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Abstract: The innovation of geopolymer concrete (GPC) plays a vital role not only in reducing
the environmental threat but also as an exceptional material for sustainable development. The
application of supervised machine learning (ML) algorithms to forecast the mechanical properties
of concrete also has a significant role in developing the innovative environment in the field of civil
engineering. This study was based on the use of the artificial neural network (ANN), boosting, and
AdaBoost ML approaches, based on the python coding to predict the compressive strength (CS) of
high calcium fly-ash-based GPC. The performance comparison of both the employed techniques
in terms of prediction reveals that the ensemble ML approaches, AdaBoost, and boosting were
more effective than the individual ML technique (ANN). The boosting indicates the highest value
of R2 equals 0.96, and AdaBoost gives 0.93, while the ANN model was less accurate, indicating the
coefficient of determination value equals 0.87. The lesser values of the errors, MAE, MSE, and RMSE
of the boosting technique give 1.69 MPa, 4.16 MPa, and 2.04 MPa, respectively, indicating the high
accuracy of the boosting algorithm. However, the statistical check of the errors (MAE, MSE, RMSE)
and k-fold cross-validation method confirms the high precision of the boosting technique. In addition,
the sensitivity analysis was also introduced to evaluate the contribution level of the input parameters
towards the prediction of CS of GPC. The better accuracy can be achieved by incorporating other
ensemble ML techniques such as AdaBoost, bagging, and gradient boosting.

Keywords: geopolymer concrete; compressive strength; environment; cement; machine learning;
coefficient of determination; fly ash; predictions

1. Introduction

It is clear that concrete material is gaining more popularity as the demand for con-
struction work increases [1]. The demand for ordinary Portland cement (OPC) has also
increased due to the rapid surge reported regarding construction work [2]. The concrete
sector faces many problems to meet the high demand for OPC due to restricted reserves of
limestone, slow production growth, and increasing carbon taxes. OPC is considered one of
the predominant building materials investigated in the construction industry and reported
as 4.2 billion tons (short scale) production in 2019 [3]. During the manufacturing of OPC,
numerous gases affect the environment in series of ways [4]. Acquisition of limestone, an
important raw material of OPC, causes water pollution and land pollution and results in the
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disturbance of the local ecosystem and fauna and flora [5]. The OPC production liberates
approximately the same amount of carbon oxide (CO2) into the environmental condition
and leads to air pollution [6]. CO2 emission during OPC production accounts for about
7% of the total greenhouse gas excretion and is responsible for about a 4% enhancement
towards global warming [7]. India holds the second position in the world with the annual
production of about 502 million tons of OPC and is predicted to be hitting the figure of
550 million tons by 2025 [8]. On the other hand, the disposal of industrial waste such as
fly ash ground granulated blast furnace slag (GGBS), silica fume, and other secondary
cementitious materials (SCM) also has a serious threat to the environment [9–11]. The
disposal of these wastes in the water as well as in the land causes water and land pollution,
respectively [12–14]. The utilization of these industrial by-products to replace the OPC in
the concrete leads to another type of concrete named geopolymer concrete (GPC) [15–18].
Geopolymer materials are alternative binders to OPC cement with a low CO2 content. They
can be produced by reusing industrial wastes such as fly ash from coal-fired power plants
or blast furnace slag. Geopolymer concrete provides improved fire resistance, resistance to
chemical corrosion, and enables a viable use of waste materials. The demand and scale of
concrete production is a heavy burden for the natural environment. The type and amount
of cement being used have the main impact on the size of this load, which is associated
with high CO2 emissions. The reduction of the concrete burden for the natural environment
is achieved by optimizing the composition of the concrete mixture, limiting the cement
consumption, by using mixed cements or replacing cement with other binding materials.
The most ecological approach is using waste materials as binders that can be used and
disposed of in the concrete [19].

