model was established. The survival rate of glioma stem
cells in the scaffold was 86.92%, and the cells have high viability and differentiation potential
in this hydrogel scaffolds [100]. A team used fibrin as bioinks and an extruded biological 3D
printer to print fibrin scaffolds containing human fibroblasts, and inoculated keratinocytes on
the scaffolds to obtain human double-layer skin. Histological results showed that the structure
and function of printed skin were similar to human skin. The results show that fibrinogen can
be used to print artificial skin [101].

2.4. Chitosan

Chitosan is a derivative of chitin obtained by deacetylation of chitin. Its chemical name
is polyglucosamine (1-4)-2-amino-B-D glucose [63]. Chitosan has average biocompatibility,
biodegradability, and non-toxicity in relation to cells and tissues [64].

Ducret et al. combined fibrin and chitosan to design an injectable hydrogel to de-
termine the antibacterial effect of chitosan in fibrin hydrogel, as well as the vitality and
proliferation state of dental pulp (DP)-MSCs in the hydrogel. It shows that the fibrin–
chitosan hydrogel has strong antibacterial capability and can promote the regeneration of
human DP tissue through maintaining a bacteria-free environment in the DP space [102].
Demirtaş et al. compounded chitosan with nanostructured bone-like hydroxyapatite to
prepare a chitosan–hydroxyapatite hydrogel. MC3T3-E1 pre-osteoblasts were loaded with
chitosan and chitosan–hydroxyapatite hydrogels, and printed with an extrusion 3D bio-
printer. The results showed that chitosan and chitosan–hydroxyapatite can provide good
mechanical support for 3D bioprinting. Cells in the hydrogels can maintain viability and
undergo proliferation and osteogenic differentiation [103]. Wang’s team constructed a new
type of collagen/chitosan/heparin matrix and found that it is highly porous and can be
stabilized at least 60 days in vitro in a PBS buffer solution containing collagenase/lysozyme
at 37 ◦C. The hydrogel-cultured hepatocytes showed high urea and triglyceride secretion
function 25 days after inoculation, indicating that the collagen/chitosan/heparin matrix
has great potential in the field of liver manufacturing [104].
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2.5. Agarose

Agarose is a linear polymer, and the basic structure is 1,3-linked β-D-galactose and 1,4-
linked 3,6-lactose-L-galactose alternately linked long chains. Agar pectin is a heterogeneous
mixture composed of many smaller molecules. Agarose is generally heated to above
90 ◦C to dissolve in water, and a good semi-solid gel is formed when the temperature
drops to 35–40 ◦C. This is the main feature and basis for its multiple uses. As a natural
polysaccharide material, it has the characteristics of cell non-toxicity, slow degradation
rate [105], low material cost, and has good mechanical properties after gelling [65].

Agarose has been widely used in hard tissue repair scaffolds, wound dressings, drug
delivery, and other fields. Sivashankari et al. used freeze-drying technology to prepare
a 3D porous scaffold of agarose/chitosan/graphene oxide (ACGO), and evaluated the
physical, chemical, and biological properties of the composite scaffold. The connected
holes have good blood compatibility and Vero cell proliferation ability, indicating that
the ACGO composite scaffold can be applied to tissue engineering applications [106].
Carriel et al. developed a human skin replacement model using fibrin–agarose hydrogels,
and evaluated the model in vivo and in vitro through histological experiments. The fibrin–
agarose hydrogels can reproduce the histological structure of natural human skin [107].
Junji et al. developed a hydroxyapatite/agarose gel and printed it into 3D scaffolds. The
3D scaffolds were implanted into the medial femoral condyle of rabbits. After implantation,
the bone regeneration process was evaluated by micro-focus computed tomography (micro-
CT) and histological analysis. New bone was seen at the edge of the bone defect 2 weeks
after the operation, the bone regeneration was good at 4 weeks after the operation, and the
implant gradually degraded 8 weeks after the operation [108].

3. Synthetic Polymers for Organ 3D Printing

Synthetic polymers are man-made polymers with adjustable chemical structures
and physical properties produced by chemical reactions. Most synthetic polymers have
better mechanical properties than natural polymers. However, synthetic polymers are
biologically inert and the printing process usually involves the use of organic solvents
and/or toxic activators, which may reduce the biological effects of cell activity. Therefore,
biologically active ingredients (such as cells and growth factors) cannot be easily combined
with synthetic polymers for 3D printing. Since most synthetic polymers can be degraded
by microorganisms or biological fluids in the body [109,110], the degradation rate can
be adjusted to match the generation rate of specific tissues and organs. The commonly
used biodegradable synthetic polymers in 3D printing include poly (lactic acid) (PLA),
poly (glycolic acid) (PGA), polylactic-co-glycolic acid (PLGA), polyurethane (PU), and
polycaprolactone (PCL) [111–116]. In Table 5, some of the characteristics for organ 3D
printing are summarized.

Because they can withstand the internal and external tension of the 3D printing process
and the implantation stage in the body and have good mechanical strength, synthetic
polymers have a priority in the field of hard tissue and organ 3D printing [117–119].

