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Abstract: Chitosan has garnered much interest due to its properties and possible applications. Every
year the number of publications and patents based on this polymer increase. Chitosan exhibits poor
solubility in neutral and basic media, limiting its use in such conditions. Another serious obstacle is
directly related to its natural origin. Chitosan is not a single polymer with a defined structure but a
family of molecules with differences in their composition, size, and monomer distribution. These
properties have a fundamental effect on the biological and technological performance of the poly-
mer. Moreover, some of the biological properties claimed are discrete. In this review, we discuss
how chitosan chemistry can solve the problems related to its poor solubility and can boost the pol-
ymer properties. We focus on some of the main biological properties of chitosan and the relationship
with the physicochemical properties of the polymer. Then, we review two polymer applications
related to green processes: the use of chitosan in the green synthesis of metallic nanoparticles and
its use as support for biocatalysts. Finally, we briefly describe how making use of the technological
properties of chitosan makes it possible to develop a variety of systems for drug delivery.

Keywords: chitosan; chitin; biological activity; drug delivery; antioxidant; antimicrobial; metallic
nanoparticles; biocatalysis

1. Introduction

Chitin and its deacetylated derivative, chitosan, are a family of linear polysaccha-
rides composed of varying amounts of (31—4) linked residues of N-acetyl-2 amino-2-de-
oxy-D-glucose (glucosamine, GIcN) and 2-amino-2-deoxy-D-glucose (N-acetyl-glucosa-
mine, GIcNACc) residues. Chitosan is soluble in aqueous acidic media via primary amine
protonation. In contrast, in chitin, the number of acetylated residues is high enough to
prevent the polymer for dissolving in aqueous acidic media.

Chitin is a very abundant biopolymer that can be found in the exoskeleton of crusta-
cea, insect’s cuticles, algae and in the cell wall of fungi. Chitosan is less frequent in nature
occurring in some fungi (Mucoraceae). Historically, commercial chitosan samples were
mainly produced from chemical deacetylation of chitin from crustacean sources. More
recently, chitosan from fungi is gaining interest in the market, driven by vegan demands.
Moreover, these samples are better controlled in terms of low viscosity and exhibit a very
high deacetylation degree [1]. Production from insect cuticles is also gaining interest,
driven by the increased interest in protein production from these sources.

The interest in chitin and chitosan relies on the myriad biological and technological
properties exhibited by these polymers (Table 1). However, these properties are tightly
related to the physicochemical properties of the polymers (mainly molecular weight and
acetylation degree) [2]. Therefore, when working with chitin and chitosan a good and
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completed polymer characterization is mandatory. Several methodologies have been de-
scribed to characterize chitin, chitosan and chitooligosaccharides, a description of which
is far from the objective of this paper—but for interested readers, we recommend publi-
cations [3,4].

Table 1. The main properties of chitin and chitosan.

Property/Activity Reference
Mucoadhesive [5,6]
Anti-inflammatory [7]
Antioxidant [8]
Antimicrobial [9]
Antifungal [10]
Antihyperglycemic [11]
Antitumoral [7-12]
Wound healing [13]

Chitosan is the only polycation in nature and its charge density depends on the de-
gree of acetylation and pH of the media. The solubility of the polymer depends on the
acetylation degree and molecular weight. Chitosan oligomers are soluble over a wide pH
range, from acidic to basic ones (i.e., physiological pH 7.4). On the contrary, chitosan sam-
ples with higher Mw are only soluble in acidic aqueous media even at high deacetylation
degrees. This lack of solubility at neutral and basic pH has hindered the use of chitosan in
some applications under neutral physiological conditions (i.e., pH 7.4). This is the reason
why a great number of chitosan derivatives with enhanced solubility have been synthe-
tized.

In 2019, the global chitosan market size was valued at USD 6.8 billion, and it is ex-
pected to expand at a revenue based CAGR of 24.7% between 2020 and 2027. The drivers
for the market’s growth are the increasing application of the polymer in water treatment
and several high-value industries such as the pharmaceutical, biomedical, cosmetics and
food industries [14]. Some of the interest areas identified include the modification of the
polymers to extend their applicability; knowledge of the mechanisms involved in the bi-
ological activity of chitosan, chitosan derivatives and chitooligosaccharides; and the in-
depth study of chitosanolytic and chitinolytic enzymes presented in different microorgan-
isms [15].

This review aims to provide readers with a general overview of the state of the art of
chitosan science, covering different aspects such as polymer chemistry, biological and
technological properties and applications in drug delivery and as a biocatalyst.

2. Technological Chitosan Properties
2.1. Solubility

Chitosan is produced by deacetylation of chitin; in this process, some N-acetylglu-
cosamine moieties are converted into glucosamine units. The presence of large amounts
of protonated -NH: groups on the chitosan structure accounts for its solubility in acid
aqueous media since its pKa value is approximately 6.5 [16]. When around 50% of all
amino groups are protonated, chitosan becomes soluble [17].

Chitosan solubility depends on different factors such as polymer molecular weight,
degree of acetylation, pH, temperature, and polymer crystallinity. Homogeneous deacety-
lation (alkali treatment, 0 °C) of chitin permits the production of polymers soluble in aque-
ous acetic acid solutions with DD as low as 28%, with this value never being reached un-
der heterogeneous deacetylation (alkali treatment, high temperatures). Moreover, with a
DD of 49%, the samples are soluble in water. This behaviour is explained by the fact that
homogeneous deacetylation leads to an increase in the number of glucosamine units and
a modification in the crystalline structure of the polymer. Depending on polymer DD,
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these modifications range from a reduction in crystal size and crystal perfection to the
presence of a new crystal structure close to 3-chitin [18]. Sogias et.al. [19] studied the role
of crystallinity and inter- or intramolecular forces on chitosan solubility; in this work, a
parent chitosan sample was half re-acetylated with anhydride acetic or fully N-deacety-
lated under homogeneous conditions. After reacetylation, the solubility of the polymer
was expanded until pH 7.4, while a slight reduction in the solubility range of the fully
deacetylated chitosan was determined. The lower solubility was explained due to the in-
crease in the polymer crystallinity after deacetylation, which offsets the effect of the in-
crease in glucosamine moieties. On the contrary, a reduction in the crystallinity was ob-
served in the half-acetylated sample. The use of hydrogen bond disruptors such as urea
or guanidine hydrochloride also alters the solubility window of chitosan. In fact, by a
combination of chemical and physical disruption of the hydrogen bonds, broad solubility
is achieved.