Application of SCM in concrete to replace cement content at certain percentages or
even at 100% is of great intersect for researchers in the field of civil engineering [20–22].
This replacement achieved the desired requirements/strength of concrete and minimized
the environmental risks [23]. Ashes from coal combustion in the pulverized-fuel boiler
can partly replace the aggregate or cement in the concrete mixture for the production of
concrete elements with limited longevity and durability [24]. The ashes after incineration of
post-coagulation sediments which contain organic glues can also substitute the aggregate.
These wastes, after neutralization attempt by cementation (solidification), can be used as a
filler of concrete mixture for the production of prefabricated components [25]. Ashes from
the incineration of sewage sludge, after appropriate treatment, can be used as lightweight
aggregate or in the production of concretes and mortars, partly replacing Portland cement.
These ashes are rich in a phosphorus compound. Therefore, it is assumed that the slow
increase of strength of concretes containing such ash may be caused by the presence of
phosphate ions, which contribute to delaying the hydration process [26]. Marble waste
generated during the exploitation of deposits, by using the shooting technology, can be
disposed of as waste marble dust in the production of marble clay bricks and can partially
replace cement in air-cured mortar [27,28]. Silica fume is a by-product of the silicon
metals production. It is used in the production of additives for cement mortars, industrial
concrete, insulation materials, ceramic products, products with an increased resistance
to high temperature and high-performance self-compacting concrete [29]. It has been
reported that industrial waste and numerous artificial and natural fibers can be successfully
utilized to enhance the properties of concrete [30–32]. Ganesh et al. [33] research was
based on the high-performance fiber-reinforced geopolymer concrete. The glass fibers were
incorporated in the GPC to investigate certain properties. It was noted that the energy
absorption capacity of GPC was increased tenfold, while the brittleness was decreased
significantly. Shahmansouri et al.’s [17] study was based on the application of an artificial
neural network (ANN) to forecast the compressive strength (CS) of eco-friendly GPC using
silica fume and natural zeolite (NZ) in it. It was reported that the NZ and silica fume have
an impressive effect on the CS of GPC. The ANN model also shows the high accuracy of
prediction, indicating the R-value equals 0.98 of its training set. Aneja et al. [34] used a type
of ANN model to predict the strength properties of fly-ash- and bottom-ash-based GPC. It
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was reported that the ANN model was effective in the forecasting of GPC strength. Khan
et al. [35] studied the application of gene expression programming (GEP) to predict the
compressive strength of geopolymer concrete. It was reported that the GEP model is very
much effective towards the prediction of compressive strength of geopolymer concrete. Ma
et al.’s [36] study was based on both the structural and material properties of GPC. The
number of parameters evaluated in the previous studies was reviewed and compared with
one another.

Artificial intelligence (AI) evolution in civil engineering plays an impressive role,
especially when it comes to predicting the behavior/performance of the materials such
as concrete. The use of various machine learning (ML) techniques such as decision tree
(DT), ANN, gene expression programming (GEP), AdaBoost, bagging, boosting, support
vector machine (SVM), and random forest (RF) are popular for the forecasting of required
outcomes [37–40]. Ahmad et al. [41] used the GEP algorithm to predict the compressive
strength of recycled coarse aggregate-based concrete, and it was reported that the GEP
model was effective for forecasting the CS of concrete. Song et al.’s [42] research was based
on both the experimental evaluation and use of the ANN model for ceramic waste-based
concrete. The ANN model was also compared with other DT models and noted that the
ANN had a high-performance level of prediction as opposed to DT. Khan et al. [43] used
the GEP model to predict CS of fly ash-based GPC. The model’s accuracy was confirmed
via statistical checks and external validation. Aslam et al. [44] studied the application
of the GEP model towards the prediction of CS of high-strength concrete. The study
reveals that the ML approaches proposed adamant accuracy and high-performance level
in the prediction aspect. Chu et al.’s [45] research was based on the use of GEP and multi-
expression programming (MEP) to predict the strength property of geopolymer concrete.
The study also reveals that the GEP model was more accurate in prediction than the MEP
model for geopolymer concrete.

This study uses both the individual (ANN) and ensemble (boosting) ML algorithms
to forecast the compressive strength of high calcium fly ash-based geopolymer concrete.
The ANN and boosting approaches were incorporated for the prediction aspect. The
evaluation of the errors, mean absolute error (MAE), mean square error (MSE), and root
mean square error (RMSE) were the part of this study, which confirms the model’s accuracy.
The statistical checks and k-fold cross-validation process was also adopted to confirm the
model’s accuracy. In addition, the sensitivity analysis was also carried out to evaluate the
contribution of all input parameters towards the prediction of compressive strength of high
calcium fly ash-based GPC.