For organ 3D printing, synthetic polymers are often used together with natural poly-
mers. Especially, for large-scale hierarchical structures, such as layered blood vessels, nerve
tissues, and lymphatic networks, synthetic polymers prefer to be the wrappage, wrapping
outside the cell-laden natural polymers [120,121].
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Table 5. Commonly used synthetic polymers for organ 3D printing.

Polymer Chemistry Characteristic Ref.

PLA

A linear thermoplastic aliphatic polyester,
mainly produced from starch raw materials

through saccharification, fermentation and other
chemical reactions

Good biocompatibility and biodegradability, can
be completely degraded under certain conditions [122–125]

PLGA

A synthetic copolymer of lactic acid (LA) and
glycolic acid (GA), synthesized by the

ring-opening copolymerization of cyclic dimer
(1,4-dioxane-2,5-dione), glycolic acid and

lactic acid

Good biocompatibility and controllable
biodegradation rate [126,127]

PU

A set of linear units (–NH–(C=O)–O–) connected
by oligodiol (i.e., soft segment) and organic (i.e.,

hard segment) units through carbamate
(i.e., carbamate)

Controllable degradation rate and mechanical
properties, can be modified to have

heat-sensitive properties
[128,129]

PCL
Catalysis with metal anion complex catalyst ε-
Formation of caprolactone monomer by ring

opening polymerization
Good biocompatibility and biodegradability [130,131]

Pluronic
Acid

Compound with a basic structure of poly
(ethylene oxide) (PEO)-poly

(propylene oxide) (PPO)-PEO

Easy to prepare, good cell affinity, and
heat-sensitive [132,133]

3.1. PLA

As a linear thermoplastic aliphatic polyester, PLA is mainly synthesized from starch
raw materials through saccharification, fermentation, and other chemical reactions. PLA
has good biocompatibility and biodegradability. It can be completely degraded under
certain conditions. The final metabolic products are carbon dioxide and water, which
can be eliminated from the bodys [122–124]. PLA has many advantages in organ 3D
pringing, such as good thermal stability, water/solvent/bacteria resistance, excellent gloss,
transparency, and flame retardancy [125].

Since 3D printing can control the overall geometry and internal structure of the 3D
constructs, it has become a key process for hard tissue and organ, such as bone and cartilage,
substitute manufacturing. The PLA based synthetic polymers therefore have become the
the main focus for large size bone and cartilage scaffold development. The hybridization
of PLA with natural polymers has become a promising method to manufacture complex
organs [134]. Due to the excellent mechanical properties, biocompatibility, and degradabil-
ity of PLA, it has been widely used in the related research. For example, Chen et al. have
uniformly dispersed nano-hydroxyapatite to PLA and fabricated a 3D composite scaffold
with enhanced osteogenesis and osteoconductivity through a desktop FDM technology.
The 3D printed PLA/nano-hydroxyapatite scaffold has great potential in repairing the
large bone defects. [135]. Shadi et al. used an indirect 3D printing method to develop a
bone repair scaffold made of PLA/PCL/hydroxyapatite with macropores and micropores.
The composite scaffold with a weight ratio of 70/30 (PLA/PCL) achieves more favorable
properties in terms of biocompatibility and osteoinductive properties [136].

3.2. PLGA

PLGA is a synthetic copolymer (polyester) of lactic acid (LA) and glycolic acid (GA)
with excellent physical, chemical, thermal, and mechanical properties that makes it suitable
for wide usage. PLGA has attracted considerable attention in 3D bioprinting areas because
it has good biocompatibility, controllable biodegradability (depending on molecular weight
and copolymer ratio), and has been approved by the US Food and Drug Administration
(FDA) for human clinical usage [126,127].

The lack of suture resistance of 3D printed vascularized tissues and organs has always
been an important problem hindering the development of organ manufacturing. If the anti-
suturing ability is insufficient, the cell-laden natural hydrogel can hardly withstand any
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additional mechanical load. In 2010, Professor Wang’s research group produced a tubular
three-layer PLGA-cell/fibrinogen-PLGA construct [137]. The inner and outer layers are
made of supportive PLGA with different pores, which play an important role in long-term
structural stability, preventing excessive expansion during mechanical stimulation. The
middle layer is a fibrin-encapsulated cell hydrogel, which provides accommodation for
cells to proliferate, migrate, and differentiate inside. The study found that the three-layer
sandwich structure can withstand the maximum axial stress of 1100 kPa during the tubular
contraction and extension stages, which is significantly higher than human blood pressure.
With the enhancement of mechanical properties by PLGA, the ASCs in the intermediate
fibrin hydrogel are induced to differentiate into smooth muscle cells and arranged regularly
under growth factor induction and dynamic conditions. This strategy is expected to be
widely used in the field of complex organ manufacturing.

As PLA, PLGA has been widely used in hard tissue and organ 3D prinitng due to
its excellent mechanical properties. Researchers have prepared a series of double-layer
PLGA-integrated scaffolds to achieve simultaneous repair of osteochondral tissue. In the
experiment, two scaffolds with different apertures were made, and then they were glued
together to form an integrated scaffold. By checking the condition of the porous scaffold
implanted with bone marrow mesenchymal stem cells (BMSCs) for 24 weeks. It is proven
that the double-layer PLGA porous scaffold can promote the repair of osteochondral defects
and has application potential in osteochondral organ engineering [138].