2.2. Viscosity

The viscosity of polymers is a parametre of great interest from the technological point
of view since highly viscous solutions are difficult to manage. Moreover, viscometry is a
powerful tool for determining chitosan’s molecular weight, as it is a simple and rapid
method even though it is not an absolute method, therefore requiring the determination
of constants that are specific to the solvent. The average molecular weight is determined
by the Mark-Houwink-Sakurada equation, which relates this parametre with the intrinsic
viscosity:

n=KM" D

where K and o are constants that must be determined experimentally. Several values of K
and a have been reported depending on the solvent composition, pH, and ionic strength
[20]. Chitosan viscosity depends on the molecular weight of the polymer and deacetyla-
tion degree and decreases as the molecular weight of chitosan is reduced. In fact, viscosity
can be used to determine the stability of the polymer in solution, as a reduction is observed
during polymer storage due to polymer degradation [21]. Shear viscosity increases with
chitosan deacetylation degree. The shear viscosity at the same rate was studied in two
samples with different deacetylation degrees (91% vs. 75%) and represented versus intrin-
sic viscosity [22]; it was reported that shear viscosity was larger for those samples with
the highest deacetylation degree; when the curves were evaluated, straight lines were ob-
served in both chitosan samples This is explained due to the nature of chitosan, as this
polymer is a cationic polyelectrolyte because of the amine protonation in acidic media.
Therefore, the higher the DD, the larger chain expansion is expected, as more glucosamine
units are found in the polymer chain, leading to a greater charge density in this sample.
In order to modulate chitosan viscosity, the addition of different co-solvents has been
evaluated; in this sense, Kassai et al. [20] studied the effect of the addition of isopropanol
and ethanol to a chitosan solution in 1% acetic acid, reporting that the presence of the
cosolvents decreased the intrinsic viscosity of the polymer.

3. Chemistry of Chitosan

As seen in Figure 1, the reactive groups found in chitosan are a primary amino group
(C2) and primary and secondary hydroxyl groups (C6, C3). Glycosidic bonds and the ac-
etamide group can also be considered functional groups. These functional groups allow
for a great number of modifications, producing polymers with new properties and behav-
iours.



Polymers 2021, 13, 3256

4 of 28

Carboxymethylation, alkylation Chemical coupling

Chemical crosslinking
| Graft copolymerization

[Esteriﬁcation (sulfation, sulfonation)] Metal coordination

OH
O
HO HO
NH
/
R
R =H, COMe

Sulfonviati Metal coordination
Illi onylatl_on Chemical coupling
alkanoylation Chemical crosslinking

Graft copolymerization

Alkylation
Acylation
Schiff base

Figure 1. Functional groups in chitosan’s structure that are able to be chemically modified.

Chitosan derivatives have been produced, aiming to improve chitosan’s properties,
such as solubility or biodegradability, or to introduce new functions or properties. For
instance, solubility has been improved in water aqueous media by deacetylation, depoly-
merization, or quaternisation among other processes [23]. New chitosan activities have
been reported after its modification, for example, 6-O-sulphated chitosan promotes neu-
ronal differentiation while phosphorylated chitosan inhibits corrosion [24,25].

The field of chitosan chemistry is wide, and in this review, we want to focus on two
types of processes, chitosan phosphorylation and chitosan degradation. Our group has
participated in the development of a phosphorylated derivative via a simple method in
which chitosan and phosphorus acid are mixed at the same ratio and formaldehyde is
added at 70 °C [26] (Figure 2).

OH OH
O | ~— HsPO,, CH,O o |
0 3PO4, CH; 0
%Ho ————— %o
NH; 1% HOAc, 70°C N-R
n R n

R =H or CH2PO3H2

Figure 2. Scheme of phosphorylated chitosan derivative synthesis.

This N-methylene phosphonic chitosan is soluble in water and keeps the filmogenic
properties of the parent chitosan. With a similar methodology, a soluble in water N-meth-
ylenephenyl phosphonic chitosan has been produced [27]. Additionally, the surfactant
derivative N-lauryl-N-methylene phosphonic chitosan was produced via N-alkylation of
N-methylene phosphonic chitosan [28]. This derivative has a lower solubility in aqueous
media compared to N-methylene phosphonic chitosan but better solubility in organic me-
dia and forms micelles. N-methylene phosphonic N-methylene carboxylic chitosan has
been obtained in water-soluble form using N-methylene phosphonic chitosan and glyox-
ylicacid. The polymer maintains the filmogenic properties of parent chitosan and, because
of the presence of multidentate ligands, its use as a bivalent metal chelating agent is pro-
posed [29].
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Although the use of chitosan as a gene carrier has been reported, the use of this bi-
opolymer for this application is limited due to a relatively low transgenic efficacy. Phos-
phorylated derivatives have shown better performance (transfection was improved 100-
fold) and therefore are more suitable than chitosan to this end. Moreover, phosphorylated
derivatives also exhibit and improve metal ion chelating activity when compared to the
parent chitosan [30,31].

Due to the presence of cleavage glycosidic bonds, it is possible to degrade chitosan,
thus reducing its molecular weight. As previously mentioned, the control of chitosan de-
polymerization (polymer size) permits us to control some properties such as solubility or
viscosity. Moreover, the biological and technological properties of chitosan are related to
size, among other properties as previously reviewed [2]. Chitosan degradation can occur
through different mechanisms such as acid hydrolysis, oxidative-reductive or nitrous
acid depolymerization, ultrasonic degradation, or enzymatic degradation using specific
and non-specific enzymes. Chitosan has four types of glycosidic linkages -D-D-, -A-A-, -
A-D- and -D-A- (where A and D denote N-acetylglucosamine and glucosamine mono-
mers, respectively). Depending on the process, there is a prevalence in the breakage of
certain linkages and therefore different samples can be produced from the same parent
chitosan by selecting different methodologies. Chemical and physical methods are less
selective than enzymatic ones for producing specific patterns due to enzyme-specific
recognition but by controlling the parametres of the process some control over the com-
position can be gained.

Ultrasonic degradation of chitosan does not affect the degree of acetylation or poly-
dispersity of the recovered polymers allowing for the moderate degradation of the poly-
mer [32]. The rate of degradation depends on the acetylation degree of the parent chitosan
and not on the initial molecular weight [33].

Hydrogen peroxide produces random degradation of chitosan in a faster manner
than ultrasonic methodologies, producing a significant number of monomers and chitooli-
gosaccharides, the composition of which depends on the temperature and H202 concen-
tration [34]. Nitrous acid depolymerization can be considered somewhat specific since
HNO: attacks the primary amine in glucosamine and subsequently the cleavage of the
glycosidic bonds occurs. That is, only the glycosidic linkage following a D-unit can be
cleaved [35]. The chemical processes yield large amounts of monomers (D-glucosamine)
and when the intended final products are chitooligosaccharides rather than low molecular
weight chitosan, the yields are low [36]. HNO: provokes the formation of 2,5-anhydro-D-
mannose at the new reducing end, which may be considered a disadvantage of this acid.
When chitosan is degraded by HCI, the polymer not only suffers the hydrolysis of the O-
glycosidic linkage between residues but also the N-acetyl linkage can be hydrolyzed but
at a lower rate. The hydrolysis rate of D-D and D-A glycosidic linkages is lower than the
hydrolysis of A-A and A-D, therefore the reducing ends are dominated by acetylated units
[37]. By using a controlled precipitation method with methanol, it has been possible to
obtain chitooligosaccharides with DPs up to 16 with few low molecular weight oligomers
with a good yield [38].