2. Literature Review

The ML learning algorithms are now widely used for the prediction of required
outcomes. The mechanical properties of concrete are effectively forecasted via various
ML techniques. The ANN, DT, SVM, GEP, and other ensemble ML approaches are most
popular for the prediction of different properties of concrete. Iqbal et al. [46] used the
GEP technique to predict the mechanical properties of green concrete containing waste
foundry sand and represent the effective applications of the GEP model towards the
prediction. Golafshani et al.’s [47] research was based on the ANN approach to forecasting
the mechanical properties of sustainable concrete with waste foundry sand. It was reported
that the ANN technique could be effectively used for the prediction of any type of concrete.
Sun et al. [48] used the conventional neural network for the prediction of mechanical
properties from microstructure images in the fiber-reinforced polymer. It was noted that
the trained models could be applied to identify the position of potential damage site in
the fiber-reinforced polymer. Akande et al.’s [49] study was based on the performance
comparison of ANN and SVM algorithms towards the prediction of the compressive
strength of concrete. The study represented that the SVM approach’s progress performance
was slightly better compared to the ANN technique. The application of numerous types of
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ML approaches towards predicting many properties of concrete containing various types
of industrial wastes is listed in Table 1.

Table 1. Prediction properties details via supervised machine learning techniques.

Sr. No Type of ML Notation Data Points Forecasted
Properties Year Material

Used References

1. Support vector
machine SVM 144 CS 2021 FA [50]

2. Gene expression
programming GEP 303

Bearing capacity
of concrete-filled
steel tube column

2019 _ [51]

3. Data Envelopment
Analysis DEA 114

CS Slump test
L-box test

V-funnel test
2021 FA [52]

4.

Gene expression
programming,

Artificial neural
network, Decision

tree

GEP, ANN, DT 642 Surface Chloride
Concentration 2021 FA [53]

5. Support vector
machine SVM - CS 2020 FA [54]

6. Support vector
machine SVM 115

Slump test
L-box test

V-funnel test
CS

2020 FA [55]

7. Gene Expression
Programming GEP 351 CS 2020 GGBS [56]

8. Gene Expression
Programming GEP 54 CS 2019 NZ (Natural

Zeolite) [57]

9. Gene Expression
programming GEP 357 CS 2020 - [44]

10.
Random forest and

Gene Expression
programming

RF and GEP 357 CS 2020 - [57]

11. Artificial neuron
network ANN 205 CS 2019

FA
GGBFS

SF
RHA

[58]

12.

Intelligent rule-based
enhanced multiclass

support vector
machine and fuzzy

rules

IREMSVM-FR
with
RSM

114 CS 2019 FA [59]

13. Random forest RF 131 CS 2019
FA

GGBFS
FA

[60]

14.
Multivariate

Adaptive regression
spline

M5
MARS 114

CS
Slump test
L-box test

V-funnel test

2018 FA [61]

15. Random Kitchen Sink
Algorithm RKSA 40

V-funnel test
J-ring test
Slump test

CS

2018 FA [62]

16.
Adaptive

neuro-fuzzy inference
system

ANFIS 55 CS 2018 - [63]

17. Artificial neuron
network ANN 114 CS 2017 FA [64]

18. Artificial neuron
network ANN 69 CS 2017 FA [65]

19. Individual and
ensemble algorithm

GEP, DT and
Bagging 270 CS 2021 FA [66]

20. Individual with
ensemble modeling

ANN, bagging
and boosting 1030 CS 2021 FA [67]

21. Multivariate MV 21 CS 2020
Crumb

rubber with
SF

[68]

22. Gene Expression
programming GEP 277 Axial capacity 2020 - [69]
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Table 1. Cont.

Sr. No Type of ML Notation Data Points Forecasted
Properties Year Material

Used References

23.
Adaptive

neuro-fuzzy inference
system

ANFIS with ANN 7 CS 2020 POFA [70]

24.

Response Surface
Method, Gene

expression
programming

RSM, GEP 108 CS 2020 Steel Fibers [71]

25.