3.3. PU

PU is a group of linear segment polymers, consisting of oligodiol (i.e., soft segment)
and organic (i.e., hard segment) units connected through urethane (–NH– (C= O)–O–). PU
can be biodegradable or non-biodegradable, and in vitro degradation studies have shown
that PEG-based PUs are more degradable than PCL-based ones. In terms of mechanical
properties, the tensile properties of PU are mainly controlled by soft segments. In another
word, the difference in the structure of soft segments provides significant changes in
the properties of PU. Studies have shown that the mechanical properties of PCL-based
polymers are higher [128]. Acrylate groups can be used as ultraviolet (UV) curing sites
incorporated into thermal PU for 3D printing of cells. These PUs show potentials for
various biomedical applications including organ manufacturing [129].

Professor Wang of Tsinghua University developed a new biodegradable elastic PU,
and carried out the 3D printing of various tissues and organs [93,139]. The biodegradable
PU has been widely used in the fields of peripheral nerve repair conduits, rabbit vein
recovery templates, and layered blood vessel/neural network overcoats [140,141]. In one
of the experiments, Professor Wang’s research group used a dual-nozzle low-temperature
deposition manufacturing (DLDM) system to prepare a double-layer polyurethane (PU)–
collagen nerve repair conduits. By optimizing the process parameters and the polymer
concentrations, an ideal nerve repair conduit was manufactured for peripheral nerve re-
pair [142,143]. Feng et al. developed a biodegradable waterborne polyurethane (WBPU)
modified by amino acid, which can be used by FDM 3D printing technology at a tem-
perature of 50–70 ◦C. Through implantation experiments in mice, it is proven that the
WBPU has good biocompatibility and degradability, and the degradation products have no
cytotoxicity to host tissues (Figure 5) [144].
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Figure 5. (a) A human ear model printed with WBPU; (b) Tensile stress–strain curves of the PLA
and WBPU scaffolds; (c) Supporting force test results of the 3D printed PLA and WBPU scaffolds;
(d) Using syringe needles of different models to print WBPU scaffolds; (e) 3D printing of micrographs
of WBPU scaffolds at different extrusion speeds; (f) The micrographs of 3D printed WBPU scaffolds
at different internal distance from strand [144].

3.4. PCL

PCL, also known as polyε-caprolactone, formed by ring-opening polymerization of
ε-caprolactone monomer catalyzed by a metal anion complex catalyst, is a biodegradable
semi-crystalline polyester [130]. PCL is non-toxic, insoluble in water, and easily soluble
in a variety of organic solvents. It has very good biocompatibility and biodegradability,
which can be completely degraded in 6–12 months within a natural environment [131]. In
addition, PCL also has temperature-dependent shape memory properties. Under heating
conditions, it exhibits good viscoelasticity and rheology, and can be processed by FDM
technology for four-dimensional (4D) printing.

Using extrusion-based 3D printing technologies PCL can be effectively printed into
screw type stents with a controlled microstructure. The use of low-pressure nitrogen-
based coatings can enhance cell adhesion and proliferation capacities without changing
the mechanical properties of the stents [145]. In order to further enhance cell–cell signal
transduction and cell–material interaction, Wang et al. used conductive biomaterials or
mixed conductive fillers with non-conductive biomaterials for the manufacture of the
electroactive PCL scaffolds [146]. Compared with traditional PCL and PCL/graphene
scaffolds, the new scaffolds have improved in vitro biological performance because the
nitrogen-doped graphene has higher conductivity and better surface hydrophilicity than
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the original graphene. Additionally, PCL lacks cell binding sites, the combination of
PCL with natural polymers to create hybrid structures is a widely accepted strategy for
PCL-based 3D bioprinting [147].

3.5. Pluronic Acid (or Poloxamer)

Pluronic acid (i.e., poloxamer) is a triblock copolymer composed of one hydrophobic poly
(propylene oxide) (PPO) segment and two hydrophilic poly (ethylene oxide) (PEO) segments ar-
ranged in a PEO-PPO-PEO configuration; the general formula is: HO(CH4O)a(C3H6O)b(C2H4O)cH.
The concentrated aqueous solution of poloxamer forms thermoreversible hydrogels. These hydrogels
remain fluid at room temperature and become viscous once exposed to body temperature. The gel
temperature is closely related to its concentration and structure (i.e., PPO/PEO ratio, PPO/PEO block
length and, total polymer chain length) [132,133].