The specific enzymatic degradation of chitosan occurs with a family of enzymes
named chitosanases (EC 3.2.1.132) and chitinases (EC 3.2.1.14). Chitosanases are glycosyl
hydrolases that catalyse the endo hydrolysis of (3-1,4-glycosidic bonds of partially acety-
lated chitosan to release chitosan oligosaccharides (COS) with little monomer release [39].
Chitosanase specifically hydrolyses chitosan by cleavage of glycosidic bonds with a -
DD-DA- pattern or a -DD-DD-pattern. Chitinases, which occur in families GH18 and GH
19, are glycosyl hydrolases that can degrade both A-A and A-D linkages and show no
activity against D-D linkages. Chitinases can be classified into two major categories (en-
dochitinases and exochitinases) according to their mode of action [40].

Non-specific enzymes, also called promiscuous enzymes, are also able to degrade
chitosan. These enzymes belong to the protease, lipase, cellulase, and hemicellulase fam-
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ilies, among others. Lysozyme is one of the most studied due to its relationship with pol-
ymer biodegradation. this enzyme is a protease that hydrolyses chitosan by cleavage of
glycosidic bonds with A-A-A-A- pattern or A-A-A-D-pattern, while A-D-A-pattern or D-
D-A-A are not or very slowly hydrolysed by lysozyme [14,17]. Apart from the previously
mentioned lysozyme, other proteolytic enzymes such as pepsin, papain and pronase
caused chitosan depolymerization, rendering low molecular chitosans (4-10 kDa) as the
main products and chitooligosaccharides and monomers in smaller amounts. Results in-
dicated that papain and pepsin had a similar action pattern. Both enzymes decreased
LMWC acetylation degree when compared to the parent chitosan; DP 2-6 were detected
in the supernatant monomers (D and A) and oligomers. Pronase showed different behav-
iour since no glucosamine was detected. It showed selectivity through A-A and A-D, re-
sulting in products having A monomers at the reducing end [41].

Neutral protease degraded chitosan in a manner dependent on the deacetylation de-
gree. The higher the DD, the higher the Km and the lower the Vmax. During degradation,
a reduction in the DD of the recovered LMW chitosans was observed. An analysis of the
partially hydrolysed chitosan revealed that the enzyme degraded D-D and A-D (3-1,4-gly-
cosidic linkages, producing a mixture of hetero oligosaccharides carrying an A residue at
the reducing end [42]. The same authors have studied the effect of the chitosan molecular
weight in the enzymatic activity since this parametre affects its chain flexibility in solution,
which in turn may affect its affinity for the enzyme in hydrolysis reactions. Their results
showed a lower affinity of the enzyme with a slower degradation rate when high molec-
ular weight chitosan samples were tested [43].

Hemicellulase, an enzyme related to the degradation of hemicellulose, has proven its
ability to reduce chitosan molecular weight in a manner that depends on the deacetylation
degree of the chitosan, rendering lower molecular weight samples when a chitosan sam-
ple with a DD of 85% was tested. Dimers, trimers, tetramers, pentamers and hexamers
were observed after 4 hours of reaction, and the enzyme was considered endo-acting since
no N-acetylglucosamine was detected [44].

Lipases have also proved their ability to hydrolysate chitosan, although the degrada-
tion rates are slower than the ones reported by other enzymes such as proteases or hemi-
cellulose. Controlling reaction temperature, a commercial lipase rendered low molecular
weight samples or chitooligosaccharides [45,46]. This lipase acted following both exo and
endo cleavage mode. The presence of D end products indicates that it acted on chitosan in
an exo-type mode while the sharp reduction in viscosity during the hydrolysis indicates
that an endo splitting occurred in the initial hydrolysis stage. Therefore, by controlling the
reaction time the final products can be led to oligomers with high DP or monomers. The
polymer polydispersity depended on the used enzyme, lipase from wheat germ rendered
samples with very wide molecular weight while lipase from R. japonicus exhibited better
control over polydispersity [47].

The data previously showed that it is possible to somehow select the degradation
products (LMW chitosans or oligosaccharides) by selecting the appropriate methodology
(Table 2). As we can see in some sections of this review, specific biological and technolog-
ical behaviour of chitosan degradation products depends not only on the method (physi-
cal, chemical, or enzymatic) selected to degrade the chitosan but also on the type of chem-
ical or enzyme used for these processes. This effect is more related to the degraded poly-
mer pattern rather than to the size or acetylation degree of the samples.
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Table 2. The main products produced in the enzymatic degradation of chitosan.

Enzyme Main Product
Chitosanase Oligomers DP 2-3
Hemicellulase Dimers, trimers, tetramers, pentamers and hexamers
Pepsine Glucosamine, N-acetylglucosamine oligomers with DP 2-6
Pronase 4-10 kDa
Papain Glucosamine, N-acetylglucosamine oligomers with DP 2—6
Lipase High DP

DP: depolymerization degree.

4. Biological Properties

Chitin, chitosan, oligosaccharides, and derivatives exert many biological activities in-
cluding antitumoral, antimicrobial, antioxidant, and anti-inflammatory activities, which
could be used as therapeutic polymers. It is remarkable that up today chitosan and chi-
tosan hydrochloride are only accepted as excipients by the regulatory agencies and not as
a drug for the treatment of diseases.

4.1. Antimicrobial Activity

Bacterial resistance to antibiotics is a critical public health concern and, therefore,
there is an urgency to find alternatives to antibiotics. Chitosan, chitosan derivatives and
chitooligosaccharides exert antimicrobial activity against different microorganisms, in-
cluding bacteria, filamentous fungi, and yeast [48]; some examples of the different micro-
organisms sensible to chitosan are shown in Table 3. Chitosan seems to have a growth-
inhibitory activity since bacteria is able to grow after the polymer is removed from the
media. This is of importance since resistant populations might emerge if the cells adapt to
chitosan [49].

Table 3. Antimicrobial and antifungal activity of chitosan.