Decision tree,
artificial neural

network, bagging,
and gradient

boosting

DT, ANN, BR, GB 207 CS 2021 FA [72]

3. Methodology and Data Description

It is a fact that the supervised ML algorithms required a number of input parameters
to run the model for the selected ML approach. The database is the key aspect for running
the models to predict the required output. The data used in this research for running the
models for both ensemble and individual ML techniques were obtained from the published
literature [73–81]. The individual (ANN) and ensemble (AdaBoost and boosting) models
were run based on the nine input parameters such as Na2SiO3, NaOH, SiO2, Na2O, the
molarity of NaOH, and age of the curing to have the result in the form of output (CS). The
performance of the models is also based on the number of input variables, which indicates
that the input parameters have a significant effect on the accuracy of the models toward
the prediction of their outcomes [82]. This research is also based on nine above-mentioned
input variables with a total of 154 data points to forecast the outcome (CS) of high calcium
fly ash GPC. The python coding was incorporated in the spyder (4.1.4) of the Anaconda
software to run all the employed models. The coefficient correlation R2 value was the
indication of an accuracy level between 0–1. The higher value of R2 and lower value of the
errors (MAE, MSE, RMSE) indicates the high accuracy of the selected model towards the
prediction of the required output. The descriptive statistics of the input variables used to
run the model in the study can be seen in Table 2, while the relative frequency distribution
of these variables is depicted in Figure 1.

Table 2. Descriptive analysis of the input variables.

Parameters Fly Ash Coarse
Aggregate

Fine
Aggregate NaOH Na2SiO3 SiO2 Na2O Molarity

of NaOH
Curing

Age

Mean 465.79 1060.99 598.93 94.26 167.87 30.12 13.16 11.65 28.13
Standard Error 6.97 16.93 5.29 3.07 4.64 0.10 0.13 0.24 1.37

Median 494.00 1091.00 600.00 95.00 138.00 30.00 12.00 12.00 24.00
Mode 550.00 838.00 600.00 95.00 239.00 30.00 12.00 8.00 24.00

Standard
Deviation 86.54 210.13 65.61 38.05 57.61 1.20 1.67 2.98 17.01

Sample Variance 7489.66 44,152.69 4305.08 1447.46 3318.74 1.43 2.79 8.90 289.26
Kurtosis −1.26 0.77 −0.07 1.78 −1.77 1.92 −0.68 −0.31 2.44

Skewness −0.26 0.80 0.01 1.02 0.20 1.50 −0.28 0.42 1.67
Range 300.00 846.00 291.00 157.00 136.00 6.00 7.20 12.00 69.00

Minimum 300.00 838.00 459.00 41.00 103.00 28.70 9.00 8.00 3.00
Maximum 600.00 1684.00 750.00 198.00 239.00 34.70 16.20 20.00 72.00

Sum 71,732.00 163,393.00 92,235.40 14,516.20 25,851.42 4637.90 2026.20 1794.00 4332.00
Count 154.00 154.00 154.00 154.00 154.00 154.00 154.00 154.00 154.00
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3.1. Artificial Neural Network (ANN)

ANNs are also known as neural networks (NNs), and this is the computing system
stimulate by the biological neural network, which accounts for animal brains. ANN is
established on a group of nodes or units which are interconnected with one another, known
as artificial neurons. The neurons’ structure and process are the reflections of the brain.
These neurons receive a signal before processing and have the capability to signal the
neuron which relates to it. The original number is a “signal” at a connection, and the
outcome of every neuron is enumerated by other non-linear functions of the sum of its
inputs. The connections are known as the edges. Edges, along with the neurons, normally
have a weight that accommodates as learning proceeds. The increase and decrease of the
weight are based on the strength of the signals at the connection. Neurons may have an
entrance such as a signal processed only if the signal of the aggregate crosses that entrance.
The neurons are typically arranged in the form of layers. Every layer has its own function
on its outputs. These layers are the path for the signals which travel from the first layer
(the input layer) to the last layer (the output layer), possibly after passing these layers the
number of times. The same function and process are also adopted to predict the mechanical
properties of concrete in civil engineering.
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3.2. Boosting Algorithm