Pluronic acid shows good printability, but it has adverse effect on cell viability during
long-term in vitro cultures, so it is often chemically modified with other polymers to
improve the structural and mechanical properties [148,149]. Recently, researchers have
combined pluronic acid with gelatin, which can take advantage of its excellent rheological
behavior under shear stress and elasticity to create a biocompatible hydrogel for vascular
channels. Müller et al. [150] reported a strategy for constructing nanostructured Pluronic
hydrogels, which can significantly improve their biocompatibility. The mixed acrylate
and Pluronic F127 can not only maintain the printability but also obtain a stable 3D
structure through UV cross-linking. After 3D printing, the unreacted Pluronic was removed
from the cross-linked network by elution. Methyl acrylate hyaluronic acid (HAMA) was
also added to improve the mechanical properties of the 3D structures. There are some
researchers chose 20% pluronic F127 aqueous solution to prepare biofilms [151]. After
the neomycin-impregnated pluronic solution was mixed with polyvinyl alcohol (PVA)
excipients (Povidon S630, PG) with appropriate concentration, the prepared neomycin-
impregnated pluronic membrane inhibited the growth of bacteria on the agar plate through
the sustained release of neomycin. When this pluronic membrane was implanted to
the burn site of rabbits, it acts as a drug-releasing matrix with the potentials for local
burntreatment (Figure 6).
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king process steps of the 3D vascular network embedded in the GelMa matrix: (a) Fugitive “ink” Figure 6. Highlight the image sequence used to make the printing, filling, and unorganized deinking
process steps of the 3D vascular network embedded in the GelMa matrix: (a) Fugitive “ink” printed
in the form of a 3D vascular network within silicone ink border; (b) Infilling of the 3D printed fugitive
“ink” network with an acellular ECM of choice (GelMA shown); (c–e) Fugitive “ink” removal process
at 4 ◦C; (f,g) Higher magnification images of the evacuated 3D vascular networks [149].
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4. Nanometer Material for Organ 3D Printing

In recent years, the application of two-dimensional nano materials (2DNM) in 3D print-
ing has attracted extensive attention because of their special physical/chemical properties
and excellent biocompatibilities. A series of nanomaterials, such as metal/metal oxide nano-
materials, are physically mixed or covalently bonded with polymer networks to produce
speical biomedical devices, for the treatment of intractable diseases. 3D printing the multi-
functional 2DNM “inks” to manufacture high-performance special organs is considered to
be an emerging frontier in advanced material development and 3D bioprinting [152].

As a new type of crystalline and porous materials formed by metal nodes and polyden-
tate ligands, metal organic frameworks (MOFs) have become a promising biomaterial in
recent years because of their ultra-thin thickness, large surface area, and highly accessible
active sites [153,154]. Nevertheless, most of the MOFs have poor water stability, which hin-
ders their application in biomedical fields to a certain extent [155,156]. In this case, a large
number of researchers have developed new “bioinks” with nano materials with high stabil-
ity. For example, Ishiwata and his colleague used the cross-linking method to transform Zn
based MOFs into polymer gel (PG) [157]. Colloidal particles or macromolecules in solution
are connected with each other to form a spatial PG network. Additionally, the structural
voids are filled with liquid. Tsotsalas et al. synthesized a copper free PG with excellent
stability [158]. These gels can be used to adhere bacteria without releasing metal ions to
ensure their applicability in biomedicine. Some metal/metal oxide containing ocomposite
hydrogels exhibit not only enhanced mechanical properties, but also additional functions,
such as electrical conductivity, magnetic properties, and/or antibacterial properties. The
electrical activity of gold nanowire/alginate nanocomposite hydrogel makes it outstanding
in special heart 3D printing with significantly increased electrical communication between
adjacent cardiac myocytes, and stimulated synchronized contraction of cardiac myocytes
through electrical stimulation [159]. It is predicted that this hydrogel will have great
potential in cardiac tissue and organ manufacturing areas.

Many studies have shown that nano clay particles have important values in regenera-
tive medicine, with respect to cell adhesion and diffusion, and controlled drug release [160].
Clay has been proved to be an excellent filler and can be designed as a new hydrogel for 3D
bioprinting. The viscosity of polymer “bioinks” can be enhanced by nano clay increased,
and nano clay can stabilize the polymer network [161,162]. Because of the reversible inter-
action between polymer and clay, the addition of synthetic clay improves the printability
and shape fidelity of the alginate-based “bioinks”, changes the rheological properties of the
gels, and makes the hydrogels more robust [163]. Furthermore, due to the low mechanical
properties of natural polymers in 3D printing, “bioinks” based on nano-clay containing
hydrogels have highlighted their advantages in 3D bioprinting areas, including increasable
bioactivities, controllable mechanical prooperties, customizable degradation rates, and sim-
ple processing skills [164,165]. The PNAGA/nano clay hydrogel used for 3D bioprinting
has achieved a good effect in repairing rat and rabbit bone defects [166].

Most inorganic ceramic nanoparticles contain some minerals naturally existing in the
human body, which can provide biological functions to promote the growth of tissues in the
body. Hydroxyapatite nanoparticles were incorporated into PEG hydrogel to form a tough
elastic nanocomposite hydrogel, which supports osteoblast to adhere [167]. Compared
with the PEG hydrogel alone, adding hydroxyapatite nanoparticles into PEG hydrogel can
increase the toughness, breaking strength, and tensile modulus of the 3D printed structures.
The further development of these elastic materials can promote the development of 3D
printing in the manufacture of large tissues and organs.

5. Typical 3D Bioprinting Technologies for Bioartificial Organ Manufacturing
5.1. Heart 3D Bioprinting

Cardiovascular disease is one of the main causes of death in the world. Heart trans-
plantation is the main method for many cardiovascular treatments at present. Recently,
heart 3D printing technology has also made great progress and application.