System Target Inhibition References
Aeromonas hydrophila Complete
Chitosan Edwardsiella ictalurid 04% (EL FC) [50]
Flavobacterium columnare 0.8% (A. H)
Candida albicans
Gram-positive bacteria (such as Bacillus cereus, S. aureus, Bacillus
megaterium, Lactobacillus plantarum, Listeria monocytogenes, Lactobacil-
Chitosan lus brevis, and Lactobacillus bulgaricus) Strong and safe effect [51,52]
Gram-negative bacteria (such as Salmonella typhimurium, E. coli,
Pseudomonas aeruginosa, Pseudomonas fluorescens, Vibrio parahaemolyt-
icus, Enterobacter aerogenes, and Vibrio cholera)
No effect: chitosan oligo-
Chitosan hydrochloride saccharide and N—acetyl-
Carboxymethyl chitosan D-glucosamine.
. . . Candida krusei, C. albicans, C. glabrata Weak effect: Carboxyme- [53]
Chitosan oligosaccharide .
N-acetyl-D-glucosamine thyl chitosan.
Strong effect: Chitosan hy-
drochlorides.
Strong effect:
wound management due
to their antimicrobial na-
Chitosan wound dressing P. aeruginosa, B. cereus, L. monocytogenes ture, ability to accelerate [54-57]
wound contraction and
healing, haemostatic and
analgesic
Chitosan sponges S. aureus, E. coli [58,59]
Chitosan microparticles and E. coli, Vibrio cholerae, S. enterica, Streptococcus uberis, S. uberis, S. en-
terica, K. pneumonia, S. aureus, V. cholerae, Salmonella choleraesuis, S. Strong effect [60-62]

nanoparticles

typhimurium
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Due to chitosan’s poor solubility above pH 6.5, the use of chitooligosaccharides is
under consideration as polycationic biocides since they are soluble in water. Chitosan sol-
uble derivatives such as sulphated chitosan, N-trimethyl chitosan, N-diethylmethyl chi-
tosan or 2,6-diamino chitosan also avoid the use of acidic environments and exert antimi-
crobial activity [63-65]. This antimicrobial activity has applications in different fields such
as the food, textile, or cosmetic industry, among others. Thus, due to the ability of chitosan
to form shift bases, some new chitosan derivatives based on heterocyclic moieties have
been developed, including pyrazole ring and furanyl, pyridyl, or thiophenyl moieties.
Although these derivatives do not show higher solubility in aqueous media, their perfor-
mance against gram-positive microorganism was improved when compared with the par-
ent chitosan [66].

How these polymers (chitosan, chitooligosaccharides and derivatives) exert their an-
timicrobial activity is still under discussion. This fact can be explained by taking into ac-
count the lack of appropriate polymer characterization, purity issues, the use of different
microorganisms, and the lack of methodological uniformity. Some studies point to the
reduction in cell membrane permeability due to polymer coating on the surface of the cells
that blocks cell access to nutrients. This process occurs due to the interaction of -NH2
groups from chitosan chains with -COO- groups on the external cell membranes of micro-
organisms. Therefore, the antimicrobial activity depends on the acetylation degree. It has
also been hypothesized that chitosan can penetrate the cells and block RNA transcription
as a result of adsorption with bacterial DNA [9]. Most likely, these mechanisms are not
mutually exclusive, and several events are related to cell growth inhibition.

Intrinsic factors affecting the antimicrobial chitosan activity are due to the polymer
characteristics such as Mw, acetylation degree, polymer viscosity, or polymer concentra-
tion. The solvent used to dissolve the polymer also affects its behaviour. We have ob-
served that typical solvents used to dissolve chitosan such as acetic acid, citric acid, or
buffers such as AcOH-NaAc exert some antimicrobial activity per se (unpublished re-
sults). Other factors with great impact on the antimicrobial activity are related to the tested
microorganism, growth media, pH, temperature, ionic strength, or physiological state of
the cells.

The effect of polymer size is controversial. Some studies claim that the antimicrobial
activity of chitosan improves with the polymer size and have found that oligosaccharides
have lower antimicrobial activity [67-69]. When comparing chitooligosaccharides, those
showing higher DP exhibited higher antimicrobial activity [70]. Moreover, Tokura and co-
workers reported that chemically produced chitooligosaccharides of 2200 Da not only had
no antimicrobial activity but also served as growth accelerators of E. coli, while a sample
with 9300 Da inhibited bacterial growth [71]. On the contrary, other studies showed better
antimicrobial activity for a lower molecular weight chitosan sample (55 kDa) than a higher
one (155 kDa); in the same study when a sample of 90 kDa was tested a promotion of
bacterial growth was observed [72]. In another study, different tendencies were observed
depending on the pH of the media. In acidic pH conditions, the antimicrobial activity in-
creased with increasing MW. However, at neutral pH, antimicrobial activity increased as
the MW decreased [73]. Even so, no trend on the effect of chitosan Mw on antimicrobial
activity has been reported [74]. Regarding acetylation degree, it seems that the lower the
acetylation degree, the better the antimicrobial activity [69,74,75].

After depolimerization of a chitosan sample (400 kDa, DD~85%) with hemicellulose,
a set of chitosan samples with similar DD and Mw ranging from 130 to 2.8 kDa and a
chitooligosacharide sample with Mw 1.4 were produced. Some of these samples were also
half-acetylated, furnishing two chitosan samples with Mw of 53 and 18 kDa, and some
chitoligosaccharides with Mw of 1.4 kDa. Both chitooligosacharides samples and the half-
acetylated samples were water soluble, while the others were not soluble in water. All
samples were tested against Staphylococcus aureus, Escherichia coli, and Candida albi-
cans. In this study, water soluble chitosans and oligosaccharides did not exhibit antimi-
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crobial activity; in fact, they promoted the growth of C. albicans. Insoluble chitosan sam-
ples exhibited antimicrobial activity with the most pronounced effect when medium mo-
lecular weight samples were tested (Mw 78-48 kDa) [76].

Our group has studied the antimicrobial activity of low molecular weight chitosans
and oligosaccharides produced by enzymatic degradation in order to determine if the pol-
ymer pattern has some effect on this activity. Chitooligosaccharides were produced by
two different processes; thus, in process P1 chitosan was enzymatically depolymerized
with chitosanase, while in process P2 the sample was depolymerized in a two-step process
with HNO: and chitosanase. The samples were tested against E coli and L. monocyto-
genes. COS from P1 showed a higher capability to inhibit bacterial growth than COS from
P2. In both cases, COS were more effective at inhibiting E. coli (Gram-negative) than the
Gram-positive L. monocytogenes. Antimicrobial activity depended on the production
process and composition and structure of COS. COS produced in a one-step enzymatic
procedure showed better antimicrobial activity than those produced in the two-step
chemical-enzymatic process even when the samples exhibited similar DA and MW [77].

4.2. Antioxidant Activity

Antioxidants are gaining interest due to the relationship between oxidative stress and
several diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease,
amyotrophic lateral sclerosis, and cancer. Moreover, it is related to complications in other
diseases such as diabetes [78-80].

Chitosan contains an amino and several hydroxyl groups, which can react with free
radicals exhibiting scavenging ability. Some chitosan derivatives such as chitosan sul-
phates or N-2 carboxyethyl chitosan exhibited improved antioxidant activity [81-83].
Chitooligosaccharides have also been chemically modified to improve their antioxidant
activity, for instance by modification of the polymers with gallic acid [84,85] or phenolic
compounds [86].