Boosting was initially invented by the theorists who were involved in computational
learning, while machine learning researchers then generalized it. The boosting is also
considered as one of the most used base learners. It is termed an ensemble algorithm which
tends to a weighted average of predictions of individual classifiers. Boosting is also one of
the powerful regression tools. Boosting can perform tasks when there are more variables
than those of the given observation. This ensemble algorithm can split the given model
into a number of sub-models to have a better value of coefficient correlation (R2). This
ML approach is also used for the more accurate prediction of the required outcome. The
mechanical properties of different types of concrete are being forecasted by employing
the boosting technique at high accuracy. The other ensemble ML algorithms, along with
the boosting, are also incorporated to predict the performance of concrete for comparison.
Two parameters are required to explain the basic boosting machine learning approach.
During the process, the number of splits (number of nodes) can be adjusted to fit each
regression. The total number of nodes is equal to the sum of the splits multiplied by
one. Identifying one split results in the creation of an additional model with only main
effects. Identifying two splits corresponds to the model’s primary effects and two-way
interconnections, respectively. Boosting operates in the same manner as other ensemble
machine learning algorithms.

3.3. AdaBoost Algorithm

The ensemble technique is a machine learning concept that allows for the training
of multiple models using a common learning algorithm. The ensemble consists of many
algorithms collectively referred to as multi-classifiers. To resolve the issue, a group of
hundreds or thousands of learners working toward a common goal comes together. Ad-
aBoost is a supervised machine learning technique that makes use of ensemble learning. It
is also known as adaptive boosting because the weights are re-assigned to each instance,
with increased weights assigned to instances that were incorrectly classified. Boosting
techniques are frequently used in supervised machine learning to reduce bias and variance.
These ensemble techniques are used to strengthen the learner who is having difficulty.
During the training phase for the input data, it employs an infinite number of DTs. While
constructing the initial DT/model, high priority is placed on the recorded data that are
incorrectly classified throughout the initial model. These data records are the only ones that
are used as input for another model. The procedure outlined above will be repeated until
the desired number of base learners is obtained. On binary classification problems, the
AdaBoost regressor outperforms all other regressors in terms of improving the performance
of DTs. Furthermore, it is used to improve the performance of other machine learning
algorithms. It works especially well when used with a slow learner. Ensemble algorithms
are most frequently used in the field of civil engineering, particularly for predicting the
mechanical properties of concrete.

4. Results and Discussions
4.1. Statistical Results from Artificial Neural Network (ANN) Model

The statistical findings from the ANN model between the targeted result obtained
from the experimental work and forecasted outcome can be seen in Figure 2. The result
of the ANN model reveals that the accuracy level was impressive towards the prediction
of CS of flay ash-based GPC as indicated from the coefficient correlation (R2) value (0.87).
However, the distribution of the errors from the actual and forecasted results is depicted in
Figure 3. The errors’ maximum, minimum, and average values were 9.56 MPa, 0.85, and
3.86 MPa, respectively. Moreover, it was noted that 25.8% of the error data lie between 0
to 2 MPa, and 48.38% of this data was reported between 2 MPa to 5 MPa. However, only
19.35% of the errors data was observed to be above 5 MPa.
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4.2. Statistical Results from Boosting Approach

The statistical analysis of the boosting technique indicates the strong, adamant re-
lationship between the targeted output obtained from the experimental approach and
the forecasted outcome given by the boosting regressor, as shown in Figure 4. The closer
dot from the straight line is the indication of the high accuracy of the employed model.
The reflection of the high value of the R2 value (0.96) confirms a more accurate model
towards the prediction of CS of high calcium fly ash-based GPC. The indication of the
distribution of errors from the predicted and actual data can be seen in Figure 5. The
maximum, minimum, and average values of the error distribution for the model results
obtained from the bagging technique were 4.08 MPa, 0.06 MPa, and 1.69 MPa, respectively.
In addition, 35.48% of the total error data occurred between 0 to 1 MPa, while 45.16% of
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the data was reported between 1 MPa and 3 MPa. However, only 3.2% of the error data
appeared above 4 MPa.
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4.3. Statistical Result for Adaboost Approach