Polymers 2021, 13, 3178 18 of 32

3D bioprinting technology can be used to create heart valves. The commonly used
printing materials for heart valves are biodegradable synthetic scaffolds and adult cells [168].
Laser sintering 3D printers are also used to make heart valve scaffolds, and human umbili-
cal cord blood vessel cells can be planted on the scaffold [169].

3D bioprinting technology has been used to make myocardial chip platform. Some researchers
use alginate, GelMA, and photoinitiator Irgacure 2959 as “bioinks” by encapsulating human en-
dothelial cells, using coaxial extrusion printing to make a multilayer hydrogel microfiber scaffold,
and then inoculating cardiomyocytes in the scaffold. Afterwards, the scaffold is further embedded
in a specially designed microfluidic perfusion bioreactor to complete the endothelial myocar-
dial chip platform for cardiovascular toxicity assessment, drug screening, and potential disease
modeling [170].

3D bioprinting technology has been applied to create living heart tissues. Some re-
searchers isolated the primary cardiomyocytes from the hearts of young rats and mixed
them in the “bioinks” based on fibrin. They used the extrusion printing method to print the
cell-laden hydrogels, sacrificed hydrogels, supportive PCL frames, and obtained cardiac
tissues. The bioprinted heart tissues have spontaneous and synchronized contraction func-
tions during in vitro cultures, and the progressive cardiac tissue development is confirmed
by immunostaining of α-actinin and connexin. These results indicate that the bioprinted
heart tissues are functional and can be applied in the fields of organ manufacturing and
drug screening [171].

3D bioprinting technology has also be used to create 3D heart models. Maiullari et al.
combined human umbilical vein endothelial cells (HUVEC), induced pluripotent cell-
derived cardiomyocytes, and encapsulated them in alginate and PEG–fibrinogen hydrogels.
The “bioinks” are printed through a customized microfluidic printhead, and the 3D heart
tissue consisting of iPSC derived CMs is obtained, which has defined geometric shapes
generated by HUVEC. During the in vivo experiment, the host vascular system can pen-
etrate and integrate into the bioprinting construct to provide rapid blood supply for the
implant [172]. In addition, researchers have proposed a method of 3D bioprinting collagen
using freeform reversible embedding of suspended hydrogels. By means of pH-driven
gelation control, high resolution and porous microstructure can be achieved, and human
heart components with various scales from capillaries to whole organs can be designed
and printed (Figure 7) [173].

Nevertheless, the structure of the natural heart is extremely complex, and the com-
plicated blood vessels, neural networks, and muscle tissues in the heart are unusually
difficult to construct at the same time under the existing 3D bioprinting technologies [174];
whether the 3D bioprinted constructs can realize the function of the heart biophysically
and biochemically remains to be further explored [175].

5.2. Liver 3D Bioprinting

The liver is composed of highly specialized tissues that play an important role in
metabolism and have multiple functions, including regulation of glycogen storage, red
blood cell breakdown, plasma protein synthesis, hormone production, and detoxification.
Anatomically, the liver is divided into four lobes, and each lobe is composed of numerous
liver lobules under the microscope. The lobules are roughly hexagonal in shape and consist
of hepatocyte plates radiating from the central vein. There are two main types of liver cells:
parenchymal cells and non-parenchymal cells. Parenchymal cells are hepatocytes, account-
ing for 70–85% of the liver volume. Non-parenchymal cells include sinusoidal endothelial
cells (SEC), phagocytic Kupffer cells (KC), and hepatic stellate cells (HSC) [176–178]. These
non-parenchymal cells play special roles in certain physiological functions. For example,
HSC is heavily involved in the synthesis of growth factors and the regeneration of ECM
proteins, both of which play a key role in hemostasis and cell signaling [179].
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Figure 7. Organ-scale FRESH 3D bioprinting of tri-leaflet heart valve, multiscale vasculature, and
neonatal-scale human heart: (A) Tri-leaflet heart valve 3D model at adult human scale; (B,C) Top
and side views of FRESH-printed collagen heart valve; (D) Using µCT reconstruction showed the
complete printed valve; (E) Lateral cross section of the wall and leaflets; (F) Compared with the 3D
model, quantitative gauging of the µCT 3D surface shows average overprinting of +0.55 mm and
underprinting of −0.80 mm; (G) Sequence of valve opening under pulsatile flow over 1 s; (H) Doppler
flow velocimetry of a single cycle: (i) closed, (ii) half-open, (iii) open; (I) Repeat the cycle in (H);
(J) Maximum transvalvular pressure of printed alginate and collagen valves compared to operating
pressure for native valves [N = 3, data are means ± SD, n. s. indicates p > 0.05 (Student t test)];
(K) MRI-derived 3D human heart model (gray) with computationally derived multiscale vascular
network shown for the left ventricle. The left anterior descending coronary artery (red) is the template
to guide the formation of smaller-scale vessels, which decrease in diameter according to distance
from the coronary artery (red to blue); (L) Left ventricle with the left anterior descending artery (red),
computationally generated vasculature (purple), and subregion of interest (pink); (M) Transparent
subregion showing 3D structure of the vascular network; (N) FRESH-bioprinted with collagen,
showing reproduction of the vascular network; (O) The vascular network was perfused with red
glycerin; (P) The collagen was optically removed and perfused with red glycerol to a diameter of
100-µm blood vessels; (Q) MRI-derived 3D human heart scaled to neonatal size; (R) FRESH-printed
collagen heart; (S) A printed cross-sectional view of the collagen heart showing the left and right
ventricles and the internal structure; (T,U) High-fidelity image of the trabeculae in the left ventricle
(T) showing reproduction of the complex anatomical structure from the G-code (U); (V) A high-
definition image of the septal wall between ventricles (W) Showing reproduction of the square-lattice
infill [173].