Different methodologies have been used to determine chitosan and its derivatives’
antioxidant assays, which includes DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate),
ABTS (2,2-azinobis (3-ethylbenzothiazoline-6-sulphonic acid), and FRAP (ferric antioxi-
dant power) assays, peroxide and hydroxyl radical scavenging assays or the use of mac-
rophage models. DPPH and ABTS assays are based on electron and H atom transfer, while
the FRAP assay is based on electron transfer reaction, as depicted in Figure 3. The ORAC
(oxygen radical absorbance capacity assay) is also widely used to test antioxidant activi-
ties.

4 0:0¢

e- DPPH

/ ABTS

S s FRAP
0:0

Neono e
/

\_

Figure 3. Methodologies used to determine antioxidant activities.

The disparity between the polymers tested and the methodologies used to test the
activity produces considerable differences in the polymer concentrations that range from
50 ug/mL to 400 mg/mL [83]. Antioxidant activity is more remarkable for low molecular
weight samples rather than for high molecular weight ones since shorter chains form
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fewer intramolecular hydrogen bonds and therefore the reactive groups are more acces-
sible, contributing to the radical scavenging activity [87,88]. Regarding the effect of the
acetylation degree, the antioxidant activity seems to decrease when this parametre in-
creases [88].

4.3. Anti-Inflammatory Properties

The inflammatory process is an automatic physiological response of the body related
to tissue damage. The main goal of the inflammatory response is to bring circulating leu-
kocytes and plasma proteins to the site of the infection or tissue damage, to eliminate the
causative agent, when possible, and to start the healing process. Although inflammation
is necessary for survival, when it is very severe, unable to eradicate the causative agent,
or is directed against the host, the inflammatory process may cause damage. The inflam-
matory process is strongly related to the generation of free radicals. Again, this activity
seems to be more remarkable when the molecular weight of the chitosan is reduced and
chitooligosaccharides exhibit higher activity.

After chitosan (300 kDa) depolymerization with cellulose, the activity of degraded
polymers with medium molecular weight, low molecular weight and chitooligosaccha-
rides (156, 72, 7 and 3.3 kDa) were tested in terms of NO secretion, cytokine production,
and mitogen-activated protein kinase pathways in a model of lipopolysaccharide (LPS)-
induced murine RAW 264.7 macrophages. Chitosan samples (parent, medium, and low)
significantly inhibited NO production. On the contrary, the opposite effect was observed
with the COS. The mechanism followed by the medium and low Mw chitosan to inhibited
NEF-«B activation and iNOS expression differed. For medium chitosan (156 kDa) the pro-
cess occurred via the binding to CR3 while for low molecular weight chitosan the process
occurred via the binding to CR3 and TLR4 receptors. On the contrary, the lower molecular
weight chitosans activated NF-kB and enhanced iNOS expression by binding to CD14,
TLR4, and CR3 receptors to activate JNK signalling proteins [89]. In general, chitooligo-
saccharides are studied in more detail for this application compared to chitosan, due to
their better solubility in aqueous media and better performance.

The effect of acetylation degree on the anti-inflammatory activities of COS has also
been studied. Chitooligosaccharides with MW between 0.2 and 1.2 kDa were enzymati-
cally depolymerized, depending on the enzyme, fully deacetylated (fdCOS, mainly GIcN,
(GIeN)2, (GlIeN)3, and (GlcN)4), partially acetylated (paCOS: a mixture of at least 11 Cos
with different proportions of GIcNAc and GlcN), and fully acetylated (faCOS, mainly Glc-
NAc, (GIlcNAc)2 and (GlcNAc)3) were produced. The anti-inflammatory activity of the
three COS mixtures was studied by measuring their ability to reduce the level of TNF-a
in stimulated LPS murine macrophages (RAW 264.7). Only fdCOS and faCOS were able
to significantly reduce this factor [90,91]. The inhibition of NO secretion by COSs revealed
that 10% acetylated COS inhibited NO secretion significantly more than those with 50%
acetylation [92]. Citronellol grafted chitosan oligosaccharide derivatives have been pro-
duced to improve the anti-inflammatory activity of the oligosaccharides with degrees of
substitution of 0.165, 0.199 and 0.182, respectively. In all cases, the derivatives showed
better performance than the parent COS. These derivatives reduced the expression levels
of TNF-a by promoting the secretion of IL-4 and IL-10 and inactivated the NF-kB signal-
ling pathway via inhibiting the phosphorylation of p65, IKB«, and IKKf3 [93].

Using the same chitosan as a starting material to produce chitooligosaccharides ren-
dered samples with different anti-inflammatory behaviour. Chitooligosaccharides (5-10
kDa, DD: 87%) composed mainly of 42% fully deacetylated oligomers (A1-A3) plus 54%
monoacetylated oligomers, produced by enzymatic degradation with chitosanase, atten-
uated the inflammation in lipopolysaccharide-induced mice and in RAW264.7 macro-
phages. On the contrary, chitooligosaccharides (5-10 kDa, DD: 89%) from a two-step prep-
aration (chemical degradation followed by enzymatic degradation with chitosanase) were
composed of 50% fully deacetylated oligomers plus 27% monoacetylated oligomers (Al-
A3) promoted the inflammatory response in both in vivo and in vitro models [94]. This
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result shows how small differences in the COS mixture have a strong effect on the mixture
behaviour.

5. Metallic Nanoparticles and Chitosan

Metallic nanoparticles are usually defined as particles of metal atoms with sizes rang-
ing between 1 nm to a few hundred nanometres [95]. These particles exhibit optical, chem-
ical, and electronic properties that differ from individual atoms or bulk materials. These
unique properties are highly appreciated for different applications such as catalysis, pho-
tonics, or biomedicine [96].

Metallic nanoparticles can be prepared using myriad physical or chemical methods.
Metal ions can be reduced using chemicals (NaBHs, vitamin C and others) [97,98], plant
extracts (due to their phenolic compounds) [99], using polymers such as chondroitin sul-
phate or heparin [100,101], or using microorganisms containing specific enzymes such as
nitrate reductase [102,103]. Other authors have proposed the use of sonochemical reduc-
tion [104], radiation [105], electrochemical reduction [106] or heat evaporation [107]. Once
the formed metallic nanoparticles aggregate, the addition of stabilizers is needed [108]
(Figure 4).

.
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Figure 4. Scheme of metallic nanoparticle production and stabilization with chitosan.

The synthesis of metallic nanoparticles using chitosan as a reducing agent and/or sta-
bilizing agent is well described. Some authors have also proposed that chitosan plays a
role in the control of nanoparticle nucleation, thus controlling nanoparticle size to some
extent since metal concentration also affects the nanoparticle size [97,109].