Figures 6 and 7 compare the AdaBoost model’s actual and projected outputs. Figure 6
depicts the correlation between actual and projected results, which has an R2 value of 0.94,
indicating that the R2 model is more precise than the ANN model and less accurate than the
boosting model in terms of outcome precision. The distribution of actual values (targets),
predicted values, and errors for the AdaBoost model is depicted in Figure 7. The error’s
maximum, minimum, and average values were 6.87, 0.03, and 2.16 MPa, respectively.
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However, 19.35% of error values were less than 1 MPa, 51.61% were between 1 and 3 MPa,
22.58% were between 3 and 5 MPa, and only 6.45% were greater than 5 MPa. These lower
error values also support the AdaBoost model’s greater accuracy when compared to the
ANN model.
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4.4. K-Fold Cross-Validation Process

The validity of the employed models was evaluated by incorporating the process of
k-fold cross-validation. The approach of k-fold cross-validation is normally adopted for
the evaluation of the model’s validity. This process gives the test and train data in the form
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of coefficient of determination (R2) and errors (MAE, MSE, RMSE). The higher value of R2

and lesser value of the errors indicate an accurate model towards the prediction. In this
process, the database is randomly scattered and split into ten groups, from which the nine
groups were used for training while one group was allocated for validation purposes. The
repetition of the said process took ten steps to have an appreciable result. The execution
of this process for the model lead towards high accuracy. 80% of the database is assigned
to train the employed models, while the remaining 20% of the data set is allocated for
testing the models. However, the statistical evaluation of the errors (MAE, MSE, RMSE)
for both the models is listed in Table 3. The statistical results from both models’ data
clearly show that the boosting approach had fewer error values than the ANN model. The
following Equations (1)–(3) in accordance with the literature [46,57] were used to evaluate
the response of each parameter.

MAE =
1
n

n

∑
i=1
|xi − x| (1)

MSE =
1
n

n

∑
i=1

(
ypred − yre f

)2
(2)

RMSE =

√√√√
∑

(
ypred − yre f

)2

n
(3)

where: n = total number of data samples, x, yre f = reference values in the data sample, xi,
ypred = predicted values from models.

Table 3. Statistical checks for employed algorithms.

ML Algorithms MAE (MPa) MSE (MPa) RMSE (MPa)

Artificial neural network (ANN) model 3.86 20.16 4.49
Boosting model 1.69 4.16 2.04
AdaBoost model 2.16 6.84 2.62

The data of the parameters (R2, MAE, MSE, and RMSE) obtained from the data of
employed algorithms (ANN, boosting) were taken for the k-fold cross-validation process
as depicted in Figures 8 and 9. However, the maximum, minimum, and average values
of MSE during the process of k-fold cross-validation for ANN’s model were 1658.28 MPa,
14.33 MPa, and 612.97 MPa, respectively, as shown in Figure 8. In addition, the maximum
values of MAE, RMSE, and R2 were noted as 42.76 MPa, 40.72 MPa, and 0.98, respectively.
In comparison, the maximum, minimum, and average results of MSE for boosting ap-
proach were 601.90 MPa, 10.41 MPa, and 132.96 MPa, respectively, and can be seen in
Figure 9. However, the maximum values reported for MAE, RMSE, and R2 were 47.51 MPa,
24.53 MPa, and 0.95, respectively.
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5. Sensitivity Analyses

To check the influence of each variable towards the prediction of CS of high calcium
fly-ash-based GPC, the analysis was carried out known as the sensitivity analysis. Since
the input parameters play a key role in the accuracy of employed models for the prediction
aspect, it is also necessary to know the effect of input parameters individually on the
predicted outcome. The contribution of each input parameter towards the forecasted output
of the CS of GPC can be seen in the Figure 10. It was noted that the important parameters
fly ash (45.3%), coarse aggregate (18.5%), and fine aggregate (10.4%) have contributed
significantly towards the prediction of the strength property of GPC. In addition, the other
input variables NaOH, Na2SiO3, SiO2, Na2O, NaOH molarity, and curing time, contributed
the least for the forecasting of CS of GPC. The following Equations (4) and (5) retrieved
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from the literature [41] were used to calculate the contribution of each variable towards the
predicted outcome.

Ni = fmax(xi)− fmin(xi) (4)

Si =
Ni

∑n
j−i Nj

(5)

where fmax (xi) and fmin (xi) are the maximum and minimum of the estimated output over
the ith output.
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Figure 10. Influence of input parameters towards the prediction of outcome (CS) of GPC.