Since hepatocytes have high proliferation capacity, the liver has extensive regener-
ation capacity. However, due to the limited availability of adult hepatocytes, they are
difficult to isolate, and possess poor reproductive ability and rapid degradation of in vitro
functions [180]. Various techniques have been developed to produce bionic liver tissues.
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However, traditional methods are unable to break through the existing bottleneck in
producing volumetric liver tissue with high intercellular adhesion.

At the same time, due to its high fidelity and the ability to quickly and accurately man-
ufacture relatively complex 3D structures, 3D bioprinting can manufacture more complex
tissues and organs. Therefore, in recent years, 3D bioprinting technology has been increas-
ingly used to manufacture complex liver structures with higher cell density [181,182].

Using RP technology, the research group of Professor Wang of Tsinghua Univer-
sity has successfully manufactured various hepatic tissues and organs using hepatocytes
and gelatin-based hydrogels. Professor Wang has conducted a series of groundbreak-
ings using a series of self-made 3D printers (Figure 8). In one study, a highly accurate
3D micro-positioning system with a pressure-controlled injector was created to deposit
cells/hydrogels with a lateral resolution of 10 microns, creating various 3D patterns
with different channel arrays (or go-through holes). More than 30 layers of hepato-
cytes/hydrogels were printed into a high-space constructs. Hepatocytes remained viable
in the constructs and perform biological functions for more than 2 months [71]. In another
study, a double-nozzle bioprinting technology was used to create an anatomical liver struc-
ture with a blood vessel-like networks. Adipose-derived stem cells (ASCs) wrapped in a
gelatin/alginate/fibrinogen hydrogel were printed to form the blood vessel-like networks,
hepatocytes were loaded with gelatin/alginate/chitosan hydrogel around it, and endothe-
lial growth factor was used to induce the ASCs to differentiate into endothelial-like cells.
The results show that the albumin secretion level of the embedded hepatocytes is cultured
for 2 weeks, but the levels of urea and alanine aminotransferase decreased after the increase.
These results indicate that this dual-nozzle 3D printing technology can be a powerful tool
for manufacturing complex liver structures with special internal/external structures. In
order to better realize the differentiation of stem cells and the assembly of different cell
types, Professor Wang has pioneered a combined four nozzle 3D printer to quickly produce
bioartificial livers. In other research groups, researchers demonstrated the application of
3D digital bioprinting technology to create a 3D hydrogel-based ternary culture model
that uses gelatin methacrylate and glycidyl methacrylate–hyaluronic acid to derive iPSC
hepatic progenitor cells, human umbilical vein endothelial cells and ASCs are embedded
in a miniature hexagonal structure. The results showed that the morphology of the model
was improved, the expression level of liver-specific genes was higher, the secretion of
metabolites increased, and the induction of cytochrome P450 was enhanced [183].

5.3. Neural 3D Bioprinting

Currently, more than 50 million people worldwide suffer from neurodegenerative
diseases, and most of the existing treatment methods for neurodegenerative diseases, as
well as acute traumatic injury are exceedingly restricted due to the adult neurons are hard
to divide and proliferate. In order to repair the neural tissues, various 3D bioprinting
technologies have been employed to make nerve tissues with physiological functions [184].

Some researchers embedded neural stem cells (NSCs) in thermally responsive biodegrad-
able PU “bioinks”. The thermally responsive and biodegradable PU “bioinks” were suitable
for 3D printing at around 37 ◦C without any cross-linking [185]. The NSC embedded in the
water-based PU hydrogel with appropriate stiffness showed considerable vigor and differ-
entiation capability after 3D printing. When the 3D printed construct was implanted, the
function of adult zebrafish suffering from traumatic brain injury was restored. It is an effective
method for future nerve tissue restoration. Studies have shown that it is possible to construct
neural tissues by printing human NSCs that support the production of functional neurons
and glial cells in-situ [186]. The “bioinks” used in the study include stem cell-containing
alginate, carboxymethyl chitosan, and agarose. The printed “bioinks” quickly gel through
stable cross-linking to form a 3D object, which encapsulates the stem cells for in-situ expan-
sion and differentiation. The results of experiment indicate that the differentiated neurons
formed synaptic contacts, established a network with increased calcium response induced
by bicuculline. Wang et al. have 3D printed a poly(3,4-ethylenedioxythiophene)–chitosan–
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gelatin (PEDOT–Cs–Gel) scaffold through in-situ interfacial polymerization. They assembled
a PEDOT nanostructure layer on the channel surface of the porous Cs–Gel scaffold to make a
conductive PEDOT–Cs–Gel scaffold. The scaffold was used for 3D culture of NSCs in vitro,
and it was found that the PEDOT layer on the surface of the Cs–Gel scaffold channel can
greatly promote the adhesion and proliferation of NSCs. In addition, this scaffold can signifi-
cantly enhance the differentiation of NSCs into neurons and astrocytes by up-regulating the
expression of β tubulin-III and GFAP [187].
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Figure 8. Schematic diagrams of Tsinghua University, Professor Wang, laboratory produced several
3D bioprinters: (A) in 2004, gelatin hydrogel was printed to large living tissue through single nozzle
3D biological printer; (B) in 2007, two types of cells in gelatin-based hydrogels were printed into
large organs; (C) was used to print cell-laden gelatin-based hydrogels and synthetic polymers with
branched vascular networks; (D) in 2010, liver modeling and manufacturing was carried using a four
nozzle low-temperature 3D printer [12].