The reducing and stabilizing properties of chitosan seems to be related to the pres-
ence of CH20H, CHO, and NH2 groups in the polymeric chain. Changes in the molecular
weight or deacetylation degrees not only alter the number of these reactive groups but
also modify the interactions (hydrogen bonds, electrostatic interactions, or steric interac-
tions) present in the system.

In Table 4, some examples of the usage of chitosan in metallic nanoparticle synthesis
are reviewed, including information about the molecules used as reducing agents, prop-
erties of the chitosan used when data are given, nanoparticle size, and morphology.

Table 4. Metallic nanoparticle based on chitosan.

Stabilizer
Metal Reducing Agent Chitosan NPs Size Morphology Ref.
Mw and DD
Ascorbic acid Cs 180 kDa, 75-85% DD 5-20 Spherical [98]
Ascorbic acid Cs 50 to 190 kDa, 75-85% 50-70 Flower-spherical [110]
Ascorbic acid Cs, 50 to 190 kDa, 75-85% 30-150 Flower [111]
Ascorbic acid TMCs 20 kDa 55-120 Spherical [112]
Palladium NaBH: Cs, 400 kDa DD 100% nd nd [109]
NaBH4 Cs, (~400 kDa) 2 Spherical [113]
MeOH Cs, (~400 kDa) 25 Spherical, large e;%g;‘)egate (Pd:MeOH [113]
Hydrazine Cs, (~400 kDa) 20 Highly aggregate [113]
N2Ha

. NaBH4 Cs, 400 kDa DD 100% 2-5 spherical [109]

Platinum .
NaBHs Cs, (~400 kDa) 2-3 spherical [113]
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MeOH Cs, (~400 kDa) 2 spherical [113]

Hydrazine "
NoH: Cs, (~400 kDa) 17-25 aggregates [113]
Cs, 1278 kDa Cs, 1278 kDa 16 [114]
Cs 817 KDa Cs, 817 KDa 5 Spherical [115]
NaBH4 Cs,400 kDa DD 100% [109]
Gold CsbD> BCSPA: >200,000 Cs, DD > 85%; >200,000 5-20 Spherical [101]
NaBH4 Csn.c. 6-20 Spherical; polyhedral [97]
COS 5 kDa COS 5 kDa 7-15 Spherical [116]
Cs, Cs, DD 53-95%, Mw 2.6-490 kDa 5-200 nm Spherical, triangles, polyhedral [117]
Cs Cs 1240 kDa, DA 0.13 10-150 _Spherical [118]

Triangles in long storage
Cs Cs, high Mw, DA 0.25 5 Spherical [119]
DD %; >2
Csbb> SCSP/S 200,000 Cs DD> 85%; >200,000 cps 20-200 Spherical, fractal [101]
Ascorbic acid Cs 180 kDa, 75-85% DD 5-20 Spherical [98]
Silver NaBHa4 Cs 400 kDa DD 100% 30-200 Spherical clusters [109]
Gamma radiation Csnc 4-5 Spherical [101]
Cs nc Csnc 10-60 Spherical [120]
Ascorbic acid/Cs 1278 Cs 1278 kDa 8 (114]
kDa

Csnc Csnc [121]
Cs Cs (50-190 kDa DD 75-85%) Fractal patterns [122]

Cs: chitosan; TMCs: trimethyl chitosan; nc: non-characterized; nd: non-determined; *aggregate size.

Data from Table 4 clearly show that the characteristics of the produced nanoparticles
depend on the method used to produce the nanoparticles and the characteristics of the
chitosan used to reduce and stabilize the metal ions. In general, due to the lack of a proper
characterization of the chitosan samples and the variety of reaction conditions used it is
very difficult to relate chitosan properties with the characteristics of the nanoparticles.
Recently, the effect of chitosan Mw and acetylation degree on the preparation of AuNPs
both as reducing and stabilizing agents has been analysed in detail [117]. The authors also
took into consideration the effect of polymer and gold concentration, temperature, and
reaction time. Their results showed that the chitosan acetylation degree and polymer con-
centration are the main parameters affecting the size and shape of the nanoparticles. Pol-
ymer molecular weight is related to the reductive efficiency since the reduction of the pol-
ymer size increases the amount of reducing sugars in the media. Our group has focused
its research on the production of AgNPs using low molecular weight chitosan samples.
As previously described in this review, the characteristics of these low molecular weight
chitosan samples depend on the enzyme used to produce the samples. We hypothesised
that samples with similar Mw and acetylation degrees may exhibit different behaviour
due to the monomer pattern. Our results showed that pattern is a key parameter in the
stabilization of the AgNPs, corroborating this hypothesis [123] A chitosan sample (538
kDa, DD 52%) with little ability to stabilize AgNPs was depolymerized with lysozyme
(fraction L) and chitosanase (fraction Q) and the resulting reaction mixture was separated
into three fractions by tangential ultrafiltration (fraction F1 (Mw > 30 kDa), fraction F2
(Mw 30-10 kDa ), and fraction F3 (Mw 10-5 kDa). After depolymerization, an increase in
the DD was observed with values between 62-74%). All fractions were able to reduce the
silver ion, but relevant differences were observed in terms of stabilization (Figure 5).
AgNPs produced with chitosan samples depolymerized with chitosanase (FQ2 and FQ3)
were larger, poorly stabilized, and tended to form large aggregates visible with the naked
eye. On the contrary, AgNPs produced with chitosan depolymerized with lysozyme were
smaller and more stable in all cases. As the Mw of the fraction was reduced, the polydis-
persity was also lowered. After one month, the stability of the AgNPs was evaluated and
results showed that AgNPs produced with the fractions F1Q and F1L were the most ap-
propriate for nanoparticle stabilization.
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Figure 5. Visual evaluation of AgNP—polymer solutions after 5 h at 90 °C. (A) F1Q, (B) F2Q, (C) F3Q,
(D) F1L, (E) F2L, (F) F3L, and (G) parent chitosan. Arrows indicate the presence of aggregates. ©
2021 by the authors. Licensee MDPI, Basel, Switzerland (CC BY) license [123].

The AgNPs produced with lysozyme fractions and the higher Mw fraction of chi-
tosanase were tested in the catalytic reduction of TBO [124]. AgNPs produced through
chitosan depolymerization with lysozyme showed better performance than the sample
produced using chitosanase. Moreover, AgNPs produced with fraction F1L exhibited the
best performance in the reaction. That is, the effect of the polymer pattern goes further
than affecting optical properties and stability and differences in the catalytical behaviour
was also observed. This difference is not due to the polymer, since control reactions
showed that the polymeric fractions were not able to catalyse the reduction in TBO and
therefore the effect is solely ascribed to the AgNPs.