6. Discussion

This research describes the effect of supervised ML algorithms in terms of prediction
for the mechanical property (CS) of GPC containing high calcium fly ash. Three supervised
ML algorithms—ANN, AdaBoost, and boosting approaches—were introduced to forecast
the required outcome. To obtain the single output of compressive strength total of nine
input variables were incorporated. The python coding was the key aspect for running
the employed models in the anaconda software. The descriptive statistical analysis was
also carried out for the input parameters to check the ranges, mode, median, standard
deviation, and other relevant information. The results indicate that the ensemble ML
algorithms (boosting and AdaBoost) were more effective when compared with the result of
the individual (ANN) model’s outcome. In comparison, the highest value of the coefficient
of determination (R2) of boosting technique (0.96) is the indication of its better performance
towards the prediction of the outcome as opposed to the R2 value of ANN and AdaBoost
model, which were reported as 0.87 and 0.93, respectively. The accuracy of the ensemble ML
technique is because of its adopted procedure of splitting the model into sub-models, and
the result of the sub-models of boosting technique can be seen in the Figure 11. The 16th
sub-model shows the highest R2 value, the data of which was then incorporated for further
evaluation. Based on the obtained data, the statistical evaluation of the errors (MAE, MSE,
RMSE) was performed for the confirmation of the model’s accuracy. Moreover, the k-fold
cross-validation process was also included in the research to confirms the precision of the
employed models. In addition, the sensitivity analysis reveals that the fly ash (45.3%) and
sodium hydro oxide (18.5%) contributed the most towards the prediction of compressive
strength of GPC, while another contribution was reported least for the prediction of output.
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7. Conclusions

This study explains the performance comparison of the ensemble ML approaches
(boosting and AdaBoost) and individual ML techniques (ANN) to forecast the CS of
geopolymer concrete containing high calcium fly ash. The mechanical property (CS)
of GPC was successfully predicted at a relatively high accuracy when compared to the
actual result. The coefficient of determination and the result of various errors along with
the statistical checks were incorporated to evaluate the performance comparison of the
employed ML approaches. The following conclusions from the study can be drawn:

• The ML algorithms (both ensemble and individual) can be successfully utilized to
predict the mechanical properties of any type of geopolymer concrete.

• The ensemble ML techniques boosting and AdaBoost were very effective when treated
for forecasting the CS of GPC by indicating the high value of R2 equals 0.96 and 0.93,
respectively. However, the individual ML approach (ANN) gives the R2 value equal
to 0.87, indicating the poor accuracy level towards the prediction of CS as opposed to
boosting algorithm.

• The high precision level of the boosting technique also confirms the lesser values of
the errors from the ANN approach. The MAE, MSE, and RMSE values for boosting
were 1.69 MPa, 4.16 MPa, and 2.04 MPa, respectively, while these values for the ANN
model were 3.86 MPa, 20.16 MPa, and 4.49 MPa, respectively, and similar values were
reported for AdaBoost model as 2.16 MPa, 6.84 MPa, and 2.62 MPa, respectively.

• Statistical analyses and method of k-fold cross validation also confirm that the perfor-
mance of boosting ML technique was effective to forecast the CS as compared to the
ANN model.

• Sensitivity analysis reveals that the fly ash was the superior parameter which con-
tributed magnificently at 45.3% towards the prediction of CS for GPC.

• Overall, the combined effect of the obtained result from the coefficient of determination
(R2) and result from various errors makes an indication for boosting technique as the
best performer when compared to AdaBoost and ANN model.

It has been reported and recommended that ensemble ML techniques can be success-
fully employed to forecast the mechanical properties of any type of concrete with accurate
results. To obtain more accurate results for the selected ML algorithms, the number of
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databases can be increased via an experimental approach in the laboratory. Another aspect
of enhancing the accuracy level of the ML approach is to increase the number of input
parameters such as the temperature effect, additional ages of the sample’s strength, etc.
The application of ML techniques to predict the required outcomes in the field of civil
engineering not only reduces the cost of the projects and minimizes the time required to
complete the tasks.
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