Since the differentiation of NSCs can be oriented using biologically active macro-
molecules and transcription factors, in order to make cells differentiate accurately, it is neces-
sary to create 3D cell survival environments with precise spatial patterns. Some researchers
have directly patterned nerve cells in a 3D multilayer collagen gel [188]. They print a layer
of collagen precursor to provide a scaffold for the cells, then print the rat embryonic neu-
rons and astrocytes on this layer, and finally apply the sodium bicarbonate solution as
aerosolized aerosol to the cells containing the collagen layer. This makes the collagen gel,
and finally builds a 3D cell–hydrogel composite [189].

Additionally, extrusion-based 3D bioprinting models have greater advantages and
potentials in neural drug screening and brain cancer treatments compared to traditional
2D cell cultures. Various neural growth factors (GFs) can be added to the 3D printing
hydrogels directly and released over time. The 3D printing technology is widely considered
to be more helpful to promote the embedded cells/GFs/drugs to migrate and communi-
cate [190]. A 3D bioprinted glioma stem cell model has been established using a modified
gelatin/alginate/fibrinogen hydrogel that mimics the ECM. Glioma stem cells show high
activity with increased proliferation rate, glial fibrillary acidic protein and β-tubulin III
expression [100].

5.4. Skin 3D Bioprinting

The skin is the largest organ of the human body [191], and it is a complex multi-layered
structure composed of multiple cellulars, ECM fibers, small veins, capillaries, nerves, and
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hair follicles. The skin of humans is composed of three layers: epidermis, dermis, and
hypodermis [192].

At present, there are two main strategies for skin regeneration. One is to inoculate
cells on a degradable scaffold, and then induce a mature 3D tissue structure; the other is to
encapsulate the cells in “bioinks” through a layer-by-layer print to obtain complex 3D skin
tissues [3].

Some researchers use keratinocytes and fibroblasts as the constituent cells representing
epidermis and dermis, and collagen is used as the dermal matrix representing skin. By
inkjet printing on demand, collagen layer and single cell layer are printed separately to
construct a 3D skin tissue. Histological and immunofluorescence experiments show that
3D printed skin tissue is similar to human skin in morphology and biology, and can be used
as a model for studying pathophysiology of skin diseases [193]. Laser-assisted bioprinting
technology is also used to create a fully cellular skin substitute, by placing fibroblasts
and keratinocytes in a stable matrix, and implanting them in mice. The resulting skin
structure can be completely connected to surrounding tissues, and some blood vessels can
grow from the edge of the wound to the printed cells [194]. Some researchers also used
extrusion bioprinters to first print “bioinks” containing human foreskin dermal fibroblasts
(hFB), endothelial cells (hECs), and placental pericytes (hPC) suspended in mouse tail
type I collagen to form the dermis and then print “bioinks” containing human foreskin
keratinocytes (hKC) to form the epidermis. When the bioartificial skin tissues are implanted
into the back of immunodeficient mice, the hEC lining structure gradually merged with
the mouse capillaries from the wound bed [195]. In recent years, some researchers have
proposed a novel design of mobile skin bioprinting system. The system integrated imaging
technology with 3D inkjet bioprinting technology, wound data, and transported different
types of cells to specific locations in-situ to achieve rapid repair of large-area wounds
(Figure 9) [196].
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Figure 9. Skin bioprinter prototype and in situ bioprinting concept: (A) Design and component
diagram of skin bioprinter; (B) The main components of the system include a nozzle with a diameter
of 260 µm, eight independent distribution systems to drive the print head connected to the XYZ
mobile system, and a 3D wound scanner; (C) Skin bioprinting. The specific information of the
defect wound is obtained by scanning, and then the specified materials and cells are deposited in the
appropriate position through the print nozzle; (D) Example of skin bioprinting process (a) markers
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placed around the wound are used as reference points; (b) Before scanning with the handheld Z700
scanner; (c) Then, the geometric information obtained by scanning is input in the form of STL file to
orient the scanned image to the standard coordinate system; (d) the scanning data and its coordinate
system are used to generate the filling position and nozzle head moving path to fill the defect model;
(e,f) the output code is then provided to the custom bioprinter control interface to generate the nozzle
path; (E) required to print the fill volume. The system can control the deposition of multiple cell
types. Shows stratification of fibroblasts (green) and keratinocytes (red) [196].