6. Chitosan in Biocatalysis

The use of immobilized enzymes for catalysing chemo-, regio- and/or stereoselective
chemical reactions is a very useful and well-known technique [125-142]. In this sense, the
use of chitosan for immobilizing enzymes, either as a carrier for covalent linking or as an
encapsulation vehicle, is well reported [143-149]. Our group described the production of
enantiopure D-p-hydroxyphenylglycine (D-p-HPG, Figure 6) using a multi-enzyme sys-
tem containing D-hydantoinase and D-carbamoylase encapsulated in chitosan-based ma-
terials [150-153]
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Figure 6. Schematic representation of the production of p-hydroxyphenylglycine (p-HPG) starting from a racemic mixture
of p-hydroxyphenyl hydantoin (HPH) using a multi-enzyme system containing immobilized D-hydantoinase and D-car-

bamoylase.

D-p-HPG (or simply D-HPG, a D-amino acid) is a very useful chiral synthon, mainly
used for the preparation of different semi-synthetic antibiotics, such as amoxicillin,
cefadroxil, cefprozil, or cefoperazone [154-156] (Figure 6), but also anticancer drugs [157]
and some heterocyclic compounds [158-161].

For preparing D-HPG, one of the most efficient processes is the so-called “hydan-
toinase process”, depicted in Figure 6. This cascade of enzymatic reactions, aiming to pro-
duce optically pure amino acids [162,163], requires an initial step catalyzed by a D-specific
hydantoinase [E.C. 3.5.2.2.] to transform D-p-hydroxyphenyl hydantoin (D-HPH) into N-
carbamoyl-D-p-hydroxyphenylglycine (C-p-HPG), which should be subsequently hydro-
lyzed by a second enzyme, a highly enantiospecific N-carbamoyl amino acid amidohy-
drolase (also termed D-carbamoylase; E.C.3.5.1.77), to furnish the free amino acid. One of
the main features of the hydantoinase process derives from the spontaneous racemization
of D-HPH at pH values higher than pH 8, caused by the acidic hydrogen at position 5 of
the imidazolidine-2,4-dione ring, which allows for oxo-enol-tautomerism. This leads to a
dynamic-kinetic resolution (DKR), allowing for the use of a mixture of L-and D-HPH as
the initial substrate and a theoretical 100% conversion and 100% optically pure D-amino
acid production (Figure 6).

Both enzymes have been reported to be present in different microorganisms, such as
Agrobacterium sp., Pseudomonas sp., Arthrobacter crystallopoites, or Sinorhizobium mo-
relense [151], and can be used either as whole cells, crude cell extracts, or purified enzymes
(see Aranaz et al. [151] and references therein). If using isolated enzymes, immobilization
is an excellent strategy for stabilizing the enzymatic cocktail due to the fact that D-hydan-
toinases are quite stable but D-carbamoylases display low thermostability and are prone
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to suffer oxidative degradations. In this sense, different protocols have been described (see
Aranaz et al. [151] and references therein), and our group described how a multi-enzyme
extract from Agrobacterium radiobacter rich in D-hydantoinase and N-carbamoyl-D-
amino acid amidohydrolase was easily immobilized via adsorption on chitin and chitosan
for its application in the synthesis of p-hydroxyphenylglycine [153]. In fact, this adsorp-
tion derivative on chitin showed higher activity compared to the covalent one, and much
greater pH stability compared to the soluble multi-enzymatic extract; on the other hand,
the adsorption derivative exhibited greater pH-stability in the pH range under study,
showing higher activity at low temperatures. Anyhow, as the immobilized derivatives
could not be properly reused, we developed a new strategy based on the encapsulation of
a crude cell extract from the same microorganism, containing both enzymes, in alginate
beads [164]. This biocatalyst could be reused six times in the presence of solid HPH parti-
cles in a stirred batch reactor without losing any activity until the beads started to burst.
Anyhow, as these alginate-based catalysts showed low stability in calcium chelating buff-
ers (i.e. phosphate buffers) and easy microbial contamination during storage at 4 °C, an-
other immobilization matrix, alginate—chitosan polyelectrolyte complexes, was assessed
[150,152]. Thus, alginate mixed chitosan capsules were prepared in one step (by simply
dropping an alginate solution containing the extract into a chitosan solution containing
calcium ions) or in a two-step process (preformed calcium-alginate capsules loaded with
the crude cell extract were subsequently coated with chitosan). The encapsulation yields
were around 60% and independent of the characteristics of the different chitosans used.
However, p-HPG production was indeed affected by chitosan acylation degree D-D (the
lower D-D, the lower p-HPG) but not by chitosan molecular weight. Generally speaking,
the best biocatalyst allowed for a p-HPG production yield of around 60% without any
significant protein release to the reaction media. Interestingly, this encapsulation proce-
dure improved the stability of D-carbamoylase against oxidative damage during storage,
particularly after freeze-drying. In addition, the alginate coated chitosan capsules could
be reused eight times without enzymatic activity loss before D-carbamoylase started los-
ing its activity and alginate-chitosan beads suffered burst problems contaminating the
reaction.

In a collaboration with the group of Dr. Fernandez-Lucas, we described the covalent
immobilization of a recombinant nucleoside 2’-deoxyribosyltransferase from Lactobacil-
lus reuteri (LrINDT) on cross-linked magnetic chitosan beads via epichlorohydrin activa-
tion under alkaline conditions, and subsequent incubation with glutaraldehyde [165], as
schematized in Figure 7.



Polymers 2021, 13, 3256 16 of 28

OH OH OH
0 ° | o 0
HO 0
HO HO HO
NH, NH NH, OH
HO N O,

Fe.
, 1 ~07 1 magnetic
magnetic O\F -0 :> chi?osan
e

chitosan
OH
© (0]
HO HO
NH,»