Bioprinting technology is of special significance for skin organ construction. Ulcers or
burns cause extensive skin defects. Autologous skin transplantation is limited, and a large
amount of autologous skin can be obtained through bioprinting technology. However,
at present, there is still some distance for the constructed skin to be used in clinic, partly
due to the complexity of the multi-layer skin tissues. It is expected that with the rapid
development of 3D printing technologies, large scale-up skin manufacturing with improved
biological functions will come true in the near future [197].

6. Challenges

As discussed in this review, 3D bioprinting technology has made significant research
progress in complex organ manufacturing using various polymeric “bioinks”. However,
there are still many challenges in the manufacture of clinical useful large bioartificial organs.
As organ manufacturing is an interdisciplinary subject and the result of the integration of
biology, chemistry, physics, informatics, computer, and medicine, it is necessary to integrate
talents in a wide range of fields such as biology, materials, chemistry, physics, machinery,
medicine, and clinic to solve these challenges [198–200].

With the increase in the structure and size of the 3D printed organs, the transportation
of nutrients is becoming more and more evident. In endogenous organs, nutrients/oxygens
are transported through the vascular networks. The organs produced by 3D printing
need to anatomically imitate the vascular networks in natural organs; provide water,
gas, and nutrients for cells; and discharge metabolites from cells, which is the key to
prevent organ necrosis [201–205]. In order to form highly simulated organs on a macro
scale, a large amount of cells is needed before 3D printing. It is preferred to use stem
cells with the capability to proliferate and differentiate into the target cell types as the
cell sources. Unremitting efforts of biological experts are needed to solve the pertinent
problems in this field.

The mainstream of the future development of 3D bioprinting is the use of multi-
nozzle 3D printers for organ manufacturing. Only by using multi-nozzle printers can we
assemble as many homogeneous and heterogeneous cells and useful polymers as possible.
Therefore, mechanical engineers must innovate or update the 3D organ printers and solve
the engineering related problems, such as the insufficient printing resolution, the slow
printing speed, the instability of “bioinks”, and the standardability of nozzles [206,207].
Only by solving these problems in advance can we create more complex organ substitutes
that can meet all the clinical requirements.

The organ made by bioprinting is a bionic structure, so the compatibility between the
cell-laden polymers and cells must be considered at first. It has certified that any single
polymer and cell type cannot have all the characteristics required for a bioartificial organ
manufacture. Therefore, it is a compelling obligation for chemists and/or material scientists
to develop more appropriate “bioinks” for different organ manufacturing [15,201].

Finally, in the process of organ implantation, doctors need to ensure the structural
integrity and mechanical property (including stiffness) of the bioartificial organs, realize the
physiological functions of the target organs, and ensure no syndromes after operation [28].

7. Conclusions

At present, it is possible to manufacture bioartificial organs including layered blood
vessels and neural networks. Although the internal vascular networks in printed organs
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and the in-situ controlled differentiation of stem cells to more than three types of cells
are still the main obstacles for 3D bioprinting large scale-up complex organs, we can still
foresee that 3D bioprinting technology has broad clinical potentials in organ manufacturing
both for bulk production and personalized treatment, and the production of homogeneous
allogeneic and autologous organs will inevitably move from the field of science fiction to
reality, and the 3D printing based organ manufacturing will beyond all doubt push the
precision medicine to a new level.
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Abbreviations

Abbreviations Full name
3D Three-dimensional
RP rapid prototyping
AM additive manufacturing
SFM solid free-form surface manufacturing
CAD computer-aided design
FDM fused deposition modeling
PEGDA PEG-diacrylate
GAG glycosaminoglycans
PMC polymer matrix composites
PCC polymer ceramic composites
FRC fiber reinforced composites
ABS acrylonitrile butadiene styrene
PLA polylactic acid
ASA acrylonitrile styrene acrylate
PC polycarbonate
PEEK polyether ether ketone
ULTEM polyether imide
HA hyaluronic acid
AHA aldehyde hyaluronic acid
CMC N-carboxymethyl chitosan
GEL gelatin
ALG alginate
SLA Stereolithography
GelMA gelatin-methacryloyl
HAMA methacrylated hyaluronic acid
SMC smooth muscle cells
VIC valve interstitial cells
TPP tripolyphosphate
ZnO zinc oxide
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NPs nanoparticles
EDC 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide
PEG Polyethylene glycol
NHS N-hydroxysuccinimide
PBS phosphate buffered saline
ACGO agarose/chitosan/graphene oxide
PGA glycolic acid
PLGA polylactic-co-glycolic acid
PU polyurethane
LA lactic acid
GA glycolic acid
FDA Food and Drug Administration
BMSCs bone marrow mesenchymal stem cells
UV ultraviolet
DLDM dual-nozzle low-temperature deposition manufacturing
WBPU waterborne polyurethane
PPO propylene oxide
2DNM two-dimensional nano materials
MOF Metal Organic Frameworks
PG polymer gel
iPSC induced pluripotent cell
CMs cardiomyocytes
HUVEC Human Umbilical Vein Endothelial Cells
SEC sinusoidal endothelial cells
KC Kupffer cells
HSC hepatic stellate cells
ASCs adipose-derived stem cells
NSC neural stem cells
PEDOT poly(3,4-ethylenedioxythiophene)
Cs chitosan
GF growth factor
ECM extracellular matrix
FB fibroblasts
EC endothelial cells
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