Figure 7. Schematic representation of the immobilization of a recombinant nucleoside 2’-deoxyribosyltransferase from
Lactobacillus reuteri (LrNDT) on cross-linked magnetic chitosan beads. Adapted from Fernandez-Lucas et al. [165].
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Hence, by varying the amount of magnetite (FesO4) and epichlorohydrin (EPI), dif-
ferent macroscopic beads were prepared and fully characterized (by scanning electron
microscopy, spin electron resonance (ESR), and vibrating sample magnetometry (VSM))
before being used as supports. Once activated with glutaraldehyde, the best support was
chosen after assessment of immobilization yield and product yield using as a standard
reaction for the synthesis of thymidine (dThd) from 2’-deoxyuridine (dUrd) and thymine
(Thy), as depicted in Figure 7. Additionally, optimal conditions for chitooligosaccharides
with the highest activity of immobilized LrNDT on magnetic chitosan were carried out
using response surface methodology (RSM). Thus, the best-immobilized biocatalyst re-
tained 50% of its maximal activity after 56.3 h at 60 °C and no lost activity was observed
after storage at 40 °C for 144 h. Subsequently, this innovative immobilized biocatalyst was
employed in the enzymatic synthesis of 2’-deoxyribonucleoside analogues and arabinosyl
nucleosides such as vidarabine (ara-A) and cytarabine (ara-C), as depicted in Figure §,
leading to moderate or good yields at 2 h reaction time. Remarkably, the immobilized
derivatives could be easily recovered and recycled for 30 consecutive batch reactions with-
out any significant decrease in the catalytic activity in the synthesis of 2,6-diaminopurine-
2’-deoxyriboside (2,6-DAPdRib) and 5-trifluorothymidine (5-tFThd).
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Figure 8. Synthesis of different natural and non-natural nucleosides using a recombinant nucleoside 2’-deoxyribosyltrans-
ferase from Lactobacillus reuteri (LtNDT) immobilized on cross-linked magnetic chitosan beads [165]. Commission on Bi-
ochemical Nomenclature: adenine (Ade), uracil (Ura), cytosine (Cyt), thymine (Thy), 2,6-diaminopurine (2,6-DAP), 5-tri-
fluorothymine (5-tFThy), 2’-deoxyuridine (dUrd), 2’-deoxyadenosine (dAdo), 2’-deoxycytidine (dCyd), thymidine (dThd),
2,6-diaminopurine-2’-deoxyriboside (2,6-DAPdRib), 5-trifluorothymidine (5-tFdThd),2’-fluoro-20-deoxyuridine (2'-
FdUrd), 2’-fluoro-2’-deoxycitydine (2’-FdCyd), ara-uracil (ara-U), ara-adenine (ara-A).

7. Chitosan in Drug Delivery

Since the introduction of the first polymers in drug delivery, chitosan has shown su-
perior biological and physiochemical properties for a wide variety of biomedical and in-
dustrial applications. The main feature of this biopolymer is its cationic character due to
amino groups. These amino groups are also responsible for properties such as controlled
drug release, mucoadhesion, in situ gelation, transfection, permeation enhancement, and
efflux pump inhibitory properties [166]. Moreover, interest in this biomaterial due to its
central nervous system (CNS) bio-medical implementation has increased because of its
ability to cross the blood brain barrier (BBB) [167].
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Therefore, chitosan is widely used in drug delivery due to its technological proper-
ties, which allow us to process the polymer in different ways (Table 5).

Table 5. Some examples of chitosan presentations in drug delivery.

Presentation References
Films [168-171]
Sponges [172,173]
Scaffolds [174,175]
Nanoparticles [176]
Microspheres [177-179]
Hydrogels [180-182]
Aerogels [183-185]
Fibers [186,187]
Microneedles [188,189]
Coated Liposomes [190,191]
Nanocomposites [192,193]
Composites [194]

Initially, a chitosan salt (chitosan hydrochloride) was approved in 2002 by the Phar-
macopeia. Chitosan was first introduced as an excipient into the European Pharmacopeia
6.0 and the 29th edition of the United States Pharmacopeia (USP) 34-NF almost ten years
later. These monographs contain the assays and establish limits to be observed when the
polymer is used as a pharmaceutical excipient [195,196]. The increase in the number of
publications regarding the use of this polymer in drug delivery is shown in Figure 9 and
reveals a strong increase since 2002 that is still maintained today.
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Figure 9. Publications about chitosan drug delivery in Scopus (1987-2020).



Polymers 2021, 13, 3256

19 of 28

Chitosan films are easily produced by solvent-casting methodologies, but more com-
plex systems can be produced by blending the polymer with others such as pectin [197]
or by producing layer-by-layer films with negatively charged polymers like polyacid
[198], poly (lactic-co-glycolic acid) [199] or polylactic [200], among others. Besides their
safety, biocompatibility, and biodegradability, biopolymer-based films have been draw-
ing increasing interest as excellent candidates not only as controlled-drug delivery sys-
tems but also as materials to produce contact lenses, wound dressings, and tissue engi-
neering matrices.

Particulate chitosan-based systems (micro and nano systems) are widely used for the
encapsulation of a large variety of molecules such as growth factors [178], antimicrobials
[201], painkillers [202], anti-tumoral [203] or anti-inflammatory drugs [204].

Recently, chitosan has been used for the fabrication of microneedles (MNs) due to its
film-forming ability, biodegradability, and biocompatibility, making it suitable for topical
and transdermal drug delivery [188]. In particular, the use of chitosan MNs in vaccination
is a hot topic of discussion [205-207]. The use of chitosan MNs in wound healing and
point-of-care testing is revolutionary and gives hope of more useful developments in
these areas. However, some drawbacks still need further investigation. The development
of MNss devices with adequate mechanical strength to penetrate the skin without causing
pain and skin damage and the development of efficient methods for their sterilization
remain challenging [208].

A comparison of the number of publications containing ”Chitosan + drug delivery”
in Scopus and patents in Lens portal (free, open patent, and scholarly search) is shown in
Figure 10. As observed, the number of patents is almost four times the number of publi-
cations, showing the increasing application of this polymer in the drug delivery field. An
interesting article by Kurakula and Raghavendra summarizes the chitosan biomedical
trends and the related patents [209].
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Figure 10. Publications about chitosan drug delivery in Scopus and patents in Lens (1987-2020).

8. Conclusions and Prognosis

Chitosan and its derivatives have been used in a myriad of applications for a long
time. The potential interest of these polymers is clear when observing the number of arti-
cles and patents that appear every year and the growing market perspective. In some of
these applications such as agriculture or the food industry, the use of chitosan in the mar-
ket is well established. The use of chitosan has extended to a large number of research
areas from Materials Science to Arts and the Humanities (Figure 11).
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However, chitosan potentiality is somehow hindered by the inconsistency in the re-
search data and the lack of knowledge in the ultimate mechanism underlying the proper-
ties of chitosan. Between 20112020, the number of publications on chitosan has displayed
a steady growth. In 2021, a drop is observed, which is ascribed in part to the large number
of reviews published in 2020, probably due to the COVID-19 pandemic, which has af-
fected normal laboratory work worldwide. Regardless, we consider that this growth will
continue in the following years, driven by the strong effort that has been carried out by
the Chitin Science Scientific Community in the systematic research on this polymer. In
fact, its approval by different agencies has boosted the interest in this polymer both by the
industrial and scientific communities.

Chitosan specifications are ultimately related to its final application. Thus, high qual-
ity chitosans with low heavy metal and low endotoxin contents are required for biomed-
ical and pharmaceutical uses. Moreover, strict control of production is needed to avoid
uncontrollable hydrolysis and chemical modifications during polymer isolation. There-
fore, chitosan production is not a trivial issue. To date, chitosan production cannot be con-
sidered fully sustainable due to the large amount of acid and basic reagents needed and
the high temperatures required. Unfortunately, biotechnological processes using biocata-
lysts are currently limited to the laboratory scale so that implementation of these greener
processes at a large scale is certainly one of the milestones we want to see being achieved
in the next decade.
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